Searching

Alan G. Labouseur, Ph.D.
Alan.Labouseur@Marist.edu
Searching

Imagine a data structure containing 9 billion unordered names

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># 1</td>
<td></td>
<td>Peart</td>
</tr>
<tr>
<td># 2</td>
<td></td>
<td>Schock</td>
</tr>
<tr>
<td># 3</td>
<td></td>
<td>Crump</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># 8,999,999,998</td>
<td></td>
<td>White</td>
</tr>
<tr>
<td># 8,999,999,999</td>
<td></td>
<td>Purdie</td>
</tr>
<tr>
<td># 9,000,000,000</td>
<td></td>
<td>Bruford</td>
</tr>
</tbody>
</table>
Imagine a data structure containing 9 billion unordered names and we want to locate one of them.

<table>
<thead>
<tr>
<th>check #</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td># 1</td>
<td>Peart</td>
</tr>
<tr>
<td># 2</td>
<td>Schock</td>
</tr>
<tr>
<td># 3</td>
<td>Crump</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td># 8,999,999,998</td>
<td>White</td>
</tr>
<tr>
<td># 8,999,999,999</td>
<td>Purdie</td>
</tr>
<tr>
<td># 9,000,000,000</td>
<td>Bruford</td>
</tr>
</tbody>
</table>

Is this it? If not, n-1 to go.
Is this it? If not, n-2 to go.
Is this it? If not, n-3 to go.
Is this it? If not, 2 to go.
Is this it? If not, 1 to go.
Is this it? If not, it’s not here.
Searching

Imagine a data structure containing 9 billion unordered names and we want to locate one of them.

- check # 1: Peart
- check # 2: Schock
- check # 3: Crump
-...
- check # 8,999,999,998: White
- check # 8,999,999,999: Purdie
- check # 9,000,000,000: Bruford

Sometimes we will find the target person early.
Searching

Imagine a data structure containing 9 billion unordered names and we want to locate one of them.

<table>
<thead>
<tr>
<th>check #</th>
<th>Name</th>
<th>Check #</th>
<th>Name</th>
<th>Check #</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peart</td>
<td>8,999,999,998</td>
<td>White</td>
<td>9,000,000,000</td>
<td>Bruford</td>
</tr>
<tr>
<td>2</td>
<td>Schock</td>
<td>8,999,999,999</td>
<td>Purdie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Crump</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sometimes we will find the target person early. Sometimes we will find the target person late.
Searching

Imagine a data structure containing 9 billion unordered names.

<table>
<thead>
<tr>
<th>check # 1</th>
<th>Peart</th>
</tr>
</thead>
<tbody>
<tr>
<td>check # 2</td>
<td>Schock</td>
</tr>
<tr>
<td>check # 3</td>
<td>Crump</td>
</tr>
<tr>
<td>check # 8,999,999,998</td>
<td>White</td>
</tr>
<tr>
<td>check # 8,999,999,999</td>
<td>Purdie</td>
</tr>
<tr>
<td>check # 9,000,000,000</td>
<td>Bruford</td>
</tr>
</tbody>
</table>

This is called **Linear Search** or **Sequential Search**

Sometimes we will find the target person early. Sometimes we will find the target person late.

Q: What’s the average — or expected — case for n items?
Linear / Sequential Searching

Imagine a data structure containing 9 billion unordered names.

<table>
<thead>
<tr>
<th>check # 1</th>
<th>Peart</th>
</tr>
</thead>
<tbody>
<tr>
<td>check # 2</td>
<td>Schock</td>
</tr>
<tr>
<td>check # 3</td>
<td>Crump</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>check # 8,999,999,998</td>
<td>White</td>
</tr>
<tr>
<td>check # 8,999,999,999</td>
<td>Purdie</td>
</tr>
<tr>
<td>check # 9,000,000,000</td>
<td>Bruford</td>
</tr>
</tbody>
</table>

Sometimes we will find the target person early. Sometimes we will find the target person late.

