Sorting - part one

Alan G. Labouseur, Ph.D. Alan.Labouseur@Marist.edu

From Appendix B in our CLRS text:

A relation R on a set A is a *total relation* if for all $a, b \in A$, we have a R bor b R a (or both), that is, if every pairing of elements of A is related by R. A partial order that is also a total relation is a *total order* or *linear order*.

Let's consider the relation (*R*) of \leq

A total order on \leq is a binary relation that satisfies ...

• totality

- either $a \leq b$ or $b \leq a$ or both.
- transitivity if $a \le b$ and $b \le c$ then $a \le c$.
- anti-symmetry if $a \le b$ and $b \le a$ then a = b.

From Appendix B in our CLRS text:

A relation R on a set A is a *total relation* if for all $a, b \in A$, we have a R b or b R a (or both), that is, if every pairing of elements of A is related by R. A partial order that is also a total relation is a *total order* or *linear order*. For example, the relation " \leq " is a total order on the natural numbers, but the "is a descendant of" relation is not a total order on the set of all people, since there are individuals neither of whom is descended from the other.

Example: natural numbers:

A total order on \leq is a binary relation that satisfies ...

 totality 	$0 \le 1 \le 2 \le 3 \le 4 \dots$
 transitivity 	$1 \le 2$ and $2 \le 3$ so $1 \le 3$
 anti-symmetry 	the only way $a \le b$ and $b \le a$ is if $a = b$
	i.e., $1 \le 1$ and $1 \le 1$ or $2 \le 2$ and $2 \le 2$

From Appendix B in our CLRS text:

A relation R on a set A is a *total relation* if for all $a, b \in A$, we have a R b or b R a (or both), that is, if every pairing of elements of A is related by R. A partial order that is also a total relation is a *total order* or *linear order*. For example, the relation " \leq " is a total order on the natural numbers, but the "is a descendant of" relation is not a total order on the set of all people, since there are individuals neither of whom is descended from the other.

Counter-example: the "is a descendant of" relationship

 totality - Not everybody is related, so this violates totality.

From Appendix B in our CLRS text:

A relation R on a set A is a *total relation* if for all $a, b \in A$, we have a R b or b R a (or both), that is, if every pairing of elements of A is related by R. A partial order that is also a total relation is a *total order* or *linear order*. For example, the relation " \leq " is a total order on the natural numbers, but the "is a descendant of" relation is not a total order on the set of all people, since there are individuals neither of whom is descended from the other.

Counter-example: "Rock, Paper, Scissors" (also, sports outcomes)

 transitivity - scissors < stone and stone < paper, but scissors < paper so this violates transitivity. In fact, scissors > paper.

From Appendix B in our CLRS text:

A relation R on a set A is a *total relation* if for all $a, b \in A$, we have a R b or b R a (or both), that is, if every pairing of elements of A is related by R. A partial order that is also a total relation is a *total order* or *linear order*. For example, the relation " \leq " is a total order on the natural numbers, but the "is a descendant of" relation is not a total order on the set of all people, since there are individuals neither of whom is descended from the other.

Counter-example: the "predator, prey" relationships

- No anti-symmetry because equal ferocity but different species.
- I.e., we **have** anti-symmetry **unless** $a \le b$ and $b \le a$ and $a \ne b$. *Remember:* the only way $a \le b$ and $b \le a$ is if a = b

Permutations

Order matters

٠

?

set	permu-	
size	tations	examples
1	1	{ (a) }
2	2	{ (a,b), (b,a) }
3	6	{ (a,b,c), (a,c,b), (b,a,c), (b,c,a), (c,a,b), (c,b,a) }
4	24	$\{(a,b,c,d), (a,b,d,c),\}$
5	120	$\{(a,b,c,d,e),\}$
•		

7

Permutations

Order matters

set	permu-	
size	tations	examples
1	1	{ (a) }
2	2	{ (a,b), (b,a) }
3	6	{ (a,b,c), (a,c,b), (b,a,c), (b,c,a), (c,a,b), (c,b,a) }
4	24	{ (a,b,c,d), (a,b,d,c), }
5	120	$\{(a,b,c,d,e),\}$
•		
•		

n!

•

procedure sort(in out list D)
begin

```
boolean done := false;
while (not done)
    randomly permute D
    if (D is sorted)
        done := true
    end if
    end while
    // D is returned out
end procedure
```


procedure sort(in out list D)
begin

```
boolean done := false;
while (not done)
    randomly permute D
    if (D is sorted)
        done := true
    end if
end while
// D is returned out
end procedure
```

In terms of *n*, the number of items in list D...

How many times through the loop until we expect it to be sorted?

How long do we expect each iteration to take?

```
procedure sort(in out list D)
begin
```

```
boolean done := false;
while (not done)
    randomly permute D
    if (D is sorted)
        done := true
    end if
    end while
    // D is returned out
end procedure
```

In terms of *n*, the number of items in list D...

How many times through the loop until we expect it to be sorted? **n**!

How long do we expect each iteration to take? permute = O(n)check if sorted = O(n)

Total time = time per iteration × number of iterations = $O(n \times n!)$

This is silly. And terrible.

But the worst part is that this is the **expected** case. The worst case scenario is that it never halts because there is no guarantee that we'll ever produce a sorted list through random permutations. In that sense, it's scary.

To put it more technically: O(*scary*)

Let's not do this.

Total time = time per iteration \times number of iterations = O($n \times n!$)

Select the item that belongs in the current position.

Select the item that belongs in the current position. Swap.

