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Lexical Analysis

• Maps characters into an ordered stream of tokens


x := x + y 

becomes

<id,x> <assign> <id,x> <add> <id,y>


• Typical tokens: id int while print if

• Eliminates white space and comments

• Reports meaningful errors and warnings

• Produces a token stream for Parse.


• Focus on words/lexemes/tokens


Lexical Analysis
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Lexical Analysis

Only concerned with the words/syntax.

Not concerned with structure or meaning (sentences, type, scope).

Uses white space to help determine boundaries, then discards it.

Keeps track of line number for every token.

Builds the initial symbol list.


Definitions:

• A token is a sequence of characters that we’ll treat as a unit in 

the grammar of our language. (https://www.labouseur.com/courses/compilers/grammar.pdf)

• A pattern is a description of the form legal tokens can take.

• A lexeme is the sequence of characters in the source code that 

match a pattern for a token in the language.

https://www.labouseur.com/courses/compilers/grammar.pdf
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• Dependent on language. 

• Varies by language.


• Typically . . .

‣ keywords (different from identifiers)

‣ identifiers (different from keywords)

‣ punctuation symbols

‣ digits

‣ individual characters


get their own tokens.


• Discard white space and comments, but only after making use of 
them if possible.

Choosing Good Tokens
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Why is this important? What if we didn’t choose good tokens?


• PL/1 had no reserved words at first . . .


if then then then = else; else else = then;


. . . so keywords could be used as identifiers (variable and other 
names). Turns out that wasn’t great.

Choosing Good Tokens
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Why is this important? What if we didn’t choose good tokens?


• PL/1 had no reserved words at first


if then then then = else; else else = then;


• FORTRAN and Algol 68 ignored spaces, even for token 
identification


         do 10 i = 1,25


         do 10 i = 1.25

Choosing Good Tokens
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Why is this important? What if we didn’t choose good tokens?


• PL/1 had no reserved words


if then then then = else; else else = then;


• FORTRAN and Algol 68 ignored spaces, even for token 
identification


         do 10 i = 1,25


         do 10 i = 1.25

Loop from 1 to 25. (10 is a label.)

Assignment. (do10i is a variable.)

Choosing Good Tokens
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Lexical Analysis
/* Test case for WhileStatement. 

   Prints 23458 */

{

   int a

   a = 1

   {

      while (a != 5) {

         a = 1 + a

         print(a)

      }

      print(3 + a)

   }

}$

INFO	 Compilation started

INFO	 Compiling Program 1

DEBUG - Lexer - LBrace [ { ] found at (2:0)

DEBUG - Lexer - Type [ int ] found at (3:1)

DEBUG - Lexer - Id [ a ] found at (3:7)

DEBUG - Lexer - Id [ a ] found at (4:3)

DEBUG - Lexer - Assign [ = ] found at (4:5)

DEBUG - Lexer - Digit [ 1 ] found at (4:7)

DEBUG - Lexer - LBrace [ { ] found at (5:3)

DEBUG - Lexer - While [ while ] found at (6:4)

DEBUG - Lexer - LParen [ ( ] found at (6:12)

DEBUG - Lexer - Id [ a ] found at (6:13)

DEBUG - Lexer - BoolOp [ != ] found at (6:15)

DEBUG - Lexer - Digit [ 5 ] found at (6:17)

DEBUG - Lexer - RParen [ ) ] found at (6:18)

DEBUG - Lexer - LBrace [ { ] found at (6:20)

DEBUG - Lexer - Id [ a ] found at (7:10)

DEBUG - Lexer - Assign [ = ] found at (7:12)

DEBUG - Lexer - Digit [ 1 ] found at (7:14)

DEBUG - Lexer - IntOp [ + ] found at (7:16)

DEBUG - Lexer - Id [ a ] found at (7:18)

DEBUG - Lexer - Print [ print ] found at (8:8)

DEBUG - Lexer - LParen [ ( ] found at (8:15)

DEBUG - Lexer - Id [ a ] found at (8:16)

DEBUG - Lexer - RParen [ ) ] found at (8:17)

DEBUG - Lexer - RBrace [ } ] found at (9:6)

DEBUG - Lexer - Print [ print ] found at (10:4)

DEBUG - Lexer - LParen [ ( ] found at (10:11)

DEBUG - Lexer - Digit [ 3 ] found at (10:12)

DEBUG - Lexer - IntOp [ + ] found at (10:14)

DEBUG - Lexer - Id [ a ] found at (10:16)

DEBUG - Lexer - RParen [ ) ] found at (10:17)

DEBUG - Lexer - RBrace [ } ] found at (11:3)

DEBUG - Lexer - RBrace [ } ] found at (12:0)

DEBUG - Lexer - EOP [ $ ] found at (12:2)

INFO	 Lexical Analysis complete with 0 WARNING(S) and 0 ERROR(S)

Lexical Analysis takes 
nicely formatted 
source code


• newlines

• indenting

• spaces between 

expressions

and turns it into an 
ordered stream of tokens.
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Lexical Analysis
/* Test case for WhileStatement. 
Prints 23458 */{int a a=1 {while(a!
=5){a=1+a print(a)} print(3+a)}}$

INFO	 Compilation started

INFO	 Compiling Program 1

DEBUG - Lexer - LBrace [ { ] found at (1:47)

DEBUG - Lexer - Type [ int ] found at (1:46)

DEBUG - Lexer - Id [ a ] found at (1:52)

DEBUG - Lexer - Id [ a ] found at (1:54)

DEBUG - Lexer - Assign [ = ] found at (1:55)

DEBUG - Lexer - Digit [ 1 ] found at (1:56)

DEBUG - Lexer - LBrace [ { ] found at (1:58)

DEBUG - Lexer - While [ while ] found at (1:57)

DEBUG - Lexer - LParen [ ( ] found at (1:64)

DEBUG - Lexer - Id [ a ] found at (1:65)

DEBUG - Lexer - BoolOp [ != ] found at (1:66)

DEBUG - Lexer - Digit [ 5 ] found at (1:67)

DEBUG - Lexer - RParen [ ) ] found at (1:68)

DEBUG - Lexer - LBrace [ { ] found at (1:69)

DEBUG - Lexer - Id [ a ] found at (1:70)

DEBUG - Lexer - Assign [ = ] found at (1:71)

DEBUG - Lexer - Digit [ 1 ] found at (1:72)