Q: What’s the average — or expected — case for \(n \) items?
A: The expected case is \(\frac{1}{2} n \), which requires examining 4.5B rows in this example.
Linear / Sequential Searching

Imagine a data structure containing 9 billion unordered names.

check # 1	Peart
check # 2	Schock
check # 3	Crump
.	
.	
.	
check # 8,999,999,998	White
check # 8,999,999,999	Purdie
check # 9,000,000,000	Bruford

That’s O(n).

Best case O(1)
Worst case O(n)
Average case O(n)

Recurrence:

\[T(n) = T(n-1) + c \]

Sometimes we will find the target person early. Sometimes we will find the target person late.

Q: What’s the average — or expected — case for \(n \) items?
A: The expected case is \(\frac{1}{2} n \), which requires examining 4.5B rows in this example.
Linear / Sequential Searching

Imagine a data structure containing 9 billion unordered names.

check # 1	Peart
check # 2	Schock
check # 3	Crump
.
check # 8,999,999,998	White
check # 8,999,999,999	Purdie
check # 9,000,000,000	Bruford

That’s $O(n)$.

Best case $O(1)$
Worst case $O(n)$
Average case $O(n)$

Recurrence:

$$T(n) = T(n-1) + c$$

To search a list of n objects, the LIST-SEARCH procedure takes $\Theta(n)$ time in the worst case, since it may have to search the entire list.
Linear / Sequential Searching

Imagine a data structure containing 9 billion unordered names.

<table>
<thead>
<tr>
<th>check # 1</th>
<th>Peart</th>
</tr>
</thead>
<tbody>
<tr>
<td>check # 2</td>
<td>Schock</td>
</tr>
<tr>
<td>check # 3</td>
<td>Crump</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>check # 8,999,999,998</td>
<td>White</td>
</tr>
<tr>
<td>check # 8,999,999,999</td>
<td>Purdie</td>
</tr>
<tr>
<td>check # 9,000,000,000</td>
<td>Bruford</td>
</tr>
</tbody>
</table>

That’s $O(n)$.

Best case $O(1)$
Worst case $O(n)$
Average case $O(n)$

Can we do better?

```
LIST-SEARCH(L, k)
1  x = L.head
2  while x ≠ NIL and x.key ≠ k
3    x = x.next
4  return x
```

To search a list of n objects, the LIST-SEARCH procedure takes $\Theta(n)$ time in the worst case, since it may have to search the entire list.
Searching 9 billion people

What if we could search through sorted data?

After all, we are good at sorting...

... in $O(n^2)$ time — Selection and Insertion sort

... in $O(n \log_2 n)$ time — Merge sort and Quicksort
Searching 9 billion people

What if we could search through sorted data?

<table>
<thead>
<tr>
<th>check #</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>check # 1</td>
<td>Bruford</td>
</tr>
<tr>
<td>check # 2</td>
<td>Crump</td>
</tr>
<tr>
<td>check # 3</td>
<td>Peart</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>check # 8,999,999,998</td>
<td>Purdie</td>
</tr>
<tr>
<td>check # 8,999,999,999</td>
<td>Schock</td>
</tr>
<tr>
<td>check # 9,000,000,000</td>
<td>White</td>
</tr>
</tbody>
</table>

How would you do it?
What’s your strategy?

Want to play a number guessing game?
Searching 9 billion people

What if we could search through sorted data?

<table>
<thead>
<tr>
<th>check #</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>check # 1</td>
<td>Bruford</td>
</tr>
<tr>
<td>check # 2</td>
<td>Crump</td>
</tr>
<tr>
<td>check # 3</td>
<td>Peart</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>check # 8,999,999,998</td>
<td>Purdie</td>
</tr>
<tr>
<td>check # 8,999,999,999</td>
<td>Schock</td>
</tr>
<tr>
<td>check # 9,000,000,000</td>
<td>White</td>
</tr>
</tbody>
</table>

We could pick from the middle. If that’s not our target, then we exclude the lower or upper half of the data, depending on whether our target is greater or lesser than the value we picked. Then we pick the middle of the remaining half. Repeat.

Have we seen this before?
Divide and . . .

Take a big problem and divide it into two smaller problems.
Take a those problems and divide them into two smaller problems.
 Take a those problems and divide them into two smaller problems.
 Take a those problems and divide them into two smaller problems.
 Take a those problems and divide them into two smaller problems.
 Take a those problems and divide them into two smaller problems.
 Take a those problems and divide them into two smaller problems.

