
1

Alan G. Labouseur, Ph.D.
Alan.Labouseur@Marist.edu

Searching

mailto:Alan.Labouseur@Marist.edu

2

Searching

Imagine a data structure containing 9 billion unordered names

 # 1
 # 2
 # 3
 .
 .
 .

 # 8,999,999,998
 # 8,999,999,999
 # 9,000,000,000

Peart
Schock
Crump

White
Purdie
Bruford

3

Searching

Imagine a data structure containing 9 billion unordered names

 check # 1
 check # 2
 check # 3
 .
 .
 .

 check # 8,999,999,998
 check # 8,999,999,999
 check # 9,000,000,000

Peart
Schock
Crump

White
Purdie
Bruford

and we want to locate one of them.
Is	this	it?	If	not,	n-1	to	go.

Is	this	it?	If	not,	n-2	to	go.
Is	this	it?	If	not,	n-3	to	go.

Is	this	it?	If	not,	2	to	go.

Is	this	it?	If	not,	1	to	go.
Is	this	it?	If	not,	it’s	not	here.

4

Searching

Imagine a data structure containing 9 billion unordered names

 check # 1
 check # 2
 check # 3
 .
 .
 .

 check # 8,999,999,998
 check # 8,999,999,999
 check # 9,000,000,000

Sometimes we will find the target person early.

Peart
Schock
Crump

White
Purdie
Bruford

and we want to locate one of them.
Is	this	it?	If	not,	n-1	to	go.

Is	this	it?	If	not,	n-2	to	go.
Is	this	it?	If	not,	n-3	to	go.

Is	this	it?	If	not,	2	to	go.

Is	this	it?	If	not,	1	to	go.
Is	this	it?	If	not,	it’s	not	here.

5

Searching

Imagine a data structure containing 9 billion unordered names

 check # 1
 check # 2
 check # 3
 .
 .
 .

 check # 8,999,999,998
 check # 8,999,999,999
 check # 9,000,000,000

Sometimes we will find the target person early.
Sometimes we will find the target person late.

Peart
Schock
Crump

White
Purdie
Bruford

and we want to locate one of them.
Is	this	it?	If	not,	n-1	to	go.

Is	this	it?	If	not,	n-2	to	go.
Is	this	it?	If	not,	n-3	to	go.

Is	this	it?	If	not,	2	to	go.

Is	this	it?	If	not,	1	to	go.
Is	this	it?	If	not,	it’s	not	here.

6

Searching

Imagine a data structure containing 9 billion unordered names.

 check # 1
 check # 2
 check # 3
 .
 .
 .

 check # 8,999,999,998
 check # 8,999,999,999
 check # 9,000,000,000

Sometimes we will find the target person early.
Sometimes we will find the target person late.

Q: What’s the average — or expected — case for n items?

Peart
Schock
Crump

White
Purdie
Bruford

This is called
Linear Search or
Sequential Search

7

Linear / Sequential Searching

Imagine a data structure containing 9 billion unordered names.

 check # 1
 check # 2
 check # 3
 .
 .
 .

 check # 8,999,999,998
 check # 8,999,999,999
 check # 9,000,000,000

Sometimes we will find the target person early.
Sometimes we will find the target person late.

Q: What’s the average — or expected — case for n items?
A: The expected case is ½ n, which requires
 examining 4.5B rows in this example.

Peart
Schock
Crump

White
Purdie
Bruford

8

Linear / Sequential Searching

Imagine a data structure containing 9 billion unordered names.

 check # 1
 check # 2
 check # 3
 .
 .
 .

 check # 8,999,999,998
 check # 8,999,999,999
 check # 9,000,000,000

Sometimes we will find the target person early.
Sometimes we will find the target person late.

Q: What’s the average — or expected — case for n items?
A: The expected case is ½ n, which requires
 examining 4.5B rows in this example.

Peart
Schock
Crump

White
Purdie
Bruford

That’s O(n).

Best case O(1)
Worst case O(n)
Average case O(n)

Recurrence:
T(n) = T(n-1) + c

9

Linear / Sequential Searching

Imagine a data structure containing 9 billion unordered names.

 check # 1
 check # 2
 check # 3
 .
 .
 .

 check # 8,999,999,998
 check # 8,999,999,999
 check # 9,000,000,000

Peart
Schock
Crump

White
Purdie
Bruford

That’s O(n).

Best case O(1)
Worst case O(n)
Average case O(n)

Recurrence:
T(n) = T(n-1) + c

CLRS 3e p.237

10

Linear / Sequential Searching

Imagine a data structure containing 9 billion unordered names.

 check # 1
 check # 2
 check # 3
 .
 .
 .

 check # 8,999,999,998
 check # 8,999,999,999
 check # 9,000,000,000

Peart
Schock
Crump

White
Purdie
Bruford

That’s O(n).