DEBUG - Lexer - IntOp [ + ] found at (1:73)

DEBUG - Lexer - Id [ a ] found at (1:74)

DEBUG - Lexer - Print [ print ] found at (1:74)

DEBUG - Lexer - LParen [ ( ] found at (1:81)

DEBUG - Lexer - Id [ a ] found at (1:82)

DEBUG - Lexer - RParen [ ) ] found at (1:83)

DEBUG - Lexer - RBrace [ } ] found at (1:84)

DEBUG - Lexer - Print [ print ] found at (1:84)

DEBUG - Lexer - LParen [ ( ] found at (1:91)

DEBUG - Lexer - Digit [ 3 ] found at (1:92)

DEBUG - Lexer - IntOp [ + ] found at (1:93)

DEBUG - Lexer - Id [ a ] found at (1:94)

DEBUG - Lexer - RParen [ ) ] found at (1:95)

DEBUG - Lexer - RBrace [ } ] found at (1:96)

DEBUG - Lexer - RBrace [ } ] found at (1:97)

DEBUG - Lexer - EOP [ $ ] found at (1:98)

INFO	 Lexical Analysis complete with 0 WARNING(S) and 0 ERROR(S)

Lexical Analysis takes 
barely formatted 
source code


• all one line

• no indenting

• few spaces between 

expressions

and turns it into an 
ordered stream of tokens.
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Lexical Analysis
/* Test case for WhileStatement. 
Prints 23458 */{intaa=1{while(a!=5)
{a=1+aprint(a)}print(3+a)}}$

INFO	 Compilation started

INFO	 Compiling Program 1

DEBUG - Lexer - LBrace [ { ] found at (1:47)

DEBUG - Lexer - Type [ int ] found at (1:46)

DEBUG - Lexer - Id [ a ] found at (1:51)

DEBUG - Lexer - Id [ a ] found at (1:52)

DEBUG - Lexer - Assign [ = ] found at (1:53)

DEBUG - Lexer - Digit [ 1 ] found at (1:54)

DEBUG - Lexer - LBrace [ { ] found at (1:55)

DEBUG - Lexer - While [ while ] found at (1:54)

DEBUG - Lexer - LParen [ ( ] found at (1:61)

DEBUG - Lexer - Id [ a ] found at (1:62)

DEBUG - Lexer - BoolOp [ != ] found at (1:63)

DEBUG - Lexer - Digit [ 5 ] found at (1:64)

DEBUG - Lexer - RParen [ ) ] found at (1:65)

DEBUG - Lexer - LBrace [ { ] found at (1:66)

DEBUG - Lexer - Id [ a ] found at (1:67)

DEBUG - Lexer - Assign [ = ] found at (1:68)

DEBUG - Lexer - Digit [ 1 ] found at (1:69)

DEBUG - Lexer - IntOp [ + ] found at (1:70)

DEBUG - Lexer - Id [ a ] found at (1:71)

DEBUG - Lexer - Print [ print ] found at (1:70)

DEBUG - Lexer - LParen [ ( ] found at (1:77)

DEBUG - Lexer - Id [ a ] found at (1:78)

DEBUG - Lexer - RParen [ ) ] found at (1:79)

DEBUG - Lexer - RBrace [ } ] found at (1:80)

DEBUG - Lexer - Print [ print ] found at (1:79)

DEBUG - Lexer - LParen [ ( ] found at (1:86)

DEBUG - Lexer - Digit [ 3 ] found at (1:87)

DEBUG - Lexer - IntOp [ + ] found at (1:88)

DEBUG - Lexer - Id [ a ] found at (1:89)

DEBUG - Lexer - RParen [ ) ] found at (1:90)

DEBUG - Lexer - RBrace [ } ] found at (1:91)

DEBUG - Lexer - RBrace [ } ] found at (1:92)

DEBUG - Lexer - EOP [ $ ] found at (1:93)

INFO	 Lexical Analysis complete with 0 WARNING(S) and 0 ERROR(S)

Lexical Analysis takes 
unformatted 

source code


• all one line

• no indenting

• no spaces between 

expressions

and turns it into an 
ordered stream of tokens.
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Lexical Analysis

{intaa=1{while(a!=5){a=1+aprint(a)}print(3+a)}}$

Goal: to get from the source 
code string of characters to 
AST elements and structures.

(We’re skipping Parse in this 
example.)

looking ahead . . .
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Lexical Analysis

{intaa=1{while(a!=5){a=1+aprint(a)}print(3+a)}}$

Goal: to get from the source 
code string of characters to 
AST elements and structures.

(We’re skipping Parse in this 
example.)

looking ahead . . .
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Lexical Analysis

{intaa=1{while(a!=5){a=1+aprint(a)}print(3+a)}}$

Goal: to get from the source 
code string of characters to 
AST elements and structures.

(We’re skipping Parse in this 
example.)

looking ahead . . .
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Lexical Analysis

{intaa=1{while(a!=5){a=1+aprint(a)}print(3+a)}}$

Goal: to get from the source 
code string of characters to 
AST elements and structures.

(We’re skipping Parse in this 
example.)

looking ahead . . .
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Lexical Analysis

{intaa=1{while(a!=5){a=1+aprint(a)}print(3+a)}}$

Goal: to get from the source 
code string of characters to 
AST elements and structures.

(We’re skipping Parse in this 
example.)

looking ahead . . .
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Lexical Analysis

{intaa=1{while(a!=5){a=1+aprint(a)}print(3+a)}}$

Goal: to get from the source 
code string of characters to 
AST elements and structures.

(We’re skipping Parse in this 
example.)

looking ahead . . .
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Lexical Analysis

{intaa=1{while(a!=5){a=1+aprint(a)}print(3+a)}}$

Goal: to get from the source 
code string of characters to 
AST elements and structures.


But how?

looking ahead . . .
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Lexical Analysis

{intaa=1{while(a!=5){a=1+aprint(a)}print(3+a)}}$

Goal: to get from the source 
code string of characters to 
AST elements and structures.


