Searching

LS

EDITION

Alan G. Labouseur, Ph.D.
Alan.Labouseur@Marist.edu

mailto:Alan.Labouseur@Marist.edu

Searching

Imagine a data structure containing 9 billion unordered names

#1 Peart
2 Schock
#3 Crump
8,999,999,998 White
8,999,999,999 Purdie

9,000,000,000 Bruford

Searching

Imagine a data structure containing 9 billion unordered names

C
C

heck # 1
heck # 2

C

heck # 3

;.leCk # 8,999,999,998
heck # 8,999,999,999

heck # 9,000,000,000

and we want to locate one of them.

Peart o~ = o .
Is this it? If not, n-1 to go.
Schock : 8

Crump ' o '
\ o
[s this it? If not, n-3 to go.

[s this it? If not, 2 to go.

White <«
Purdie «— is tiis it:-)) ii not, 1 to go.h

s this it? If not, it’s not here.
Bruford e———

Searching

Imagine a data structure containing 9 billion unordered names

C
C

heck # 1
heck # 2

C

heck # 3

;.leCk # 8,999,999,998
heck # 8,999,999,999

heck # 9,000,000,000

and we want to locate one of them.

Peart — = o .
Is this it? If not, n-1 to go.
Schock : 8

Crump ' o '
\ o
[s this it? If not, n-3 to go.

[s this it? If not, 2 to go.

White <«
Purdie «— is tiis it:-)) ii not, 1 to go.h

s this it? If not, it’s not here.
Bruford e———

Sometimes we will find the target person early.

Searching

Imagine a data structure containing 9 billion unordered names

C
C

heck # 1
heck # 2

C

heck # 3

;.leCk # 8,999,999,998
heck # 8,999,999,999

heck # 9,000,000,000

and we want to locate one of them.

Peart —_— s f
[s this it? | t,n-1t .
Schock S this 1 not, n-1 to go

Crump ' o '
\ o
[s this it? If not, n-3 to go.

[s this it? If not, 2 to go.

White

Purdie |————— [s this it? If not, 1 to go.

[s this it? If not, it’s not here.
Bruford e———m—

Sometimes we will find the target person early.
Sometimes we will find the target person late.

Searching

Imagine a data structure containing 9 billion unordered names.

C
C

heck # 1
heck # 2

C

heck # 3

heck # 8,999,999,998
heck # 8,999,999,999

heck # 9,000,000,000

Peart

Schock o

Crump This is called
Linear Search or
Sequential Search

White

Purdie

Bruford

Sometimes we will find the target person early.
Sometimes we will find the target person late.

Q: What’s the average — or expected — case for n items?

Linear / Sequential Searching

Imagine a data structure containing 9 billion unordered names.

check # 1 Peart
check # 2 Schock
check # 3 Crump

check # 8,999,999,098 White

check # 8,999,999,999 Purdie
check # 9,000,000,000 Bruford

Sometimes we will find the target person early.
Sometimes we will find the target person late.

Q: What’s the average — or expected — case for n items?
A: The expected case is 12 n, which requires
examining 4.5B rows in this example.

Linear / Sequential Searching

Imagine a data structure containing 9 billion unordered names.

check # 1 Peart

check # 2 Schock That’s O(n).

check # 3 Crump
Best case O(1)
Worst case O(n)

: Average case O(n)

check # 8,999,099,998 White

check # 8,999,999,099 Purdie Recurrence:

check # 9,000,000,000 Bruford T(n) = T(n-1) +c

Sometimes we will find the targey person early.
Sometimes we will find the target person late.

Q: What’s the average
A: The expected case
examining 4.5B rov

gxpected — case for n items?
hich requires
is example.