Best case O(1)
Worst case O(n)
Average case O(n)

Can we do better?

CLRS 3e p.237

11

Searching 9 billion people

What if we could search through sorted data?

After all, we are good at sorting…

… in O(n2) time — Selection and Insertion sort

… in O(n log2 n) time — Merge sort and Quicksort

12

Searching 9 billion people

What if we could search through sorted data?

 check # 1
 check # 2
 check # 3
 .
 .
 .

 check # 8,999,999,998
 check # 8,999,999,999
 check # 9,000,000,000

How would you do it?
What’s your strategy?

Want to play a number guessing game?

Bruford
Crump
Peart

Purdie
Schock
White

}

13

Searching 9 billion people

What if we could search through sorted data?

 check # 1
 check # 2
 check # 3
 .
 .
 .

 check # 8,999,999,998
 check # 8,999,999,999
 check # 9,000,000,000

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on
whether our target is greater or lesser than the value we picked.
Then we pick the middle of the remaining half. Repeat.

Have we seen this before?

Bruford
Crump
Peart

Purdie
Schock
White

14

Divide and . . .

Take a big problem and divide it into two smaller problems.
Take a those problems and divide them into two smaller problems.

Take a those problems and divide them into two smaller problems.
Take a those problems and divide them into two smaller problems.

Take a those problems and divide them into two smaller problems.

Take a those problems and divide them into two smaller problems.

Take a those problems and divide them into two smaller problems.

… until the problems get small enough that they are solved.

In this case, it’s really just divide.

Let’s consider Binary Search.

15

Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

?	
(lower)

16

Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

½ of the data left 1
21

17

Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

?	
(lower)

½ of the data left 1
21

18

Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

¼ of the data left

½ of the data left 1
21

1
22

19

Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

?	
(higher)

¼ of the data left

½ of the data left 1
21

1
22

20

Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

½ of the data left

¼ of the data left

⅛ of the data left

1
21

1
22

1
23

21

Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

½ of the data left

¼ of the data left

⅛ of the data left

Q: What’s the average or — expected — case for n rows?

1
21

1
22

1
23

22

Binary Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

½ of the data left

¼ of the data left

⅛ of the data left

Q: What’s the average or — expected — case for n rows?
A: The expected case is log2 n, because we cut it in half each time.

1
21

1
22

1
23

23

Binary Searching 9 billion people

What if we could search through sorted data?

 check # 1
 check # 2
 check # 3
 .
 .
 .

 check # 8,999,999,998
 check # 8,999,999,999
 check # 9,000,000,000

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

Q: What’s the average or — expected — case for n rows?
A: The expected case is log2 n. By the way, log2 9B is . . . ?

Bruford
Crump
Peart

Purdie
Schock
White

24

Binary Searching 9 billion people

What if we could search through sorted data?

 check # 1
 check # 2
 check # 3
 .
 .
 .

 check # 8,999,999,998
 check # 8,999,999,999
 check # 9,000,000,000

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

Q: What’s the average or — expected — case for n rows?
A: The expected case is log2 n. By the way, log2 9B is . . . 33

Bruford
Crump
Peart

Purdie
Schock
White

25

Binary Searching 9 billion people

What if we could search through sorted data?

 check # 1
 check # 2
 check # 3
 .
 .
 .

 check # 8,999,999,998
 check # 8,999,999,999
 check # 9,000,000,000

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

Q: What’s the average or — expected — case for n rows?
A: The expected case is log2 n. By the way, log2 9B is . . . 33

Bruford
Crump
Peart

Purdie
Schock
White

Now that is a better way!
33 < 4.5B

26

Binary Searching 9 billion people

What if we could search through sorted data?

 check # 1
 check # 2
 check # 3
 .
 .
 .

 check # 8,999,999,998
 check # 8,999,999,999
 check # 9,000,000,000

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

Q: What’s the average or — expected — case for n rows?
A: The expected case is log2 n.

Bruford
Crump
Peart

Purdie
Schock
White

Binary Search is O(log2 n).

Best case O(1)
Worst case O(log2 n)
Average case O(log2 n)

Recurrence:
T(n) = T() + cn

2

27

Binary Search Algorithm

28

Binary Search Algorithm

CLRS 3e p.799

x	-	target		
T	-	collection	of	data	
p	-	start	index	
r		-	stop	index

Here is an iterative version of Binary Search from the CLRS text.