But how? Let’s try a brute 
force approach to making 
tokens that we’ll send to Parse.

looking ahead . . .
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Making Tokens Through Brute Force
Lex reads the source code character by character. We can process it the same way.


c = getNextChar();

if (c == ‘c’)  // class, close, case, catch, char, const

   c = getNextChar();

   if (c == ‘l’)  // class or close

      c = getNextChar();

      if (c == ‘a’)

         c = getNextChar();

         if (c == ‘s’)

            c = getNextChar();

            if (c == ‘s’)

               Token t = new Token(‘keyword_class’);

            endif

         endif

      else if (c == “o”) {

         // code to detect “close” keyword

      endif

   else if (c == ‘a’) // case or catch

      c = getNextChar();

      if (c == ‘s’)

         c = getNextChar();

         if (c == ‘e’)

            Token t = new Token(‘keyword_case’);

         endif

      else

       ⋮

      endif  

   endif

else

 ⋮

endif
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Making Tokens Through Brute Force
Lex reads the source code character by character. We can process it the same way.


c = getNextChar();

if (c == ‘c’)  // class, close, case, catch, char, const

   c = getNextChar();

   if (c == ‘l’)  // class or close

      c = getNextChar();

      if (c == ‘a’)

         c = getNextChar();

         if (c == ‘s’)

            c = getNextChar();

            if (c == ‘s’)

               Token t = new Token(‘keyword_class’);

            endif

         endif

      else if (c == “o”) {

         // code to detect “close” keyword

      endif

   else if (c == ‘a’) // case or catch

      c = getNextChar();

      if (c == ‘s’)

         c = getNextChar();

         if (c == ‘e’)

            Token t = new Token(‘keyword_case’);

         endif

      else

       ⋮

      endif  

   endif

else

 ⋮

endif

This is a terrible idea.

It would be a nightmare to 
get to work at scale. You 
would be lucky to get it to 
work for even a tiny 
grammar.


There has got to be a 
better way.X
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Pattern Matching to Make Tokens

A lexical analyzer (sometimes called a scanner) must recognize all 
parts of the language’s syntax: keywords, identifiers, symbols, digits, 
characters, and anything else in its lexicon.


We need to define these. Here are 3 examples:


identifier

 


integer


decimal
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Pattern Matching to Make Tokens

A lexical analyzer (sometimes called a scanner) must recognize all 
parts of the language’s syntax: keywords, identifiers, symbols, digits, 
characters, and anything else in its lexicon.


We need to define these. Here are 3 examples:


identifier

alphabetic followed by 

alphanumerics


integer

 


decimal
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Pattern Matching to Make Tokens

A lexical analyzer (sometimes called a scanner) must recognize all 
parts of the language’s syntax: keywords, identifiers, symbols, digits, 
characters, and anything else in its lexicon.


We need to define these. Here are 3 examples:


identifier

alphabetic followed by 

alphanumerics


integer

0 or (digit from 1 — 9 followed

by digits from 0 — 9)


decimal
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Pattern Matching to Make Tokens

A lexical analyzer (sometimes called a scanner) must recognize all 
parts of the language’s syntax: keywords, identifiers, symbols, digits, 
characters, and anything else in its lexicon.


We need to define these. Here are 3 examples:


identifier

alphabetic followed by 

alphanumerics


integer

0 or (digit from 1 — 9 followed

by digits from 0 — 9)


decimal

integer followed by ‘.’ 

followed by integers
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Pattern Matching to Make Tokens

A lexical analyzer (sometimes called a scanner) must recognize all 
parts of the language’s syntax: keywords, identifiers, symbols, digits, 
characters, and anything else in its lexicon.


We need to define these. Here are 3 examples:


identifier

alphabetic followed by 

alphanumerics


integer

0 or (digit from 1 — 9 followed

by digits from 0 — 9)


decimal

integer followed by ‘.’ 

followed by integers

These are nice, if slightly ambiguous.

But we need more than words to specify 
patterns if we are to write programs to do it.


We need the power of . . .
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Regular Expressions

Stephen Kleene

1909 — 1994

A RegEx is a string that describes a 
set of other strings according to 
certain syntax rules.


• A common feature in many 
programming languages.


• Used to specify grammar 
formalities.


• Basis in/of Formal Languages 
and Automata Theory


Stephen Kleene (“KLAY-nee”) 
described automata models with a 
mathematical notation called 
regular sets.
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Regular Expressions

Let 𝚺 = {a, b}

Uppercase Sigma, meaning the alphabet/lexicon of this language.


In this example, our entire (“regular”) language consists only of as and bs.


Definitions:

• A formal language (as opposed to a written, spoken, or programming language) 

is just a specifically-defined set of strings.

• An alphabet (or lexicon) is a finite set of symbols we’ll call 𝚺 (sigma).


‣ e.g., 𝚺 = {0, 1} is the binary alphabet/lexicon


• A string over an alphabet is a finite set of symbols drawn from 𝚺.

‣ There is also the empty string, which we’ll call 𝛆 (epsilon).


• A language is a set of strings that can be formed from the alphabet/lexicon.

• A sentence is a sequence of strings in the language.

• The ordering of strings within a sentence is defined by a set of rules called a 

grammar.


Now we can specify legal patterns expressible by our language.
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Regular Expressions

Let 𝚺 = {a, b}


• a|b means “a or b”. {a, b}
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Regular Expressions

Let 𝚺 = {a, b}


• a|b means “a or b”.


• (a|b) (a|b) means “a or b followed by a or b”.

{a, b}


{aa, ab, ba, bb}
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Regular Expressions

Let 𝚺 = {a, b}


• a|b means “a or b”.


• (a|b) (a|b) means “a or b followed by a or b”.


• a* means “zero or more as”.

{a, b}


{aa, ab, ba, bb}

{𝛆, a, aa, aaa, aaaa, . . .}

Lowercase epsilon 
meaning the empty string.

(Some books use λ 
instead. We’ll stick to   .)𝛆
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Regular Expressions

Let 𝚺 = {a, b}


• a|b means “a or b”.


• (a|b) (a|b) means “a or b followed by a or b”.


• a* means “zero or more as”.


• a+ means “one or more as”.

{a, b}


{aa, ab, ba, bb}

{𝛆, a, aa, aaa, aaaa, . . .}


{a, aa, aaa, aaaa, . . .}
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Regular Expressions

Let 𝚺 = {a, b}


• a|b means “a or b”.


• (a|b) (a|b) means “a or b followed by a or b”.


• a* means “zero or more as”.


• a+ means “one or more as”.


Other Examples


• (a|b)* means “all strings of as and bs including 𝛆”.


• (a*|b*)* also means “all strings of as and bs including 𝛆”.


