Sorting - part two

ALGORITHMS

EDITION

Alan G. Labouseur, Ph.D.
Alan.Labouseur@Marist.edu

mailto:Alan.Labouseur@Marist.edu

Divide and Conquer

Take a big problem and divide it into two smaller problems.

Take a those problems and divide them into two smaller problems.
Take a those problems and divide them into two smaller problems.

Take a those problems and divide them into two smaller problems.

Take a those problems and divide them into two smaller problems.

Take a those problems and divide them into two smaller problems.

roblems and divide them into two smaller problems.

... until the problems get small enough that they are solved.
Then ...

combine tlcloén :;;tails:;nser()sfﬁl:iog;zoigrfg i(;;tg:r solutions
combine the smaller solutions into larger solutions
combine the smaller solutions into larger solutions

combine the smaller solutions into larger solutions
combine the smaller solutions into larger solutions

combine the smaller solutions into the complete solution

Divide and Conquer

Big
Problem

Divide and Conquer

4)
Big
Problem

Smaller Smaller

Problems Problems

Divide and Conquer

4)
Big
Problem

_ J

4) 4)
Smaller Smaller
Problems Problems

N\ J N\ J

Still Still Still Still

Smaller
Problems

Smaller Smaller Smaller
Problems Problems Problems

Divide and Conquer

-

N\

Big
Problem

J

Smaller
Problems

[)

Still Smaller
Problems

N\

J

[)

Still Smaller
Problems

N\ J

Smaller
Problems

[)

Still Smaller
Problems

N\ J

[)

Still Smaller
Problems

N\ J

Divide and Conquer

Big
Problem

Smaller

Problems

Solved Still
Smaller

Problems

Solve the
smallest
problem

.

Solve the
smallest
problem

Solved Still
Smaller
Problems

Solve the
smallest
problem

.

Solve the
smallest
problem

Smaller

Problems

Solved Still
Smaller
Problems

Solve the
smallest
problem

.

Solve the
smallest
problem

Solved Still
Smaller

Problems

Solve the
smallest
problem

Solve the
smallest
problem

Divide and Conquer

-

Big
Problem

Solved Smaller

Problems

-

~

Solved Still
Smaller
Problems

J

N
)
Solve the

smallest
problem

.

o

Solve the
smallest
problem

-

~

Solved Still
Smaller
Problems

J

N
)
Solve the

smallest
problem

.

o

Solve the
smallest
problem

Solved Smaller

Problems

-

~

-

~

Solved Still
Smaller
Problems

Solved Still
Smaller
Problems

J

_
)
Solve the

smallest
problem

.

o

Solve the
smallest
problem

N\

J

o

Solve the
smallest
problem

o

Solve the
smallest
problem

Divide and Conquer

Solved Big

Problem

() 4)
Solved Smaller Solved Smaller
Problems Problems
N J _ J
4) 4) 4) 4)
Solved Still Solved Still Solved Still Solved Still
Smaller Smaller Smaller Smaller
Problems Problems Problems Problems
NS J NS J N J N J
N () N () N () N)
Solve the Solve the Solve the Solve the Solve the Solve the Solve the Solve the
smallest smallest smallest smallest smallest smallest smallest smallest
problem problem problem problem problem problem problem problem
 _/ _/ _/ _/

Divide and Conquer ::

Merge Sort

llIIN vnn NEUMANN

MMII[MMI[}IM

10

Divide and Conquer :: Merge Sort

Given an array that you what to sort. ..

Recursively divide the array into sub-arrays half the size until you
have arrays of size 1. Note: an array of size 1 is sorted.

Then conquer by merging the (technically sorted) single-element
arrays into progressively larger sorted sub-arrays as the recursion
“unwinds”.

11

Divide and Conquer :: Merge Sort

Given an array that you what to sort. ..

Recursively divide the array into sub-arrays half the size until you
have arrays of size 1. Note: an array of size 1 is sorted.

Then conquer by merging the (technically sorted) single-element

arrays into progressively larger sorted sub-arrays as the recursion
“unwinds”.

What?