Linear / Sequential Searching

Imagine a data structure containing 9 billion unordered names.

check # 1 Peart

check # 2 Schock That’s O(n).

check # 3 Crump
Best case O(1)
Worst case O(n)

: Average case O(n)

check # 8,099,099,098 White

check # 8,999,999,099 Purdie Recurrence:

check # 9,000,000,000 Bruford T(n) = T(n-1) + ¢

LIST-SEARCH(L, k)

1 x = L.head
2 while x # NIL and x.key # k
3 X = X.next

4 return x

To search a list of n objects, the LIST-SEARCH procedure takes ®(n) time in the
worst case, since it may have to search the entire list.

CLRS 3e p.237

Linear / Sequential Searching

Imagine a data structure containing 9 billion unordered names.

C
C

C

heck # 8,999,999,9908 White
heck # 8,999,999,999 Purdie Can we do better?

heck # 1 Peart

heck # 2 Schock That’s O(n).

heck # 3 Crump
Best case O(1)
Worst case O(n)
Average case O(n)

heck # 9,000,000,000 Bruford

LIST-SEARCH(L, k)

1 x = L.head
2 while x # NIL and x.key # k
3 X = X.next

4 return x

To search a list of n objects, the LIST-SEARCH procedure takes ®(n) time in the
worst case, since it may have to search the entire list.

CLRS 3e p.237

10

Searching 9 billion people

What if we could search through sorted data?

After all, we are good at sorting...

... In O(n?) time — Selection and Insertion sort

... In O(n log, n) time — Merge sort and Quicksort

11

Searching 9 billion people
What if we could search through sorted data?

check # 1 Bruford
check # 2 Crump
check # 3 Peart

check # 8,999,9099,098 Purdie

check # 8,999,999,9099 Schock
check # 9,000,000,000 White

How would you do it?
What’s your strategy?

Want to play a number guessing game?

Searching 9 billion people

What if we could search through sorted data?

check # 1 Bruford
check # 2 Crump
check # 3 Peart

check # 8,999,9099,098 Purdie

check # 8,999,999,9099 Schock
check # 9,000,000,000 White

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on
whether our target is greater or lesser than the value we picked.
Then we pick the middle of the remaining half. Repeat.

Have we seen this before?

13

Divide and . . .

Take a big problem and divide it into two smaller problems.

Take a those problems and divide them into two smaller problems.
Take a those problems and divide them into two smaller problems.

Take a those problems and divide them into two smaller problems.

Take a those problems and divide them into two smaller problems.

Take a those problems and divide them into two smaller problems.

roblems and divide them into two smaller problems.

... until the problems get small enough that they are solved.

In this case, it’s really just divide.

Let’s consider Binary Search.

14

Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

>

1

?
(lower)

15

Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

> - >0
> - >0
> - >»0
> - >»0
> - >»0
> - >0
> - >» 0
> - >0
> - >0
> - >» 0
> - >0
> - >»0
> - >» 0
> - >0
> - >»0
> - >0
> - >»0

/o of the data left 5

16

Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

> - >0
> - >0
> - >»0
> - >»0
> - >»0
> - >0
> - >» 0
> - >0
> - >0
> - >» 0
> - >0
> - >»0
> - >» 0
> - >0
> - >»0
> - >0
> - >»0

!

(lov.ver)

17

Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

> - >»0
> - >»0
> - >»0
> - >0
> - >» 0
> - >0
> - >0
> - >» 0
> - >0
> - >»0
> - >» 0
> - >0
> - >»0
> - >0
> - >0
> - >0

> - >0
> - >0

D D D D D D D D D 1
-: EIEIHHEHE 1/5 of the data left of
1

18

Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

> - >»0
> - >»0
> - >»0
> - >0
> - >» 0
> - >0
> - >0
> - >» 0
> - >0
> - >»0
> - >» 0
> - >0
> - >»0
> - >0
> - >0
> - >0

> - >0
> - >0

/o of the data left

> - >» 0
> - >»0

> - >» 0

> - >»0
> - >»0
> - >»0
> - >»0
> - >»0
> - >»0

I\DH‘H

1/4 of the data left

I\DM‘H

Sl
Sl
|

(higher)