• a|(a*b) denotes {a, b, ab, aab, aaab, aaaab, . . .}

{a, b}


{aa, ab, ba, bb}

{𝛆, a, aa, aaa, aaaa, . . .}


{a, aa, aaa, aaaa, . . .}
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Regular Expressions

Let 𝚺 = {0,1,2,3,4,5,6,7,8,9,+,-}

• Even numbers


‣ (+|-|𝛆) (0|1|2|3|4|5|6|7|8|9)* (0|2|4|6|8)
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Regular Expressions

Let 𝚺 = {0,1,2,3,4,5,6,7,8,9,+,-}

• Even numbers


‣ (+|-|𝛆) (0|1|2|3|4|5|6|7|8|9)* (0|2|4|6|8)


• We can make our own definitions

‣ Sign = + | — 

‣ OptionalSign = Sign |

‣ Digit = 0|1|2|3|4|5|6|7|8|9

‣ EvenDigit = 0|2|4|6|8


‣ EvenNumber = OptionalSign  Digit*  EvenDigit

           “OptionalSign  followed by zero or more Digits followed by an EvenDigit”

𝛆
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Regular Expressions

Let 𝚺 = {0,1,2,3,4,5,6,7,8,9,+,-}

• Even numbers


‣ (+|-|𝛆) (0|1|2|3|4|5|6|7|8|9)* (0|2|4|6|8)


• We can make our own definitions

‣ Sign = + | — 

‣ OptionalSign = Sign |

‣ Digit = [0123456789]

‣ EvenDigit = [02468]


‣ EvenNumber = OptionalSign  Digit*  EvenDigit

𝛆

Multi-way Disjunction (“or”)
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Regular Expressions

Let 𝚺 = {0,1,2,3,4,5,6,7,8,9,+,-}

• Even numbers


‣ (+|-|𝛆) (0|1|2|3|4|5|6|7|8|9)* (0|2|4|6|8)


• We can make our own definitions

‣ Sign = + | — 

‣ OptionalSign = Sign |

‣ Digit = [0-9]

‣ EvenDigit = [02468]


‣ EvenNumber = OptionalSign  Digit*  EvenDigit

𝛆
Multi-way Disjunction over a range
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Regular Expressions

Let 𝚺 = {0,1,2,3,4,5,6,7,8,9,+,-}

• Even numbers


‣ (+|-|𝛆) (0|1|2|3|4|5|6|7|8|9)* (0|2|4|6|8)


• We can make our own definitions

‣ Sign = + | — 

‣ OptionalSign = Sign?

‣ Digit = [0-9]

‣ EvenDigit = [02468]


‣ EvenNumber = OptionalSign  Digit*  EvenDigit

? means “zero or one”.
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Pattern Matching to Make Tokens

identifier

alphabetic followed by 

alphanumerics


integer

0 or (digit from 1 — 9 followed

by digits from 0 — 9)


decimal

integer followed by ‘.’ 

followed by integers

Let’s revisit our wordy definitions and define them more precisely.
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Pattern Matching to Make Tokens

identifier

alphabetic followed by 

0 or more alphanumerics


integer

0 or (digit from 1 — 9 followed

by digits from 0 — 9)


decimal

integer followed by ‘.’ 

followed by integers

Let’s revisit our wordy definitions and define them more precisely.

[a-z][a-z0-9]*
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Pattern Matching to Make Tokens

identifier

alphabetic followed by 

0 or more alphanumerics


integer

0 or (digit from 1 — 9 followed

by 0 or more digits from 0 — 9)


decimal

integer followed by ‘.’ 

followed by integers

Let’s revisit our wordy definitions and define them more precisely.

[a-z][a-z0-9]*

0|([1-9][0-9]*)
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Pattern Matching to Make Tokens

identifier

alphabetic followed by 

0 or more alphanumerics


integer

0 or (digit from 1 — 9 followed

by 0 or more digits from 0 — 9)


decimal

integer followed by ‘.’ 

followed by integers

Let’s revisit our wordy definitions and define them more precisely.

[a-z][a-z0-9]*

0|([1-9][0-9]*) Why not just [0-9]+  ?
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Pattern Matching to Make Tokens

identifier

alphabetic followed by 

0 or more alphanumerics


integer

0 or (digit from 1 — 9 followed

by 0 or more digits from 0 — 9)


decimal

integer followed by ‘.’ 

followed by 0 or more integers

Let’s revisit our wordy definitions and define them more precisely.

[a-z][a-z0-9]*

0|([1-9][0-9]*)

(0|([1-9][0-9]*)) ‘.’ (0|([1-9][0-9]*))*
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Pattern Matching to Make Tokens

identifier

alphabetic followed by 

0 or more alphanumerics


integer

0 or (digit from 1 — 9 followed

by 0 or more digits from 0 — 9)


decimal

integer followed by ‘.’ 

followed by 0 or more integers

or

followed by 1 or more integers

Let’s revisit our wordy definitions and define them more precisely.

[a-z][a-z0-9]*

0|([1-9][0-9]*)

(0|([1-9][0-9]*)) ‘.’ (0|([1-9][0-9]*))*

(0|([1-9][0-9]*)) ‘.’ (0|([1-9][0-9]*))+

Which one?
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Pattern Matching to Make Tokens

identifier

alphabetic followed by 

0 or more alphanumerics


integer

0 or (digit from 1 — 9 followed

by 0 or more digits from 0 — 9)


decimal

integer followed by ‘.’ 

followed by 0 or more integers

or

followed by 1 or more integers

Let’s revisit our wordy definitions and define them more precisely.

[a-z][a-z0-9]*

0|([1-9][0-9]*)

(0|([1-9][0-9]*)) ‘.’ (0|([1-9][0-9]*))*

(0|([1-9][0-9]*)) ‘.’ (0|([1-9][0-9]*))+

Which one?

Why not just [0-9]+  ?

Design-time choices like these have 
a huge impact on compiler 
implementation and the way the 
programming language is used by its 
programmers.
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Lexical Analysis

Example:


int f int if=1


Given patterns that define keywords, identifiers, symbols, digits, 
characters, how does Lex categorize this sentence?


Remember, spaces can be helpful but are not required. They may 
even be misleading (if a mean professor is trying to trick you).
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Lexical Analysis

Example:


int f int if=1


Given patterns that define keywords, identifiers, symbols, digits, 
characters, how does Lex categorize this sentence?


