
Compilers

CMPT	432

Project Two	 © 2004-2112 Alan G. Labouseur, All Rights Reserved	 Page of 1 3

Project 1. Project	one	working	perfectly.	

2. Write	a	recursive	descent	parser	and	add	it	to	your	compiler.	The	parser	

must	validate	the	tokens	you	lexed	from	project	one.

3. While	parsing,	create	a	concrete	syntax	tree	(CST).	If	parsing	is	

successful	(i.e.,	no	errors	were	found)	then	display	the	CST.	Make	it	neat	
and	make	it	pretty.

[−∞	if	not]

[70	points]

[30	points]

Notes and

Requirements

• Your	compiler	must	compile	multiple	programs	in	sequence.	As	with	your	lexer,	each	
program	must	be	separated	by	the	$	[EOP]	marker	in	the	source	code.

• Do	not	attempt	any	semantic	analysis	for	this	project.	No	type	checking,	no	scope	
checking,	no	AST…	save	it	for	the	next	project.

• Provide	both	errors	and	warnings.	Warnings	are	non-fatal	mistakes	or	omissions.

• When	you	detect	an	error,	report	it	in	helpful	and	excruciating	detail	including	where	it	
was	found,	what	exactly	went	wrong,	and	how	the	programmer	might	fix	it.	I	consider	
confusing,		incomplete,	or	inaccurate	error	messages	a	serious	(and	intolerable)	bug.

• When	there	are	errors	detected	in	lex,	do	not	continue	to	parse.

• When	there	are	errors	detected	in	parse,	do	not	display	the	CST.

• Include	verbose	output	functionality	that	traces	the	stages	of	the	parser.

• See	the	examples	on	the	next	few	pages	for	details	and	ideas.

Other

Requirements

You	have	to	write	this	yourself.	You	may	not	use	JavaCC,	ANTLR,	or	any	compiler	compiler.

Create	many	test	programs	that	cause	as	many	different	types	of	errors	as	you	can	in	order	
to	thoroughly	test	your	code.	(Keep	thinking	about	code	coverage	and	edge	cases).	Include	
a	bunch	of	test	cases	that	show	it	working	as	well.	Write	up	your	testing	results		
(informally)	in	a	document	in	your	Git	repository.

Your	code	must	…	

• separate	structure	from	presentation.

• be	professionally	formatted	and	still	show	your	uniqueness

• use	and	demonstrate	best	practices.

• make	me	proud	to	be	your	teacher.

[−∞	if	not]

Hints Remember	the	utility	of	comments	and	how	much	their	presence	and	quality	affect	your	
professionalism	and	my	opinion	of	your	work.	Details	matter	and	neatness	counts.

Labs Labs	3,	4,	and	5	focus	on	the	components	of	this	project	and	the	mid-term	exam.

Submitting

Your Work

Make	many	commits	to	GitHub.	I	will	not	accept	massive	“everything”	commits	when	I	
review	your	code.	(It’s	−∞	if	you	do	that.)	Commit	early	and	often.	Another	40	-	60	
commits	is	a	good	goal	for	this	project.

E-mail	me	the	URL	to	your	private	GitHub	master	repository.	Remember	to	add	me	
(Labouseur)	as	a	collaborator.	Please	send	this	to	me	before	the	due	date	(see	our	
syllabus).

 Project Two - 100 points

mailto:alan@labouseur.com?subject=OS%20iProject%20link%20on%20GitHub

Compilers

CMPT	432

Input:		 	 {}$

	 	 	 {{{{{{}}}}}}$

	 	 	 {{{{{{}}} /* comments are ignored */ }}}}$

	 	 	 { /* comments are still ignored */ int @}$

Output	to	screen:

DEBUG: Running in verbose mode

LEXER: Lexing program 1...

LEXER: "{" --> [LBRACE]

LEXER: "}" --> [RBRACE]

LEXER: "$" --> [EOP]

LEXER: Lex completed successfully

PARSER: Parsing program 1...

PARSER: parse()

PARSER: parseProgram()

PARSER: parseBlock()

PARSER: parseStatementList()

PARSER: Parse completed successfully

CST for program 1…

<Program>

-<Block>

--[{]

--<Statement List>

--[}]

-[$]

LEXER: Lexing program 2...