19

Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

> - >»0
> - >»0
> - >»0
> - >0
> - >» 0
> - >0
> - >0
> - >» 0
> - >0
> - >»0
> - >0
> - >0
> - >»0
> - >0
> - >0
> - >0

> - >0
> - >0

D D D D D D D D D 1
-: IE I HEIEE 1/5 of the data left ol
D b|/D|D| D 1
SRR ':- 1/4 of the data left 2

- 18 of the data left %

20

Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

> - >»0
> - >»0
> - >»0
> - >0
> - >» 0
> - >0
> - >0
> - >» 0
> - >0
> - >»0
> - >0
> - >0
> - >»0
> - >0
> - >0
> - >0

> - >0
> - >0

D D D D D D D D D 1
-: A L EI AT k- 1/5 of the data left ol
D b|/D|D| D 1
SEIERE :‘- 1/4 of the data left 2

- 18 of the data left %

Q: What’s the average or — expected — case for n rows?

21

Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

> - >»0
> - >»0
> - >»0
> - >0
> - >» 0
> - >0
> - >0
> - >» 0
> - >0
> - >»0
> - >0
> - >0
> - >»0
> - >0
> - >0
> - >0

> - >0
> - >0

D D D D D D D D D 1
-: A L EI AT k- 1/5 of the data left ol
D b|/D|D| D 1
SEIERE :‘- 1/4 of the data left 2

- 18 of the data left %

Q: What's the average or — expected — case for n rows?
A: The expected case is log, n, because we cut it in half each time.

22

Binary Searching 9 billion people

Q: What’s the average or — expected — case for n rows?

A: The ex

pected case is log, n. By the way, log, 9Bis...?

23

Binary Searching 9 billion people

Q: What’s the average or — expected — case for n rows?
A: The expected case is log, n. By the way, log, 9B is . . . 3:

F O

Binary Searching 9 billion people

What if we could search through sorted data?

check # 1 Bruford
check # 2 Crump
check # 3 Peart

check # 8,999,9099,098 Purdie

check # 8,999,999,9099 Schock
check # 9,000,000,000 White

Now that is a better way!
33 < 4.5B

the middle of the remaining half. Repeat.

Q: What's the average or — expected — case for n rowg’
A: The expected case is log, n. By the way, log, 9B is .

25

Binary Searching 9 billion people

What if we could search through sorted data?

check # 1
check # 2
check # 3

check # o,

We could

check # 8,
check # 8,

Bruford
Crump Binary Search is O(log. n).
Peart
Best case O(1)
Worst case O(log, n)

Average case O(log, n)

999,999,998 Purdie

999,999,999 Schock Recurrence:
000,000,000 White T(n) =T +c

pick from the middle. If that’s not our target, then we

exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

Q: What’s the average or — expected — case for n rows?

A: The ex

pected case is log, n.

26

Binary Search Algorithm

Q_;
2 SEARCHING AN ORDERED TABLE 407
B4. Adjust u

SUCCESS

Fig. 3. Binary search..

the table should be searched next, and the same procedure can
comparing K to the middle key of the selected half, etc. After
loge N comparisons, we will have found the key or we will have
at it is not present. This procedure is sometimes known as “loga-
” or “bisection,” but it is most commonly called binary search.

basic idea of binary search is comparatively straightforward,
somewhat tricky, and many good programmers have done it
times they tried. One of the most popular correct forms of
s use of two pointers, I and u, which indicate the current

its for the search, as follows:

search). Given a table of records Ry, R, . .., Ry whose
g order K; < K, < -+ < Ky, this algorithm searches

4]

«— 1L u«N.

this point we know that if K is in the table, it satisfies

more precise statement of the situation appears in

u < I, the algorithm terminates unsuccessfully. Other-

u)/2] 'the approximate midpoint of the relevant table

U e

5, go to B4; if K > Ki, go to B and if K = Kj,
)

ates successfully-

4 — 1 and return to B2.