Remember, spaces can be helpful but are not required. They may 
even be misleading (if a mean professor is trying to trick you).


int f int if=1

keyword id assign intkeyword keyword
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Lexical Analysis

Example:


int f int if=1


Given patterns that define keywords, identifiers, symbols, digits, 
characters, how does Lex categorize this sentence?


Remember, spaces can be helpful but are not required. They may 
even be misleading (if a mean professor is trying to trick you).


int f int if=1


 or


int f int if=1

keyword id assign intkeyword id id
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Lexical Analysis

Example:


int f int if=1


Given patterns that define keywords, identifiers, symbols, digits, 
characters, how does Lex categorize this sentence?


Remember, spaces can be helpful but are not required. They may 
even be misleading (if a mean professor is trying to trick you).


int f int if=1


 or


int f int if=1

Q: How do we know?

A: Two steps:


1. Longest Match

2. Rule Order
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Lexical Analysis

Example: Longest Match (a “greedy” approach)


int f int if=1


When Lex is scanning character by character, take as many 
characters as you can when looking for patterns to match. 


For example, scanning the above from the beginning;

i

in

int

space


Now we emit the longest match (keyword) and continue lexing from 
the next char.

Matched an id, but keep looking.

No new match, so we still think it’s an id.

Matches a keyword, a longer match than id, so update to keyword.

We can use this as a separator and stop looking.
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Lexical Analysis

Example: Longest Match (a “greedy” approach)


int f int if=1


When Lex is scanning character by character, take as many 
characters as you can when looking for patterns to match. 


For example, scanning the above from the beginning;

i

in

int

space


Now we emit the longest match (keyword) and continue lexing from 
the next char.


This means that our interpretation of the above is


int f int if=1

keyword id assign intkeyword keyword

Matched an id, but keep looking.

No new match, so we still think it’s an id.

Matches a keyword, a longer match than id, so update to keyword.

We can use this as a separator and stop looking.
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Lexical Analysis

Example: Rule Order


int f int if=1


Once we have the longest match to determine the token, the order in 
which we specify the lexical rules defines their precedence. For our 
language in this class, the order is:


1. keyword

2. id

3. symbol

4. digit

5. char


This still means that our interpretation of the above is


int f int if=1

keyword id assign intkeyword keyword
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Lexical Analysis

Example of bad language design:


int f int if=1


We can make a good argument for statement separators based on 
this example. Requiring a semicolon (for example) to end every 
statement removes this ambiguity.


int f; int i;f=1
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Lexical Analysis

Detailed example with resources on our web site:


• Look at our language grammar, then


• the example Lex Without Spaces.

https://www.labouseur.com/courses/compilers/grammar.pdf
https://www.labouseur.com/courses/compilers/lex-without-spaces.pdf
https://www.labouseur.com/courses/compilers/grammar.pdf
https://www.labouseur.com/courses/compilers/lex-without-spaces.pdf


More that just stylized flowcharts for implementing transition 
diagrams, Finite Automata (FA) are actually graphs, and as such 
consist of vertices (circles) and directed edges (arrows).


“The word automaton, closely related 
to the word automation, denotes 
automatic processes carrying out the 
production of specific processes. 
Simply stated, automata theory deals 
with the logic of computation with 
respect to simple machines, referred 
to as automata. Through automata, 
computer scientists are able to 
understand how machines compute 
functions and solve problems.
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Finite Automata

From https://cs.stanford.edu/people/eroberts/courses/soco/projects/2004-05/automata-theory/basics.html

Emphasis added.

0

2

h
1

i

https://cs.stanford.edu/people/eroberts/courses/soco/projects/2004-05/automata-theory/basics.html


States (vertices, circles)

• Each represents a possible moment/condition that could occur while scanning the 

input looking for a pattern to match so we can emit a token.

• The start state is denoted by an arrow from nowhere pointing to it.

• Accepting states are denoted by a double-circle. When we reach one we have 

matched a pattern, found a lexeme, and can emit a token.


Transitions (directed edges, arrows)

• Each edge is labeled with a value.

• If we are in a state and get as input a value 

matching an edge label then we consume that 
input and follow that edge, transitioning to the 
next state.


• If all edges leading from a given state are non-
empty and disjoint then we have a 
Deterministic Finite Automata (DFA). 
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Finite Automata

0

2

h
1

i
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Finite Automata

0

2

h
1

i𝚺 - {h}
𝚺 - {i}

States (vertices, circles)

• Each represents a possible moment/condition that could occur while scanning the 

input looking for a pattern to match so we can emit a token.

• The start state is denoted by an arrow from nowhere pointing to it.

• Accepting states are denoted by a double-circle. When we reach one we have 

matched a pattern, found a lexeme, and can emit a token.


Transitions (directed edges, arrows)

• Each edge is labeled with a value.

• If we are in a state and get as input a value 

matching an edge label then we consume that 
input and follow that edge, transitioning to the 
next state.


• If all edges leading from a given state are non-
empty and disjoint then we have a 
Deterministic Finite Automata (DFA). 


Formally, DFAs are required to account for all legal transitions, so 
we should include an error state.
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Deterministic Finite Automata

30

Let 𝚺 = {a, b, c}

RegEx: (a b c+)+


DFA:

a
1

b
2

c
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Deterministic Finite Automata

30

Let 𝚺 = {a, b, c}

RegEx: (a b c+)+


DFA:

a
1

b
2

c c
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Deterministic Finite Automata

30

Let 𝚺 = {a, b, c}

RegEx: (a b c+)+


DFA:

a
1

b
2

c c

?
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Deterministic Finite Automata

30

Let 𝚺 = {a, b, c}

RegEx: (a b c+)+


DFA:

a
1

b
2

c c

a
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Deterministic Finite Automata

30

𝚺 - {a}

Let 𝚺 = {a, b, c}

RegEx: (a b c+)+


DFA:


We’re not going to include error states after this.

From now on assume that if there is no valid 
transition out of a non-accepting state then it’s 
an error.

a
1

b
2

c c

a

𝚺 - {b}
𝚺 - {c}
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Deterministic Finite Automata

30

𝚺 - {a}

Let 𝚺 = {a, b, c}

RegEx: (a b c+)+


DFA:


We can use a transition table to implement DFAs in our programs.

a
1

b
2

c c

a

𝚺 - {b}
𝚺 - {c}

Transition

Table

a b c
0
1
2
3
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Deterministic Finite Automata

30

𝚺 - {a}

Let 𝚺 = {a, b, c}

RegEx: (a b c+)+


DFA:


We can use a transition table to implement DFAs in our programs.