29

Binary Search Algorithm

Here is a recursive version of Binary Search, with some issues:

(1) There are two exits. That’s bad software craftsmanship.
(2) It does not return where the target is found, just that it is.

Fix these issues when you program your own version.

proc BinarySearch(A, start, stop, target)
 midPoint = int((start+stop)/2) // round, ceil, floor?
 if (start > stop)
 return false
 else if (target == A[midPoint])
 return true
 else if (target < A[midPoint])
 BinarySearch(A, start, midPoint-1, target)
 else // target > A[midPoint] or not there at all
 BinarySearch(A, midPoint+1, stop, target)
 end if
end proc

30

Binary Search Example
proc BinarySearch(A, start, stop, target)
 midPoint = int((start+stop)/2) // round, ceil, floor?
 if (start > stop)
 return false
 else if (target == A[midPoint])
 return true
 else if (target < A[midPoint])
 BinarySearch(A, start, midPoint-1, target)
 else // target > A[midPoint] or not there at all
 BinarySearch(A, midPoint+1, stop, target)
 end if
end proc

1 2 3 4 5 6 7 8

[0] [1] [2] [3] [4] [5] [6] [7]

BinarySearch(A, 0, 7, 2)

31

Binary Search Example
proc BinarySearch(A, start, stop, target)
 midPoint = int((start+stop)/2) // round, ceil, floor?
 if (start > stop)
 return false
 else if (target == A[midPoint])
 return true
 else if (target < A[midPoint])
 BinarySearch(A, start, midPoint-1, target)
 else // target > A[midPoint] or not there at all
 BinarySearch(A, midPoint+1, stop, target)
 end if
end proc

1 2 3 4 5 6 7 8

[0] [1] [2] [3] [4] [5] [6] [7]

BinarySearch(A, 0, 7, 2)

32

Binary Search Example
proc BinarySearch(A, start, stop, target)
 midPoint = int((start+stop)/2) // round, ceil, floor?
 if (start > stop)
 return false
 else if (target == A[midPoint])
 return true
 else if (target < A[midPoint])
 BinarySearch(A, start, midPoint-1, target)
 else // target > A[midPoint] or not there at all
 BinarySearch(A, midPoint+1, stop, target)
 end if
end proc

1 2 3 4 5 6 7 8

[0] [1] [2] [3] [4] [5] [6] [7]

BinarySearch(A, 0, 7, 2)
≯

33

Binary Search Example
proc BinarySearch(A, start, stop, target)
 midPoint = int((start+stop)/2) // round, ceil, floor?
 if (start > stop)
 return false
 else if (target == A[midPoint])
 return true
 else if (target < A[midPoint])
 BinarySearch(A, start, midPoint-1, target)
 else // target > A[midPoint] or not there at all
 BinarySearch(A, midPoint+1, stop, target)
 end if
end proc

1 2 3 4 5 6 7 8

[0] [1] [2] [3] [4] [5] [6] [7]

BinarySearch(A, 0, 7, 2) ≠

34

Binary Search Example
proc BinarySearch(A, start, stop, target)
 midPoint = int((start+stop)/2) // round, ceil, floor?
 if (start > stop)
 return false
 else if (target == A[midPoint])
 return true
 else if (target < A[midPoint])
 BinarySearch(A, start, midPoint-1, target)
 else // target > A[midPoint] or not there at all
 BinarySearch(A, midPoint+1, stop, target)
 end if
end proc

1 2 3 4 5 6 7 8

[0] [1] [2] [3] [4] [5] [6] [7]

BinarySearch(A, 0, 7, 2) <

35

Binary Search Example
proc BinarySearch(A, start, stop, target)
 midPoint = int((start+stop)/2) // round, ceil, floor?
 if (start > stop)
 return false
 else if (target == A[midPoint])
 return true
 else if (target < A[midPoint])
 BinarySearch(A, start, midPoint-1, target)
 else // target > A[midPoint] or not there at all
 BinarySearch(A, midPoint+1, stop, target)
 end if
end proc

1 2 3 4 5 6 7 8

[0] [1] [2] [3] [4] [5] [6] [7]

BinarySearch(A, 0, 7, 2)
BinarySearch(A, 0, 2, 2)

36

Binary Search Example
proc BinarySearch(A, start, stop, target)
 midPoint = int((start+stop)/2) // round, ceil, floor?
 if (start > stop)
 return false
 else if (target == A[midPoint])
 return true
 else if (target < A[midPoint])
 BinarySearch(A, start, midPoint-1, target)
 else // target > A[midPoint] or not there at all
 BinarySearch(A, midPoint+1, stop, target)
 end if
end proc

1 2 3 4 5 6 7 8

[0] [1] [2] [3] [4] [5] [6] [7]

