
1

Alan G. Labouseur, Ph.D.
Alan.Labouseur@Marist.edu

Sorting - part one

mailto:Alan.Labouseur@Marist.edu

2

Total Order / Linear Order
From Appendix B in our CLRS text:

Let’s consider the relation (R) of ≤

A total order on ≤ is a binary relation that satisfies …
• totality - either a ≤ b or b ≤ a or both.
• transitivity - if a ≤ b and b ≤ c then a ≤ c.
• anti-symmetry - if a ≤ b and b ≤ a then a = b.

3

Total Order / Linear Order
From Appendix B in our CLRS text:

Example: natural numbers:
A total order on ≤ is a binary relation that satisfies …

• totality 0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 . . .
• transitivity 1 ≤ 2 and 2 ≤ 3 so 1 ≤ 3
• anti-symmetry the only way a ≤ b and b ≤ a is if a = b

 i.e., 1 ≤ 1 and 1 ≤ 1 or 2 ≤ 2 and 2 ≤ 2

4

Total Order / Linear Order
From Appendix B in our CLRS text:

Counter-example: the “is a descendant of” relationship

• totality - Not everybody is
related, so this violates
totality.

5

Total Order / Linear Order
From Appendix B in our CLRS text:

Counter-example: “Rock, Paper, Scissors” (also, sports outcomes)

• transitivity - scissors < stone and stone < paper, but
 scissors ≮ paper so this violates transitivity.
 In fact, scissors > paper.

6

Total Order / Linear Order
From Appendix B in our CLRS text:

Counter-example: the “predator, prey” relationships

• No anti-symmetry because equal
ferocity but different species.

• I.e., we have anti-symmetry
unless a ≤ b and b ≤ a and a ≠ b.
Remember: the only way a ≤ b
and b ≤ a is if a = b

7

Permutations

Order matters

set permu-
size tations examples
1 1 { (a) }
2 2 { (a,b), (b,a) }
3 6 { (a,b,c), (a,c,b), (b,a,c), (b,c,a), (c,a,b), (c,b,a) }
4 24 { (a,b,c,d), (a,b,d,c), . . . }
5 120 { (a,b,c,d,e), . . . }
 .
 .
 .
?

8

Permutations

Order matters

set permu-
size tations examples
1 1 { (a) }
2 2 { (a,b), (b,a) }
3 6 { (a,b,c), (a,c,b), (b,a,c), (b,c,a), (c,a,b), (c,b,a) }
4 24 { (a,b,c,d), (a,b,d,c), . . . }
5 120 { (a,b,c,d,e), . . . }
 .
 .
 .
n!

9

Shuffle sort / Bogo sort / Monkey sort

procedure sort(in out list D)
begin
 boolean done := false;
 while (not done)
 randomly permute D
 if (D is sorted)
 done := true
 end if
 end while
 // D is returned out
end procedure

10

Shuffle sort / Bogo sort / Monkey sort

procedure sort(in out list D)
begin
 boolean done := false;
 while (not done)
 randomly permute D
 if (D is sorted)
 done := true
 end if
 end while
 // D is returned out
end procedure

In terms of n, the number
of items in list D…

How many times through
the loop until we expect it
to be sorted?

How long do we expect
each iteration to take?

11

Shuffle sort / Bogo sort / Monkey sort

procedure sort(in out list D)
begin
 boolean done := false;
 while (not done)
 randomly permute D
 if (D is sorted)
 done := true
 end if
 end while
 // D is returned out
end procedure

In terms of n, the number
of items in list D…

How many times through
the loop until we expect it
to be sorted? n!

How long do we expect
each iteration to take?
 permute = O(n)
 check if sorted = O(n)

Total time = time per iteration × number of iterations = O(n × n!)

12

Shuffle sort / Bogo sort / Monkey sort

Total time = time per iteration × number of iterations = O(n × n!)

This is silly. And terrible.

But the worst part is that this is the expected case.
The worst case scenario is that it never halts because
there is no guarantee that we’ll ever produce a sorted
list through random permutations. In that sense, it’s
scary.

To put it more technically: O(scary)

Let’s not do this.

13

Selection Sort

14

Selection Sort

Select the item that belongs in the current position.

no maybe maybe
yes

maybe maybe maybenono

15

Selection Sort

no maybe maybe
yes

maybe maybe maybenono

Select the item that belongs in the current position.
Swap.

16

Selection Sort

no maybe maybe
yes

maybe maybe maybenono

Select the item that belongs in the current position.
Swap.

The first item is now “sorted”. Continue from the next item.

maybe maybemaybe
yes

maybe maybemaybemaybedone