“If we’re in state 0 and consume an ‘a’ from the input 
then we move to state 1."

a
1

b
2

c c

a

𝚺 - {b}
𝚺 - {c}

Transition

Table

a b c
0 1 - -

1
2
3
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Deterministic Finite Automata

30

𝚺 - {a}

Let 𝚺 = {a, b, c}

RegEx: (a b c+)+


DFA:


We can use a transition table to implement DFAs in our programs.


“If we’re in state 1 and consume a ‘b’ from the input 
then we move to state 2.”

a
1

b
2

c c

a

𝚺 - {b}
𝚺 - {c}

Transition

Table

a b c
0 1 - -

1 - 2 -

2
3
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Deterministic Finite Automata

30

𝚺 - {a}

Let 𝚺 = {a, b, c}

RegEx: (a b c+)+


DFA:


We can use a transition table to implement DFAs in our programs.


“If we’re in state 2 and consume a ‘c’ from the input 
then we move to state 3.”

a
1

b
2

c c

a

𝚺 - {b}
𝚺 - {c}

Transition

Table

a b c
0 1 - -

1 - 2 -

2 - - 3

3
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Deterministic Finite Automata

30

𝚺 - {a}

Let 𝚺 = {a, b, c}

RegEx: (a b c+)+


DFA:


We can use a transition table to implement DFAs in our programs.


“If we’re in state 3 and consume a ‘c’ from the input 
then we move to state 3. Else, if we’re in state 3 and 
consume an ‘a’ from the input then we move to state 1.”


Also: mark state 3 as an accepting state.

a
1

b
2

c c

a

𝚺 - {b}
𝚺 - {c}

Transition

Table

a b c
0 1 - -

1 - 2 -

2 - - 3

3 1 - 3
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Deterministic Finite Automata

30

𝚺 - {a}

Let 𝚺 = {a, b, c}

RegEx: (a b c+)+


DFA:


We can use a transition table to implement DFAs in our programs.


Note: 

Anything we can express in a RegEx we can write as a DFA.

Anything we can express in a DFA we can write as a RegEx.

So DFA == RegEx == DFA.

a
1

b
2

c c

a

𝚺 - {b}
𝚺 - {c}

Transition

Table

a b c
0 1 - -

1 - 2 -

2 - - 3

3 1 - 3
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Deterministic Finite Automata

30

Example:

DFA for recognizing new and null tokens in a programming 
language.


n
1

e
2

w

Transition Table
a b c d e f g h i j k l m n o p q r s t u v w x y z

0 - - - - - - - - - - - - - 1 - - - - - - - - - - - -

1 - - - - 2 - - - - - - - - - - - - - - - 4 - - - - -

2 - - - - - - - - - - - - - - - - - - - - - - 3 - - -

3 accept new

4 - - - - - - - - - - - 5 - - - - - - - - - - - - - -

5 - - - - - - - - - - - 6 - - - - - - - - - - - - - -

6 accept null

64
l

5
l

u

Accept new.

Accept null.
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Back to Pattern Matching to Make Tokens

identifier

alphabetic followed by 

0 or more alphanumerics


integer

0 or (digit from 1 — 9 followed

by 0 or more digits from 0 — 9)


decimal

integer followed by ‘.’ 

followed by 1 or more integers

Let’s revisit our precise RegExes and make DFAs.

[a-z][a-z0-9]*

0|([1-9][0-9]*)

(0|([1-9][0-9]*)) ‘.’ (0|([1-9][0-9]*))+
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Back to Pattern Matching to Make Tokens

identifier

alphabetic followed by 

0 or more alphanumerics


integer

0 or (digit from 1 — 9 followed

by 0 or more digits from 0 — 9)


decimal

integer followed by ‘.’ 

followed by 1 or more integers

Let’s revisit our precise RegExes and make DFAs.

[a-z][a-z0-9]*

0|([1-9][0-9]*)

(0|([1-9][0-9]*)) ‘.’ (0|([1-9][0-9]*))+

10
a-z

a-z 0-9
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Back to Pattern Matching to Make Tokens

identifier

alphabetic followed by 

0 or more alphanumerics


integer

0 or (digit from 1 — 9 followed

by 0 or more digits from 0 — 9)


decimal

integer followed by ‘.’ 

followed by 1 or more integers

Let’s revisit our precise RegExes and make DFAs.

[a-z][a-z0-9]*

0|([1-9][0-9]*)

(0|([1-9][0-9]*)) ‘.’ (0|([1-9][0-9]*))+

10
a-z

a-z 0-9

2

0
0

1-9
0 0-9

1
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Back to Pattern Matching to Make Tokens

identifier

alphabetic followed by 

0 or more alphanumerics


integer

0 or (digit from 1 — 9 followed

by 0 or more digits from 0 — 9)


decimal

integer followed by ‘.’ 

followed by 1 or more integers

Let’s revisit our precise RegExes and make DFAs.

[a-z][a-z0-9]*

0|([1-9][0-9]*)

(0|([1-9][0-9]*)) ‘.’ (0|([1-9][0-9]*))+

10
a-z

a-z 0-9

2

0
0

1-9
0 0-9

1

2

0
0

1-9

0 0-9

1

3
‘.’

‘.’
0-9 4 0 0-9
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Back to Pattern Matching to Make Tokens

identifier

alphabetic followed by 

0 or more alphanumerics


integer

0 or (digit from 1 — 9 followed

by 0 or more digits from 0 — 9)


decimal

integer followed by ‘.’ 

followed by 1 or more integers

Let’s revisit our precise RegExes and make DFAs.

[a-z][a-z0-9]*

0|([1-9][0-9]*)

(0|([1-9][0-9]*)) ‘.’ (0|([1-9][0-9]*))+

10
a-z

a-z 0-9

2

0
0

1-9
0 0-9

1

2

0
0

1-9

0 0-9

1

3
‘.’

