— Semester Project part one

Compilers
CMPT 432

This part of your semester-long project is meant to be done over the course of our semester together, right
up until about the final three or four weeks. Do not attempt it all at once. Rather, begin after our first class
and make steady progress each week. This is the “traditional compiler” portion of the project... just highly

condensed. You're going to have to be very productive to get it done, so lean in to your Al tools.

Use an Alan-approved programming language to write a four-phase compiler for the grammar found on
our class web site at https://www.labouseur.com/courses/compilers/grammar.pdf and the scope and
type rules discussed in class. The four phases are noted below. Read the source code from a file for
command-line compilers or from an HTML text area element for browser-based compilers.

LEXER NOTES AND REQUIREMENTS

Begin by writing a lexer that validates the input source code against our grammar and creates tokens.
You must lex multiple programs in sequence. Each program will be separated by the $ [EoP] marker.
The lexer is not as simple as our examples in class, so be careful.

Provide both errors and warnings. Warnings are non-fatal mistakes or omissions that your compiler
should correct. Forgetting to end the final program with $ is one example. Detecting unterminated
comment blocks is another.

When you detect an error, report it in excruciating detail with helpful text and messages, including
where it was found, what exactly went wrong, and how the programmer might fix it. Confusing,
incomplete, or inaccurate error messages are serious (and intolerable) bugs.

Include verbose output functionality that traces the stages of the lexer. Make this the default mode.
When there are errors detected in Lex, do not continue to Parse.

PARSER NOTES AND REQUIREMENTS

Add a recursive descent parser to your compiler that takes the tokens from your Lexer.

While parsing, create a Concrete Syntax Tree (CST). If parsing is successful (i.e., no errors were found)
then display the CST. Make it neat and pretty.

Your parser must compile multiple programs in sequence, just like your Lexer.

Provide errors, hints, and warnings. Errors are, well, errors. Hints are messages about code hygiene
issues and opportunities for improvement. Warnings are non-fatal mistakes or omissions that probably
should not have been done, but which don’t actually violate the grammar; yet indicate potential issues,
like uninitialized variables for example.

When you detect an error, report it in excruciating detail with helpful text and messages, including
where it was found, what exactly went wrong, and how the programmer might fix it. Confusing,
incomplete, or inaccurate error messages are serious (and intolerable) bugs.

Include verbose output functionality that traces the stages of your Parser. Keep this the default.

When there are errors detected in Parse, do not display the CST and do not continue to Semantic
Analysis. (Hints and warnings should not prevent you from going to the next phase.)

Project © 2026-2112 Alan G. Labouseur, All Rights Reserved Page 1 of 9

http://www.labouseur.com/courses/compilers/grammar.pdf

Compilers
CMPT 432

SEMANTIC ANALYSIS NOTES AND REQUIREMENTS

Build an Abstract Syntax Tree (AST) by either re-parsing the tokens or traversing the CST. Display it
after a successful Lex and Parse.

Scope-check the AST according to the scope rules we discussed in class.
While you are scope-checking, build a symbol table of IDs that includes their name, data type, scope,
position in the source code, and anything else you think might be important.
Type-check the source code using the AST and the symbol table, based on our grammar and the type
rules we discussed in class.
» Issue errors for undeclared identifiers, redeclared identifiers in the same scope, type mismatches,
and anything else that might go wrong.
» Issue hints and warnings about declared but unused identifiers, use of uninitialized variables, and
the presence of initialized but unused variables.
Default to verbose output functionality that traces the Semantic Analysis stages, including scope
checking, the construction of the symbol table, and type checking actions.
When you detect an error, report it in helpful detail including where it was found.
Create and display a symbol table with type and scope information, unless...

... if there are errors detected in Semantic Analysis then do not display symbol table with type and
scope information and do not continue to Code Generation.

CODE GENERATOR NOTES AND REQUIREMENTS

Write a code generator that takes your AST and generates 6502a machine code (found in 6502a-
instruction-set.pdf) for our language grammar.

As with the phases before this one, include verbose output functionality that traces the stages of the
parser including the construction of the symbol table and type checking actions.

When you detect an error report it in helpful detail including where it was found.

The generated code must conform to the 6502a instructions set specified on our class web site and
execute on SvegOS.

If you're feeling up to it, consider adding one or more of the following for extra credit and extra
coolness: various code optimizations (ask me about it), non-value-returning procedures (sub program
call and return), value-returning functions (sub program call and return), integer arrays, or more.

GENERAL REQUIREMENTS AND HINTS

At each phase, create a plethora (yes, a plethora!) of test programs that cause as many different kinds
of errors as you can in order to thoroughly test your code. Think about code coverage and edge cases.
Think about generating hints and warnings too. Include test cases that show it working as well. Write
up your testing results (informally) in a document in your Git repository. Markdown is particularly
good for this.