... until the problems get small enough that they are solved.

In this case, it’s really just divide.

Let’s consider **Binary Search**.
Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we exclude the *lower* or *upper* half of the data, depending on whether our target is greater or lesser than the value we picked. Then we pick the middle of the remaining half. Repeat.

(lower)
Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we exclude the *lower* or *upper* half of the data, depending on whether our target is greater or lesser than the value we picked. Then we pick the middle of the remaining half. Repeat.

\[
\frac{1}{2}\text{ of the data left } \Rightarrow \frac{1}{2^1}
\]
Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we exclude the lower or upper half of the data, depending on whether our target is greater or lesser than the value we picked. Then we pick the middle of the remaining half. Repeat.

½ of the data left \(\frac{1}{2^1} \)

(lower)
Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we exclude the *lower* or *upper* half of the data, depending on whether our target is greater or lesser than the value we picked. Then we pick the middle of the remaining half. Repeat.

\[
\frac{1}{2} \text{ of the data left } \quad \frac{1}{2^1}
\]

\[
\frac{1}{4} \text{ of the data left } \quad \frac{1}{2^2}
\]
Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we exclude the *lower* or *upper* half of the data, depending on whether our target is greater or lesser than the value we picked. Then we pick the middle of the remaining half. Repeat.

\[
\frac{1}{2} \text{ of the data left} \quad \frac{1}{2^1}
\]

\[
\frac{1}{4} \text{ of the data left} \quad \frac{1}{2^2}
\]

(higher)
Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we exclude the *lower* or *upper* half of the data, depending on whether our target is greater or lesser than the value we picked. Then we pick the middle of the remaining half. Repeat.

\[\frac{1}{2} \text{ of the data left} = \frac{1}{2^1} \]

\[\frac{1}{4} \text{ of the data left} = \frac{1}{2^2} \]

\[\frac{1}{8} \text{ of the data left} = \frac{1}{2^3} \]
Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we exclude the *lower* or *upper* half of the data, depending on whether our target is greater or lesser than the value we picked. Then we pick the middle of the remaining half. Repeat.

```
1/2 of the data left
1/4 of the data left
1/8 of the data left
```

Q: What’s the average or — expected — case for *n* rows?
Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we exclude the *lower* or *upper* half of the data, depending on whether our target is greater or lesser than the value we picked. Then we pick the middle of the remaining half. Repeat.

Q: What’s the average or — expected — case for n rows?
A: The expected case is $\log_2 n$, because we cut it in half each time.
Binary Searching 9 billion people

What if we could search through sorted data?

<table>
<thead>
<tr>
<th>check #</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td># 1</td>
<td>Bruford</td>
</tr>
<tr>
<td># 2</td>
<td>Crump</td>
</tr>
<tr>
<td># 3</td>
<td>Peart</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td># 8,999,999,998</td>
<td>Purdie</td>
</tr>
<tr>
<td># 8,999,999,999</td>
<td>Schock</td>
</tr>
<tr>
<td># 9,000,000,000</td>
<td>White</td>
</tr>
</tbody>
</table>

We could pick from the middle. If that’s not our target, then we exclude the lower or upper half of the data, depending on whether our target is greater or lesser than the value we picked. Then we pick the middle of the remaining half. Repeat.

Q: What’s the average or — expected — case for n rows?
A: The expected case is $\log_2 n$. By the way, $\log_2 9B$ is . . . ?
Binary Searching 9 billion people

What if we could search through sorted data?

<table>
<thead>
<tr>
<th>check # 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>check # 2</td>
<td></td>
</tr>
<tr>
<td>check # 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>check # 8,999,999,998</td>
<td>Purdie</td>
</tr>
<tr>
<td>check # 8,999,999,999</td>
<td>Schock</td>
</tr>
<tr>
<td>check # 9,000,000,000</td>
<td>White</td>
</tr>
</tbody>
</table>

We could pick from the middle. If that’s not our target, then we exclude the lower or upper half of the data, depending on whether our target is greater or lesser than the value we picked. Then we pick the middle of the remaining half. Repeat.