LEXER: "{" --> [LBRACE]

LEXER: "{" --> [LBRACE]

LEXER: "{" --> [LBRACE]

LEXER: "{" --> [LBRACE]

LEXER: "{" --> [LBRACE]

LEXER: "{" --> [LBRACE]

LEXER: "}" --> [RBRACE]

LEXER: "}" --> [RBRACE]

LEXER: "}" --> [RBRACE]

LEXER: "}" --> [RBRACE]

LEXER: "}" --> [RBRACE]

LEXER: "}" --> [RBRACE]

LEXER: "$" --> [EOP]

LEXER: Lex completed successfully

PARSER: Parsing program 2...

PARSER: parse()

PARSER: parseProgram()

PARSER: parseBlock()

PARSER: parseStatementList()

PARSER: parseStatement()

PARSER: parseBlock()

PARSER: parseStatementList()

PARSER: parseStatement()

PARSER: parseBlock()

PARSER: parseStatementList()

PARSER: parseStatement()

PARSER: parseBlock()

PARSER: parseStatementList()

PARSER: parseStatement()

PARSER: parseBlock()

PARSER: parseStatementList()

PARSER: parseStatement()

PARSER: parseBlock()

PARSER: parseStatementList()

PARSER: parseStatementList()

PARSER: parseStatementList()

PARSER: parseStatementList()

PARSER: parseStatementList()

PARSER: parseStatementList()

PARSER: Parse completed successfully

CST for program 2…

<Program>

-<Block>

--[{]

--<Statement List>

---<Statement>

----<Block>

-----[{]

-----<Statement List>

------<Statement>

-------<Block>

--------[{]

--------<Statement List>

---------<Statement>

----------<Block>

-----------[{]

-----------<Statement List>

------------<Statement>

-------------<Block>

--------------[{]

--------------<Statement List>

---------------<Statement>

----------------<Block>

-----------------[{]

-----------------<Statement List>

-----------------[}]

--------------[}]

-----------[}]

--------[}]

-----[}]

--[}]

-[$]

Project Two	 © 2004-2112 Alan G. Labouseur, All Rights Reserved	 Page of 2 3

Compilers

CMPT	432

LEXER: Lexing program 3...

LEXER: "{" --> [LBRACE]

LEXER: "{" --> [LBRACE]

LEXER: "{" --> [LBRACE]

LEXER: "{" --> [LBRACE]

LEXER: "{" --> [LBRACE]

LEXER: "{" --> [LBRACE]

LEXER: "}" --> [RBRACE]

LEXER: "}" --> [RBRACE]

LEXER: "}" --> [RBRACE]

LEXER: "}" --> [RBRACE]

LEXER: "}" --> [RBRACE]

LEXER: "}" --> [RBRACE]

LEXER: "}" --> [RBRACE]

LEXER: "$" --> [EOL]

LEXER: Lex completed successfully

PARSER: Parsing program 3...

PARSER: parse()

PARSER: parseProgram()

PARSER: parseBlock()

PARSER: parseStatementList()

PARSER: parseStatement()

PARSER: parseBlock()

PARSER: parseStatementList()

PARSER: parseStatement()

PARSER: parseBlock()

PARSER: parseStatementList()

PARSER: parseStatement()

PARSER: parseBlock()

PARSER: parseStatementList()

PARSER: parseStatement()

PARSER: parseBlock()

PARSER: parseStatementList()

PARSER: parseStatement()

PARSER: parseBlock()

PARSER: parseStatementList()

PARSER: parseStatementList()

PARSER: parseStatementList()

PARSER: parseStatementList()

PARSER: parseStatementList()

PARSER: parseStatementList()

PARSER: ERROR: Expected [EOL] got [RBRACE] with value '}' on line 0

PARSER: Parse failed with 1 error

CST for program 3: Skipped due to PARSER error(s).

LEXER: Lexing program 4...

LEXER: "{" --> [LBRACE]

LEXER: "int" --> [TYPE]

LEXER: ERROR: Unrecognized Token: @

LEXER: "}" --> [RBRACE]

LEXER: "$" --> [EOL]

LEXER: Lex completed with 1 error

PARSER: Skipped due to LEXER error(s)

CST for program 4: Skipped due to LEXER error(s).

Project Two	 © 2004-2112 Alan G. Labouseur, All Rights Reserved	 Page of 3 3