BinarySearch(A, 0, 7, 2)
BinarySearch(A, 0, 2, 2)

37

Binary Search Example
proc BinarySearch(A, start, stop, target)
 midPoint = int((start+stop)/2) // round, ceil, floor?
 if (start > stop)
 return false
 else if (target == A[midPoint])
 return true
 else if (target < A[midPoint])
 BinarySearch(A, start, midPoint-1, target)
 else // target > A[midPoint] or not there at all
 BinarySearch(A, midPoint+1, stop, target)
 end if
end proc

1 2 3 4 5 6 7 8

[0] [1] [2] [3] [4] [5] [6] [7]

BinarySearch(A, 0, 7, 2)
BinarySearch(A, 0, 2, 2)

≯

38

Binary Search Example
proc BinarySearch(A, start, stop, target)
 midPoint = int((start+stop)/2) // round, ceil, floor?
 if (start > stop)
 return false
 else if (target == A[midPoint])
 return true
 else if (target < A[midPoint])
 BinarySearch(A, start, midPoint-1, target)
 else // target > A[midPoint] or not there at all
 BinarySearch(A, midPoint+1, stop, target)
 end if
end proc

1 2 3 4 5 6 7 8

[0] [1] [2] [3] [4] [5] [6] [7]

BinarySearch(A, 0, 7, 2)
BinarySearch(A, 0, 2, 2)

=

39

Binary Search Example
proc BinarySearch(A, start, stop, target)
 midPoint = int((start+stop)/2) // round, ceil, floor?
 if (start > stop)
 return false
 else if (target == A[midPoint])
 return true
 else if (target < A[midPoint])
 BinarySearch(A, start, midPoint-1, target)
 else // target > A[midPoint] or not there at all
 BinarySearch(A, midPoint+1, stop, target)
 end if
end proc

1 2 3 4 5 6 7 8

[0] [1] [2] [3] [4] [5] [6] [7]

BinarySearch(A, 0, 7, 2)
BinarySearch(A, 0, 2, 2) ➛ true

40

Binary Search Example
proc BinarySearch(A, start, stop, target)
 midPoint = int((start+stop)/2) // round, ceil, floor?
 if (start > stop)
 return false
 else if (target == A[midPoint])
 return true
 else if (target < A[midPoint])
 BinarySearch(A, start, midPoint-1, target) true
 else // target > A[midPoint] or not there at all
 BinarySearch(A, midPoint+1, stop, target)
 end if
end proc

1 2 3 4 5 6 7 8

[0] [1] [2] [3] [4] [5] [6] [7]

BinarySearch(A, 0, 7, 2) ➛ true
BinarySearch(A, 0, 2, 2) ➛ true

41

Binary Search Example
proc BinarySearch(A, start, stop, target)
 midPoint = int((start+stop)/2) // round, ceil, floor?
 if (start > stop)
 return false
 else if (target == A[midPoint])
 return true
 else if (target < A[midPoint])
 BinarySearch(A, start, midPoint-1, target)
 else // target > A[midPoint] or not there at all
 BinarySearch(A, midPoint+1, stop, target)
 end if
end proc

1 2 3 4 5 6 7 8

[0] [1] [2] [3] [4] [5] [6] [7]

BinarySearch(A, 0, 7, 2) ➛ true
BinarySearch(A, 0, 2, 2) ➛ true

42

Binary Search Example
proc BinarySearch(A, start, stop, target)
 midPoint = int((start+stop)/2) // round, ceil, floor?
 if (start > stop)
 return false
 else if (target == A[midPoint])
 return true
 else if (target < A[midPoint])
 BinarySearch(A, start, midPoint-1, target)
 else // target > A[midPoint] or not there at all
 BinarySearch(A, midPoint+1, stop, target)
 end if
end proc

1 2 3 4 5 6 7 8

[0] [1] [2] [3] [4] [5] [6] [7]

BinarySearch(A, 0, 7, 2) ➛ true
BinarySearch(A, 0, 2, 2) ➛ true

43

Binary Search Example
proc BinarySearch(A, start, stop, target)
 midPoint = int((start+stop)/2) // round, ceil, floor?
 if (start > stop)
 return false
 else if (target == A[midPoint])
 return true
 else if (target < A[midPoint])
 BinarySearch(A, start, midPoint-1, target)
 else // target > A[midPoint] or not there at all
 BinarySearch(A, midPoint+1, stop, target)
 end if
end proc

Remember the issues:

(1) There are two exits. That’s bad software craftsmanship.
(2) It does not return where the target is found, just that it is.

Fix these issues when you program your own version.