12

Divide and Conquer :: Merge Sort

Given an array that you what to sort. ..
@] [1]1 [21 [31 [41 [51 [6] [7]

2 8 7 1 3 6 5 4

Divide and Conquer :: Merge Sort

[@]

[1]

[2]

[3]

[4]

[5]

[6]

Recursively divide the array into sub-arrays half the size

7]

2

8

7

1

3

6

5

4

14

Divide and Conquer :: Merge Sort

[@]

[1]

[2]

[3]

[4]

[5]

[6]

Recursively divide the array into sub-arrays half the size . .

7]

2

8

7

1

3

6

5

4

15

[@]

[1]

[2]

[3]

Divide and Conquer :: Merge Sort

[4]

[5]

[6]

Recursively divide the array into sub-arrays half the size . . .

7]

2

8

7

1

3

6

5

4

... until you have arrays of size 1. (Arrays of size 1 are sorted.)

16

Divide and Conquer :: Merge Sort

Recursively divide the array into sub-arrays half the size . . .
@] 1] [[31 [41 [51 [6] [7]

2 8 7 1 3 6 5 4

... until you have arrays of size 1. (Arrays of size 1 are sorted.)

How many times did we “divide” (in terms of the n items to sort)?

Divide and Conquer :: Merge Sort

2 | 8 1 | 7 3
1 P T >
2 8 7 1 3

Conquer by merging the sub-arrays into
progressively larger sorted arrays .

18

Divide and Conquer :: Merge Sort

1| 2| 7| 8 3

A A A ===
2 | 8 1| 7 3

L1 > T >
2 8 7 1 3

Conquer by merging the sub-arrays into
progressively larger sorted arrays . .

Divide and Conquer :: Merge Sort

[@]

[1]

[2]

[3]

[4]

[5]

[6]

7]

1 2 3 4 5 6 7 8
1 2 7 3 3 4 5
T = A VN
2 8 1 7 3 6 4
1 > T T P
2 8 7 1 3 6 5

Conquer by merging the sub-arrays into
progressively larger sorted arrays . . . until the entire
thing is sorted.

Divide and Conquer :: Merge Sort

[@] [1] [2] [3] [4] [5] [6] 7]

1 2 3 4 5 6 7 8

e frs] [slels]e
e —— (L)

]
HiORBRnan

The Csorting Work)is done in the merge steps.

How long does each merge step this take in terms of n?

21

Divide and Conquer :: Merge Sort

MERGE(A[1..n],m):
l<—1; jeem+1
fork<«—1ton

: if j>n
MgRGESORT(A[l ..nj): BIk] —A[il]: i —i+1
ifn>1 o
elseifi >m
m « [n/2] B[k] —A[j]; je—j+1
MERGESORT(A[1..m]) ((Recursel)) else if A[i] < A[]
MERGESORT(A[m + 1..n]) ((Recurse!)) Blk]«—A[i]; i«i+1
MERGE(A[1..n],m) else

Blk] =Aljl; j<j+1

fork<—1ton
A[k] « B[k]

Figure 1.6. Mergesort
from the Jeff Erikson Algorithms book, linked on our web site

How long does each merge step this take in terms of n?

Divide and Conquer :: Quick Sort

“There are two ways of constructing | ﬁ |)
a software design. One way 1s to
make it so simple that there are
obviously no deficiencies. And the
other way 1s to make it so
complicated that there are no
obvious deficiencies.’

- C.A.R Hoare

23

Divide and Conquer :: Quick Sort

Given an array that you what to sort. ..

Recursively divide the array into halves — conquering by
partitioning those halves around a “pivot” value — until the smallest
sub-arrays are sorted.

24

Divide and Conquer :: Quick Sort

Given an array that you what to sort. ..
@] [1]1 [21 [31 [41 [51 [6] [7]

2 8 7 1 3 6 5 4

Divide and Conquer :: Quick Sort

Given an array that you what to sort. ..
@] [1]1 [21 [31 [41 [51 [6] 71~

2871365(4)

Randomly select an index to provide the pivot value.. . .