Q: What’s the average or — expected — case for n rows?
A: The expected case is $\log_2 n$. By the way, $\log_2 9B$ is . . . 33
Binary Searching 9 billion people

What if we could search through sorted data?

<table>
<thead>
<tr>
<th>check #</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bruford</td>
</tr>
<tr>
<td>2</td>
<td>Crump</td>
</tr>
<tr>
<td>3</td>
<td>Peart</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>8,999,999,998</td>
<td>Purdie</td>
</tr>
<tr>
<td>8,999,999,999</td>
<td>Schock</td>
</tr>
<tr>
<td>9,000,000,000</td>
<td>White</td>
</tr>
</tbody>
</table>

We could pick from the middle. If that’s not our target, then we exclude the lower or upper half of the data, depending on whether our target is greater or lesser than the value we picked. Then we pick the middle of the remaining half. Repeat.

Q: What’s the average or — expected — case for n rows?
A: The expected case is $\log_2 n$. By the way, $\log_2 9B$ is ... 33
Binary Searching 9 billion people

What if we could search through sorted data?

check # 1	Bruford
check # 2	Crump
check # 3	Peart
.	.
.	.
.	.
check # 8,999,999,998	Purdie
check # 8,999,999,999	Schock
check # 9,000,000,000	White

Binary Search is $O(\log_2 n)$.

Best case $O(1)$
Worst case $O(\log_2 n)$
Average case $O(\log_2 n)$

Recurrence:

$$T(n) = T\left(\frac{n}{2}\right) + c$$

We could pick from the middle. If that’s not our target, then we exclude the lower or upper half of the data, depending on whether our target is greater or lesser than the value we picked. Then we pick the middle of the remaining half. Repeat.

Q: What’s the average or — expected — case for n rows?
A: The expected case is $\log_2 n$.
Binary Search Algorithm

which half of the table should be searched next, and the same procedure can
be used again, comparing K to the middle key of the selected half, etc. After
at most about $\log_2 N$ comparisons, we will have found the key or we will have
established that it is not present. This procedure is sometimes known as “loga-
Rithmic search” or “bisection,” but it is most commonly called binary search.

Although the basic idea of binary search is comparatively straightforward,
the details can be somewhat tricky, and many good programmers have done it
wrong the first few times they tried. One of the most popular correct forms of
the algorithm makes use of two pointers, l and u, which indicate the current
lower and upper limits for the search, as follows:

Algorithm B (Binary search). Given a table of records R_1, R_2, \ldots, R_N whose
keys are in increasing order $K_1 < K_2 < \cdots < K_N$, this algorithm searches
for a given argument K.

1. [Initialize.] Set $l \leftarrow 1$, $u \leftarrow N$.
2. [Get midpoint.] At this point we know that if K is in the table, it satisfies
 $K_1 \leq K \leq K_u$. More precisely, the situation appears in
 exercise 1 below. If $u < l$, the algorithm terminates unsuccessfully. Otherwise,
 set $i \leftarrow [(l + u)/2]$, the approximate midpoint of the relevant table
 area.
3. [Compare.] If $K < K_i$, go to B4; if $K > K_i$, go to B5; and if $K = K_i$
 the algorithm terminates successfully.
4. [Adjust u.] Set $u \leftarrow i + 1$ and return to B2.
5. [Adjust l.] Set $l \leftarrow i + 1$ and return to B2.

Figure 3 illustrates two cases of this binary search algorithm: first to search
for the argument 653, which is present in the table, and then to search for 400,
Binary Search Algorithm

Here is an iterative version of Binary Search from the CLRS text.

\[
\text{BINARY-SEARCH}(x, T, p, r)
\]

1. \(low = p \)
2. \(high = \max(p, r + 1) \)
3. \(\text{while} \ low < high \)
4. \(\quad mid = \lfloor (low + high)/2 \rfloor \)
5. \(\quad \text{if} \ x \leq T[mid] \)
6. \(\quad \quad high = mid \)
7. \(\quad \text{else} \ low = mid + 1 \)
8. \(\quad \text{return} \ high \)

\(x \) - target
\(T \) - collection of data
\(p \) - start index
\(r \) - stop index