‘.’
0-9 4 0 0-9

We use quotes here to disambiguate 
between a literal dot (which is what 
we want in this case) and the regular 
expression symbol for a wildcard.
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Back to Pattern Matching to Make Tokens

identifier

alphabetic followed by 

0 or more alphanumerics


integer

0 or (digit from 1 — 9 followed

by 0 or more digits from 0 — 9)


decimal

integer followed by ‘.’ 

followed by 1 or more integers

Let’s revisit our precise RegExes and make DFAs.

[a-z][a-z0-9]*

0|([1-9][0-9]*)

(0|([1-9][0-9]*)) ‘.’ (0|([1-9][0-9]*))+

10
a-z

a-z 0-9

2

0
0

1-9
0 0-9

1

2

0
0

1-9

0 0-9

1

3
‘.’

‘.’
0-9 4 0 0-9

Why are these 

different?
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Back to Pattern Matching to Make Tokens

identifier

alphabetic followed by 

0 or more alphanumerics


integer

0 or (digit from 1 — 9 followed

by 0 or more digits from 0 — 9)


decimal

integer followed by ‘.’ 

followed by 1 or more integers

Let’s revisit our precise RegExes and make DFAs.

[a-z][a-z0-9]*

0|([1-9][0-9]*)

(0|([1-9][0-9]*)) ‘.’ (0|([1-9][0-9]*))+

10
a-z

a-z 0-9

2

0
0

1-9
0 0-9

1

2

0
0

1-9

0 0-9

1
‘.’

‘.’
3 0 0-9 Why not do this?
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Deterministic Finite Automata

Example: DFAs for recognizing a few common programming 
language constructs.

From Modern Compiler Implementation by Andrew W. Appel.
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Deterministic Finite Automata

Example: DFAs for recognizing a few common programming 
language constructs.

From Modern Compiler Implementation by Andrew W. Appel.
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Deterministic Finite Automata

Example: DFAs for recognizing a few common programming 
language constructs.

From Modern Compiler Implementation by Andrew W. Appel.
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Deterministic Finite Automata

Example: DFAs for recognizing a few common programming 
language constructs.

2

2



82

Deterministic Finite Automata

Example: DFAs for recognizing a few common programming 
language constructs.

3

3



DFAs have

• a set of input symbols

• a set of states

• a denoted start state

• a transitions to move from one state to another

• one or more denoted accepting states


where…

• no state can transition on an empty string

• for each state s and input symbol a, there is only one edge labeled a leaving s. 

I.e., all transitions from one state to another are unique and unambiguous.


A DFA accepts input x iff there exists a unique path from the start state to one of 
the accepting states such that the labels along the edges of that path spell x.


This is what we have so far. 

And this is what you need to implement Lex.


But… what if we have a finite automata where the paths are not 
unique, and there could be more than one similarly-labeled 
transitions from one state to another? What would happen then?

83

Deterministic Finite Automata
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Nondeterministic Finite Automata

NFAs have

• a set of input symbols

• a set of states

• a denoted start state

• a transitions to move from one state to another

• one or more denoted accepting states


where…

• states can transition on an empty string

• for each state s and input symbol a, could be many edges labeled a leaving s. 

I.e., all transitions from one state to another are not unique and quite possibly 
ambiguous.


An NFA accepts input x iff there exists a unique path from the start state to one of 
the accepting states such that the labels along the edges of that path spell x.

30

a|b

1 2
a b b

What is the equivalent RegEx?
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Nondeterministic Finite Automata

NFAs have

• a set of input symbols

• a set of states

• a denoted start state

• a transitions to move from one state to another

• one or more denoted accepting states


where…

• states can transition on an empty string

• for each state s and input symbol a, could be many edges labeled a leaving s. 

I.e., all transitions from one state to another are not unique and quite possibly 
ambiguous.


An NFA accepts input x iff there exists a unique path from the start state to one of 
the accepting states such that the labels along the edges of that path spell x.

30

a|b

1 2
a b b

(a|b)*abb
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Nondeterministic Finite Automata

NFAs have

• a set of input symbols

• a set of states

• a denoted start state

• a transitions to move from one state to another

• one or more denoted accepting states


where…

• states can transition on an empty string

• for each state s and input symbol a, could be many edges labeled a leaving s. 

I.e., all transitions from one state to another are not unique and quite possibly 
ambiguous.


An NFA accepts input x iff there exists a unique path from the start state to one of 
the accepting states such that the labels along the edges of that path spell x.

30

a|b

1 2
a b b

(a|b)*abb



87

NFA = RegEx = DFA

NFAs and RegExes and DFAs are equivalent

• DFA ↔︎ RegEx

• RegEx ↔︎ NFA

• ∴ DFA ↔︎ RegEx ↔︎ NFA


Also

• DFAs are a subset of NFAs

• Any NFA can be converted to a DFA by simulating sets of simultaneous states.


‣ Each DFA state corresponds to a set of NFA states.

‣ This is called subset construction, and it’s fun. 

‣ There could be a lot of these. Possible exponential blowup. (2n)

30

a|b

1 2
a b b

(a|b)*abb

DFA
N

F
A

RegEx
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NFA to DFA via Subset Construction

30

a|b

1 2
a b b a b

{0} {0,1}

In state 0, if we get an a then we can go to state 0 or 1.
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NFA to DFA via Subset Construction

30

a|b

1 2
a b b a b

{0} {0,1} {0}

In state 0, if we get a b then we can go to state 0.
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NFA to DFA via Subset Construction

30

a|b

1 2
a b b a b

{0} {0,1} {0}

{0,1}

We’re now considering two possible sets of states in our transition 
table: {0} and {0,1}. But we’ve only enumerated the possibilities for 
{0}, so we add the newly introduced state to the table.
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NFA to DFA via Subset Construction

30

a|b

1 2
a b b a b

{0} {0,1} {0}

{0,1}

Considering state {0,1} means analyzing what can happen if we are 
in state 0 and recording that in the transition table, then analyzing 
what can happen if we are in state 1 and recording that in the 
transition table, building sets of possibilities along the way.
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NFA to DFA via Subset Construction

30

a|b

1 2
a b b a b

{0} {0,1} {0}

{0,1} {0,1}

Considering state {0,1} means analyzing what can happen if we are 
in state 0 and recording that in the transition table, then analyzing 
what can happen if we are in state 1 and recording that in the 
transition table, building sets of possibilities along the way.


In state 0, if we get an a then we can go to state 0 or 1.