Divide and Conquer :: Quick Sort

Given an array that you what to sort. ..
@] [1]1 [21 [31 [41 [51 [6] 71~

2871365(4)

Randomly select an index to provide the pivot value. . . and divide
the array into halves — conquering by partitioning those halves
around a “pivot” value.

Divide and Conquer :: Quick Sort

Given an array that you what to sort. ..
@] [1]1 [21 [31 [41 [51 [6] 71~

2871365(4)

Randomly select an index to provide the pivot value. . . and divide
the array into halves — conquering by partitioning those halves
around a “pivot” value.

2)1 3 4 8<7>6 5

Divide and Conquer :: Quick SOI’E

Given an array that you what to sort. ..
@] [1]1 [21 [31 [41 [51 [6] 71~

2 8 7 1 3 6 5(4)

Randomly select an index to provide the pivot value. . . and divide
the array into halves — conquering by partitioning those halves
around a “pivot” value.

X N
2 >1 3 4 8< 7)6 5
N~
1 2 3 6 >5 7 8

Divide and Conquer :: Quick Sort

We are done when all the sub-arrays are of size 1.

The Csorting wor@ is done in the partition steps.

30

Divide and Conquer :: Quick Sort

We are done when all the sub-arrays are of size 1.

The Csorting wor@ is done in the partition steps.

How long does each partition step take, and how many
times do we do it?

31

Divide and Conquer :: Quick Sort

QuickSoRrT(A[1..n]):
if(n>1)

r « PARTITION(A, p)
QuickSorT(A[1..r —1])
QuickSorT(A[r +1..n])

Choose a pivot element A[p]

((Recursel!))
((Recursel!))

PArTITION(A[1..n],p):
swap A[p] <> A[n]
{0 ((#items < pivot))

forie—1ton—1
if A[i] < A[n]
L —L+1
swap A[£] «— A[i]
swap A[n] «— Al + 1]
return £ + 1

Figure 1.8. Quicksort

from the Jeff Erikson Algorithms book, linked on our web site

How long does each partition step this take in terms of n?

32

Divide and Conquer :: Quick Sort

Let’s look at Quicksort again, this time focused on what the array
looks like at each step.

@] [1] [2] [3] [4] [5] (6] 171~

2871365(4)

Divide and Conquer :: Quick Sort

Let’s look at Quicksort again, this time focused on what the array
looks like at each step.

@] [1] [2] [3] [4] [5] (6] 171~

2871365<4>

Divide and Conquer :: Quick Sort

Let’s look at Quicksort again, this time focused on what the array
looks like at each step.

@] [1] [2] [3] [4] [5] (6] 171~

2 8 7 1 3 6 5< 4 >
Q/)l 3 4 7)6 5 8
"

Divide and Conquer :: Quick Sort

Let’s look at Quicksort again, this time focused on what the array
looks like at each step.

@] [1] [2] [3] [4] [5] (6] 171~

2 8 7 1 3 6 5(4 >
Q/)l 3 4 7)6 5 8
"

Divide and Conquer :: Quick Sort

Let’s look at Quicksort again, this time focused on what the array
looks like at each step.

@] [1] [2] [3] [4] [5] (6] 171~

2 8 7 1 3 6 5< 4 >
Q/)l 3 4 7)6 5 8
"

Sub-arrays of size 1. Mostly done.

Divide and Conquer :: Quick Sort

Let’s look at Quicksort again, this time focused on what the array
looks like at each step.

@] [1] [2] [3] [4] [5] (6] 171~

2 8 7 1 3 6 5(4 >
Q/)l 3 4 7)6 5 8
"

Divide and Conquer :: Quick Sort

Let’s look at Quicksort again, this time focused on what the array
looks like at each step.

@] [1] [2] [3] [4] [5] (6] 171~

2871365(4)

Divide and Conquer :: Quick Sort

Let’s look at Quicksort again, this time focused on what the array
looks like at each step.

@] [1] [2] [3] [4] [5] (6] 171~

2871365(4)

Sorted!

Divide and Conquer :: Quick Sort

Let’s look at Quicksort one more time, this time with dancers.