CLRS 3e p.799
Binary Search Algorithm

Here is a recursive version of Binary Search, with some issues:
(1) There are two exits. That’s bad software craftsmanship.
(2) It does not return where the target is found, is it is.
Fix these issues when you program it.

```
proc BinarySearch(A, start, stop, target)
    midPoint = int((start+stop)/2) // round, ceil, floor?
    if (start > stop)
        return false
    else if (target == A[midPoint])
        return true
    else if (target < A[midPoint])
        BinarySearch(A, start, midPoint-1, target)
    else // target > A[midPoint] or not there at all
        BinarySearch(A, midPoint+1, stop, target)
    end if
end proc
```
Binary Search Example

```plaintext
proc BinarySearch(A, start, stop, target)
    midPoint = int((start+stop)/2)  // round, ceil, floor?
    if (start > stop)
        return false
    else if (target == A[midPoint])
        return true
    else if (target < A[midPoint])
        BinarySearch(A, start, midPoint-1, target)
    else  // target > A[midPoint] or not there at all
        BinarySearch(A, midPoint+1, stop, target)
    end if
end proc

BinarySearch(A, 0, 7, 2)
```
Binary Search Example

proc BinarySearch(A, start, stop, target)
 midPoint = int((start+stop)/2) // round, ceil, floor?
 if (start > stop)
 return false
 else if (target == A[midPoint])
 return true
 else if (target < A[midPoint])
 BinarySearch(A, start, midPoint-1, target)
 else // target > A[midPoint] or not there at all
 BinarySearch(A, midPoint+1, stop, target)
end if
end proc

BinarySearch(A, 0, 7, 2)
Binary Search Example

```plaintext
proc BinarySearch(A, start, stop, target)
    midPoint = int((start+stop)/2) // round, ceil, floor?
    if (start > stop)
        return false
    else if (target == A[midPoint])
        return true
    else if (target < A[midPoint])
        BinarySearch(A, start, midPoint-1, target)
    else // target > A[midPoint] or not there at all
        BinarySearch(A, midPoint+1, stop, target)
    end if
end proc
```

BinarySearch(A, 0, 7, 2)

```
1 2 3 4 5 6 7 8
[0] [1] [2] [3] [4] [5] [6] [7]
```
Binary Search Example

```plaintext
proc BinarySearch(A, start, stop, target)
    midPoint = int((start+stop)/2) // round, ceil, floor?
    if (start > stop)
        return false
    else if (target == A[midPoint])
        return true
    else if (target < A[midPoint])
        BinarySearch(A, start, midPoint-1, target)
    else // target > A[midPoint] or not there at all
        BinarySearch(A, midPoint+1, stop, target)
    end if
end proc

BinarySearch(A, 0, 7, 2) ≠
```

```
1  2  3  4  5  6  7  8
[0] [1] [2] [3] [4] [5] [6] [7]
```
Binary Search Example

```plaintext
proc BinarySearch(A, start, stop, target)
    midPoint = int((start+stop)/2) // round, ceil, floor?
    if (start > stop)
        return false
    else if (target == A[midPoint])
        return true
    else if (target < A[midPoint])
        BinarySearch(A, start, midPoint-1, target)
    else // target > A[midPoint] or not there at all
        BinarySearch(A, midPoint+1, stop, target)
    end if
end proc
```

BinarySearch(A, 0, 7, 2)
Binary Search Example

```
proc BinarySearch(A, start, stop, target)
    midPoint = int((start+stop)/2) // round, ceil, floor?
    if (start > stop)
        return false
    else if (target == A[midPoint])
        return true
    else if (target < A[midPoint])
        BinarySearch(A, start, midPoint-1, target)
    else // target > A[midPoint] or not there at all
        BinarySearch(A, midPoint+1, stop, target)
    end if
end proc
```

BinarySearch(A, 0, 7, 2)
BinarySearch(A, 0, 2, 2)
Binary Search Example

proc BinarySearch(A, start, stop, target)
 midPoint = int((start+stop)/2) // round, ceil, floor?
 if (start > stop)
 return false
 else if (target == A[midPoint])
 return true
 else if (target < A[midPoint])
 BinarySearch(A, start, midPoint-1, target)
 else // target > A[midPoint] or not there at all
 BinarySearch(A, midPoint+1, stop, target)
 end if
end proc