In state 1, we cannot get an a so there are no other options.
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NFA to DFA via Subset Construction

30

a|b

1 2
a b b a b

{0} {0,1} {0}

{0,1} {0,1} {0,2}

Considering state {0,1} means analyzing what can happen if we are 
in state 0 and recording that in the transition table, then analyzing 
what can happen if we are in state 1 and recording that in the 
transition table, building sets of possibilities along the way.


In state 0, if we get a b then we can go to state 0.

In state 1, if we get a b then we can go to state 2.
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NFA to DFA via Subset Construction

30

a|b

1 2
a b b a b

{0} {0,1} {0}

{0,1} {0,1} {0,2}

{0,2}

We’re now considering three possible sets of states in our transition 
table: {0}, {0,1}, and {0,2}. But we’ve only enumerated the 
possibilities for {0} and {0,1}, so we add the newly introduced state 
to the table.
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NFA to DFA via Subset Construction

30

a|b

1 2
a b b a b

{0} {0,1} {0}

{0,1} {0,1} {0,2}

{0,2} {0,1}

Considering state {0,2} means analyzing what can happen if we are 
in state 0 and recording that in the transition table, then analyzing 
what can happen if we are in state 2 and recording that in the 
transition table, building sets of possibilities along the way.


In state 0, if we get an a then we can go to state 0 or 1.

In state 2, we cannot get an a so there are no other options.
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NFA to DFA via Subset Construction

30

a|b

1 2
a b b a b

{0} {0,1} {0}

{0,1} {0,1} {0,2}

{0,2} {0,1} {0,3}

Considering state {0,2} means analyzing what can happen if we are 
in state 0 and recording that in the transition table, then analyzing 
what can happen if we are in state 2 and recording that in the 
transition table, building sets of possibilities along the way.


In state 0, if we get a b then we can go to state 0.

In state 2, if we get a b then we can go to state 3.



97

NFA to DFA via Subset Construction

30

a|b

1 2
a b b a b

{0} {0,1} {0}

{0,1} {0,1} {0,2}

{0,2} {0,1} {0,3}

{0,3}

Add the newly introduced state to the table.



98

NFA to DFA via Subset Construction

30

a|b

1 2
a b b a b

{0} {0,1} {0}

{0,1} {0,1} {0,2}

{0,2} {0,1} {0,3}

{0,3} {0,1}

Considering state {0,3} means analyzing what can happen if we are 
in state 0 and recording that in the transition table, then analyzing 
what can happen if we are in state 3 and recording that in the 
transition table, building sets of possibilities along the way.


In state 0, if we get an a then we can go to state 0 or 1.

In state 3, we cannot get an a so there are no other options.
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NFA to DFA via Subset Construction

30

a|b

1 2
a b b a b

{0} {0,1} {0}

{0,1} {0,1} {0,2}

{0,2} {0,1} {0,3}

{0,3} {0,1} {0}

Considering state {0,3} means analyzing what can happen if we are 
in state 0 and recording that in the transition table, then analyzing 
what can happen if we are in state 3 and recording that in the 
transition table, building sets of possibilities along the way.


In state 0, if we get a b then we can go to state 0.

In state 3, we cannot get an b so there are no other options.
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NFA to DFA via Subset Construction

30

a|b

1 2
a b b a b

{0} {0,1} {0}

{0,1} {0,1} {0,2}

{0,2} {0,1} {0,3}

{0,3} {0,1} {0}

There are no new states to add to our transition table, so we’re done 
constructing the subsets. (Also, the final state is an accepting state.)


Now we can take the transition table made from this NFA and use it 
to build a DFA by creating states labeled according to the transition 
table values.
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NFA to DFA via Subset Construction

30

a|b

1 2
a b b a b

{0} {0,1} {0}

{0,1} {0,1} {0,2}

{0,2} {0,1} {0,3}

{0,3} {0,1} {0}

{0,3}{0} {0,1} {0,2} DFA
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NFA to DFA via Subset Construction

30

a|b

1 2
a b b

a

a b
{0} {0,1} {0}

{0,1} {0,1} {0,2}

{0,2} {0,1} {0,3}

{0,3} {0,1} {0}

{0,3}{0} {0,1} {0,2}

b

DFA
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NFA to DFA via Subset Construction

30

a|b

1 2
a b b

a

a b
{0} {0,1} {0}

{0,1} {0,1} {0,2}

{0,2} {0,1} {0,3}

{0,3} {0,1} {0}

{0,3}{0} {0,1} {0,2}

b

DFA

a

b
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NFA to DFA via Subset Construction

30

a|b

1 2
a b b

a

a b
{0} {0,1} {0}

{0,1} {0,1} {0,2}

{0,2} {0,1} {0,3}

{0,3} {0,1} {0}

{0,3}{0} {0,1} {0,2}

b

DFA

a

b b

a
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NFA to DFA via Subset Construction

30

a|b

1 2
a b b

a

a b
{0} {0,1} {0}

{0,1} {0,1} {0,2}

{0,2} {0,1} {0,3}

{0,3} {0,1} {0}

{0,3}{0} {0,1} {0,2}

b

DFA

a

b b

a

a

b
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NFA to DFA via Subset Construction

30

a|b

1 2
a b b

a

a b
{0} {0,1} {0}

{0,1} {0,1} {0,2}

{0,2} {0,1} {0,3}

{0,3} {0,1} {0}

{0,3}{0} {0,1} {0,2}

b

DFA

a

b b

a

a

b

No transitions on an empty string.

For each state s and input symbol a, there is only one edge labeled a leaving s. 

I.e., all transitions from one state to another are unique and unambiguous.
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Another Example

e

0,1

0

(	(0|1)*	(2|3)+	)	|	0	0	1	1	

c dba 0 1 1

f

2,3

2,3

NFA

RegEx
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e

0,1

0

(	(0|1)*	(2|3)+	)	|	0	0	1	1	

c dba 0 1 1

f

2,3

2,3

NFA

RegEx

Wait… is that right?

Another Example
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e

0,1

0

(	(0|1)*	(2|3)+	)	|	0	0	1	1	

c dba 0 1 1

f

2,3

2,3

NFA

RegEx

Wait… is that right?

Give me a counter-example.

Another Example
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e0

(	(0|1)*	(2|3)+	)	|	0	0	1	1	

c dba 0 1 1

f

2,3

2,3

NFA

RegEx

Better?

g

0,1

0,1
2,3

Another Example


