Compilers
CMPT 432

—Lab 2

Goals

Notes

Resources

Submitting

Compilers Lab

More token making, now with Finite Automata

We're still figuring out how the characters that comprise the source code get turned into
tokens that are (hopefully) valid in our language. Now we’re down to the token-making
nitty-gritty: Regular Expressions and Finite Automata

Crafting a Compiler
+ Read chapter 3 again
+ Do exercises 3.3 and 3.4 (regular expressions and DFAs)

Dragon
+ Read chapter 3 again
Do exercises 3.3.4 (case insensitivity in regular expressions)

Have a look at this Regular Expression maker/tester online at https://www.debuggex.com

Commit a PDF of your work to your GitHub repository and I'll take a look at it.

2.3. FINITE AUTOMATA

s 0-9 -9
= SR - N N A
‘u'/l il ‘*l/__\'f-’ —*3) > l/' {\:;!}"“ -
Ve ) S 4 N
IF ID NUM
0-9 0-3 Hﬁ‘r"f\._./?".ﬂ1"7“——»((ﬁ|
N Ir\ Mo v SN /,\:',‘ \n S
| 7 \
0-9 , 4 (a-z )
MmN /\‘,’i~" ‘a.):‘§ N 7t
'\l /l\‘ (\:/, "'\\:5" \ blank. etc. — s
- = L e < ot TN — —
N —a N 0-9 —>| blank. L.lL.’/J 1 ~ u//"\‘\]'l
\4)0-9 "('\‘zfy") —— " anybut\n =
REAL white space error

FIGURE 2.3. Finite automata for lexical tokens. The states are indicated by
circles; final states are indicated by double circles. The start
state has an arrow coming in from nowhere. An edge labeled

with several characters is shorthand for many parallel edges.

from Modern Compiler Implementation in Java by Andrew Appel

© 2004-2112 Alan G. Labouseur, All Rights Reserved

Page 1 of 1


https://www.debuggex.com