BinarySearch(A, 0, 7, 2)
BinarySearch(A, 0, 2, 2)
Binary Search Example

```
proc BinarySearch(A, start, stop, target)
    midPoint = int((start+stop)/2) // round, ceil, floor?
    if (start > stop)
        return false
    else if (target == A[midPoint])
        return true
    else if (target < A[midPoint])
        BinarySearch(A, start, midPoint-1, target)
    else // target > A[midPoint] or not there at all
        BinarySearch(A, midPoint+1, stop, target)
    end if
end proc
```

BinarySearch(A, 0, 7, 2)
BinarySearch(A, 0, 2, 2)
Binary Search Example

```plaintext
proc BinarySearch(A, start, stop, target)
    midPoint = int((start+stop)/2) // round, ceil, floor?
    if (start > stop)
        return false
    else if (target == A[midPoint])
        return true
    else if (target < A[midPoint])
        BinarySearch(A, start, midPoint-1, target)
    else // target > A[midPoint] or not there at all
        BinarySearch(A, midPoint+1, stop, target)
    end if
end proc
```

BinarySearch(A, 0, 7, 2)
BinarySearch(A, 0, 2, 2)
Binary Search Example

```
proc BinarySearch(A, start, stop, target)
    midPoint = int((start+stop)/2) // round, ceil, floor?
    if (start > stop)
        return false
    else if (target == A[midPoint])
        return true
    else if (target < A[midPoint])
        BinarySearch(A, start, midPoint-1, target)
    else // target > A[midPoint] or not there at all
        BinarySearch(A, midPoint+1, stop, target)
    end if
end proc
```

BinarySearch(A, 0, 7, 2)
BinarySearch(A, 0, 2, 2) → true
Binary Search Example

```plaintext
proc BinarySearch(A, start, stop, target)
    midPoint = int((start+stop)/2) // round, ceil, floor?
    if (start > stop)
        return false
    else if (target == A[midPoint])
        return true
    else if (target < A[midPoint])
        BinarySearch(A, start, midPoint-1, target) true
    else // target > A[midPoint] or not there at all
        BinarySearch(A, midPoint+1, stop, target)
    end if
end proc
```

BinarySearch(A, 0, 7, 2) → true
BinarySearch(A, 0, 2, 2) → true

```
   1  2  3  4  5  6  7  8
[0] [1] [2] [3] [4] [5] [6] [7]
```
Binary Search Example

proc BinarySearch(A, start, stop, target)
 midPoint = int((start+stop)/2) // round, ceil, floor?
 if (start > stop)
 return false
 else if (target == A[midPoint])
 return true
 else if (target < A[midPoint])
 BinarySearch(A, start, midPoint-1, target)
 else // target > A[midPoint] or not there at all
 BinarySearch(A, midPoint+1, stop, target)
 end if
end proc

BinarySearch(A, 0, 7, 2) → true
BinarySearch(A, 0, 2, 2) → true
Binary Search Example

```plaintext
proc BinarySearch(A, start, stop, target)
    midPoint = int((start+stop)/2) // round, ceil, floor?
    if (start > stop)
        return false
    else if (target == A[midPoint])
        return true
    else if (target < A[midPoint])
        BinarySearch(A, start, midPoint-1, target)
    else // target > A[midPoint] or not there at all
        BinarySearch(A, midPoint+1, stop, target)
    end if
end proc
```

BinarySearch(A, 0, 7, 2) → true
BinarySearch(A, 0, 2, 2) → true
Binary Search Example

```
proc BinarySearch(A, start, stop, target)
    midPoint = int((start+stop)/2) // round, ceil, floor?
    if (start > stop)
        return false
    else if (target == A[midPoint])
        return true
    else if (target < A[midPoint])
        BinarySearch(A, start, midPoint-1, target)
    else // target > A[midPoint] or not there at all
        BinarySearch(A, midPoint+1, stop, target)
    end if
end proc
```

Remember the issues:

(1) There are two exits. That’s bad software craftsmanship.
(2) It does not return *where* the target is found, is it is.

Fix these issues when you program it.