_ 1 and return to B2. 1

ases of this binar
h is present in the

ithm: first to search

gearch algor
i,able, and then to gearch for 400,

27

Binary Search Algorithm

Here is an iterative version of Binary Search from the CLRS text.

BINARY-SEARCH(x, T, p,r) X - target
T - collection of data
1 low = p p - start index
2 high = max(p, r + 1) r - stop index
3 while low < high
4 mid = |(low + high)/2]
5 if x < T [mid]
6 high = mid
7 else low = mid + 1
8 return high

CLRS 3e p.799

Binary Search Algorithm

proc BinarySearch(A, start, stop, target)
midPoint = int((start+stop)/2) // round, ceil, floor?
if (start > stop)
return false
else if (target == A[midPoint])
return true
else if (target < A[midPoint])
BinarySearch(A, start, midPoint-1, target)
else // target > A[midPoint] or not there at all
BinarySearch(A, midPoint+1, stop, target)
end 1if
end proc

Here is a recursive version of Binary Search, with some issues:

(1) There are two exits. That’s bad software craftsmanship.
(2) It does not return where the target is found, just that it is.

Fix these issues when you program your own version.

29

Binary Search Example

proc BinarySearch(A, start, stop, target

LS/
0, 7

BinarySearch(A, 0, 7, 2)

[@] [1] [2] [3] [4] [5]

[6]

7]

30

Binary Search Example

midPoint = int((start+stop)/2) // round, ceil, floor?

BinarySearch(A, 0, 7, 2)

[@] [1] [2] [4] [5] [6] 7]

Binary Search Example

if (start > stop)

BinarySearch (A,‘@ 2)
p

l

4

[@] [1] [2]

[3]

[4]

[5]

[6]

7]

32

Binary Search Example

else if (target == A[midPoint])

BinarySearch(A, 0, 7,@ +

1 2 3 <:::::> 5 6 7 8

[@] [1] [2] [3] [4] [5] [6] 7]

Binary Search Example

else if (target < A[midPoint])

BinarySearch(A, 0, 7,@ <

(2] @) s

[@] [1] [2] [3] [4]

[5]

[6]

7]

34

Binary Search Example

BinarySearch(A, start, stop, target)

BinarySearch(A, start, midPoint-1, target)

BinarySearch(A, 0, 2, 2) l

1 2 3 4 5 6 7 8

[@] [1] [2] [3] [4] [5] [6] 7]

35

Binary Search Example

midPoint

int((start+stop)/2) // round, ceil, floor?

BinarySearch(A, 0, 2, 2)

[@]

[2]

Binary Search Example

if (start > stop)

BinarySearch (A,@ 2)
ke

1

2

3

[@]

[1]

[2]

37

Binary Search Example

else if (target == A[midPoint])

BinarySearch(A, 0, 24 2))

v
1 <::::> 3 4 5
[1]

[@] [2]

Binary Search Example

return true

BinarySearch(A, 0, 2, 2) - true

[@] [1] [2]

Binary Search Example

BinarySearch(A, start, midPoint-1, target)

true

BinarySearch(A, 0, 7, 2) - true

[@] [1] [2] [3] [4] [5] [6] 7]

40

Binary Search Example

end 1if

BinarySearch(A, 0, 7, 2) - true

[@]

[1]

[2]

[3]

[4]

[5]

[6]

7]

41

Binary Search Example

end proc

BinarySearch(A, 0, 7, 2) - true

[@]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

42

Binary Search Example

proc BinarySearch(A, start, stop, target)
midPoint = int((start+stop)/2) // round, ceil, floor?
if (start > stop)
return false
else if (target == A[midPoint])
return true
else if (target < A[midPoint])
BinarySearch(A, start, midPoint-1, target)
else // target > A[midPoint] or not there at all
BinarySearch(A, midPoint+1, stop, target)
end 1if
end proc

Remember the issues:

(1) There are two exits. That’s bad software craftsmanship.
(2) It does not return where the target is found, just that it is.

Fix these issues when you program your own version.

43