[1] [2] [3] [4] [5] [6] 7] [8] [9]
) 0 1 8 7 2 5 4 9 6

https://www.youtube.com/watch?v=kDgvnbUIqT4

Divide and Conquer ::

Quick Sort

Let’s look at Quicksort one more time, this time with dancers.

[@] [1] [2] [3] [4] [5] [6] 7] [8] [9]
3 0 1 8 7 2 5 4 9 6
[@] [1] [2] [3] [4] [5] [6] L7] [8] [9]
2 0 1 3 7 8 5 4 9 6

; lﬂb

‘f)ﬁllm“ 4] mw ‘

,' \’
4

"

42

https://www.youtube.com/watch?v=kDgvnbUIqT4

Divide and Conquer ::

Quick Sort

Let’s look at Quicksort one more time, this time with dancers.

[@] [1] [2] [3] [4] [5] [6] 7] [8] [9]
3 0 1 8 7 2 5 4 9 6
[1] [2] [3] [4] [5] [6] L7] [8] [9]

) 0 1 3 7 8 5 4 9 6

‘f)ﬁllm“ 4] mw ‘

"

,' \’
4

43

https://www.youtube.com/watch?v=kDgvnbUIqT4

Divide and Conquer ::

Quick Sort

Let’s look at Quicksort one more time, this time with dancers.

[@] [1] [2] [3] [4] [5] [6] 7] [8] [9]
3 0 1 8 7 2 5 4 9 6
[@] [1] [2] [3] [4] [5] [6] L7] [8] [9]
2 0 1 3 7 8 5 4 9 6
[@] [1] [2] [3] [4] [5] [6] 7] [8] [9]

wm ‘Bb

f: ‘,q ?

44

https://www.youtube.com/watch?v=kDgvnbUIqT4

Divide and Conquer ::

Quick Sort

Let’s look at Quicksort one more time, this time with dancers.

Right side sorted

All sorted

(MG g PR R
- l % o) ®¥ '!} i
| \;?‘ L? é VLY t'n"

g

@) ok

1—¥i-1% n—* -p-'_:

lﬂb %% U‘Hm eu; M#

"- W ‘ }2 n——‘

’u’]‘)”"‘” ~ 5'*'0\‘&&:@;,'.4?3\ ltg

Y YL

45

https://www.youtube.com/watch?v=kDgvnbUIqT4

Divide and Conquer :: Merge Sort and Quick Sort

b
h o4

S—

M \0)0 o - Coonek St —“ra o’ |
RIg D (z]e]s BRI (it
mE — R e t
el [Rlels R S P e a AP AR W
.__,,/\ | /\j | R B
sle] 1] Blel [ST]3] (efs]] led
Z IR SN P s T
(3 [alfal [3lle] EIE 15) [&]
aé smumemBiiEEnn cLs D}\& fost - etelin foasel
|2 119 3] T4 ls| e M NS BUNRATST)
| \ w%&w&A%Jr @
1121719 L5 6T J/
[7E 7 .
213 l4ls e\ 1g)

DESNLLS

&W IS O(V\\ _:__C"V\ (X;\\ td\ @M..é‘\ws

Divide and Conquer :: Merge Sort and Quick Sort

So... what 1s the complexity of Merge Sort and QuickSort?

47

Divide and Conquer :: Merge Sort and Quick Sort

So... what 1s the complexity of Merge Sort and QuickSort?
Both Merge Sort and QuickSort tend to be O(n x logs. n).

Why?

Divide and Conquer :: Merge Sort and Quick Sort

So... what 1s the complexity of Merge Sort and QuickSort?

Both Merge Sort and QuickSort tend to be O(n x logs. n).

Why? A/\/\/

f(n) n
/ﬁb\

f(n/b) f(n/b) f(n/b) n

f(ﬂ/bz)f(n/bz) f(n/b?) f(n/b?) f(n/b?)f(n/b*) f(n/b?) f(n/b*)-f(n/b?) n

Y (*)(Il) @(ll) (“)(Il) ("‘)(Il) @(Il) @(Il) @(Il) @(Il) G)(Il) @(‘1) @(Il) ("‘)(Il) @(Il) n

49