Project © 2026-2112 Alan G. Labouseur, All Rights Reserved Page 2 of 9

https://www.labouseur.com/commondocs/6502alan-instruction-set.pdf
https://www.labouseur.com/commondocs/6502alan-instruction-set.pdf
https://www.labouseur.com/commondocs/operating-systems/SvegOS/public_html/index.html

Compilers
CMPT 432

GENERAL REQUIREMENTS AND HINTS continued
* Your code must ...
» separate structure from presentation.

» be professionally formatted yet uniquely yours (show some personality).

» use and demonstrate best practices.
» make me proud to be your teacher.

* Remember the utility of comments and how much their presence and quality affect your

professionalism and my opinion of your work.
« Details matter and neatness counts.

» See the examples on the next few pages and in the Hall of Fame on our web site for details and ideas.

EXAMPLES AND IDEAS

The following pages show a compiler in various phases of operation . . .

Input: {1$ {

{omns nta

{{{{{ /* comments are ignored */ }}}$:tri: b

{/* comments are still ignored */ int @}$ a=:

1$
Output to screen:
INFO Lexer - Lexing program 1... INFO Lexer
DEBUG Lexer - OPEN_BLOCK [{] found at (1:1) DEBUG Lexer
DEBUG Lexer - CLOSE _BLOCK [}] found at (1:2) DEBUG Lexer
DEBUG Lexer - EOP [$] found at (1:3) DEBUG Lexer
INFO Lexer - Lex completed with 0 errors DEBUG Lexer
DEBUG Lexer

INFO Lexer - Lexing program 2... DEBUG Lexer
DEBUG Lexer - OPEN BLOCK [{] found at (2:1) DEBUG Lexer
DEBUG Lexer - OPEN_BLOCK [{] found at (2:2) DEBUG Lexer
DEBUG Lexer - OPEN BLOCK [{] found at (2:3) DEBUG Lexer
DEBUG Lexer - OPEN_BLOCK [{] found at (2:4) DEBUG Lexer
DEBUG Lexer - OPEN BLOCK [{] found at (2:5) DEBUG Lexer
DEBUG Lexer - OPEN_BLOCK [{] found at (2:6) DEBUG Lexer
DEBUG Lexer - CLOSE_BLOCK [}] found at (2:7) DEBUG Lexer
DEBUG Lexer - CLOSE_BLOCK [}] found at (2:8) INFO Lexer
DEBUG Lexer - CLOSE BLOCK [}] found at (2:9)
DEBUG Lexer - CLOSE_BLOCK [}] found at (2:10)
DEBUG Lexer - CLOSE BLOCK [}] found at (2:11)
DEBUG Lexer - CLOSE BLOCK [}] found at (2:12)
DEBUG Lexer - EOP [$] found at (2:13)
INFO Lexer - Lex completed with 0 errors
INFO Lexer - Lexing program 3...
DEBUG Lexer - OPEN BLOCK [{] found at (3:1)
DEBUG Lexer - OPEN BLOCK [{] found at (3:2)
DEBUG Lexer - OPEN BLOCK [{] found at (3:3)
DEBUG Lexer - OPEN BLOCK [{] found at (3:4)
DEBUG Lexer - OPEN BLOCK [{] found at (3:5)
DEBUG Lexer - OPEN BLOCK [{] found at (3:6)
DEBUG Lexer - CLOSE_BLOCK [}] found at (3:7)
DEBUG Lexer - CLOSE BLOCK [}] found at (3:8)
DEBUG Lexer - CLOSE_BLOCK [}] found at (3:9)
DEBUG Lexer - CLOSE_BLOCK [}] found at (3:38)
DEBUG Lexer - CLOSE _BLOCK [}] found at (3:39)
DEBUG Lexer - CLOSE_BLOCK [}] found at (3:40)
DEBUG Lexer - CLOSE_BLOCK [}] found at (3:41)
DEBUG Lexer - EOP [$§] found at (3:42)
INFO Lexer - Lex completed with 0 errors
INFO Lexer - Lexing program 4...
DEBUG Lexer - OPEN_BLOCK [{] found at (4:1)
DEBUG Lexer - I_TYPE [int] found at (4:36)
ERROR Lexer - Error:4:40 Unrecognized Token: @
DEBUG Lexer - CLOSE_BLOCK [}] found at (4:41)
DEBUG Lexer - EOP [$] found at (4:42)
ERROR Lexer - Lex failed with 1 error(s)

Project

Lexing program 5..

OPEN BLOCK [{] found at (5:1)
I_TYPE [int] found at (6:3)

ID [a] found at (6:7)

ID [a] found at (7:3)
ASSIGN OP [=] found at (7:5)
ID [a] found at (7:7)

I_TYPE [string] found at (8:3)
ID [b] found at (8:10)

ID [a] found at (9:3)
ASSIGN_OP [=] found at (9:5)
ID [b] found at (9:7)
CLOSE_BLOCK [}] found at (10:1)
EOP [$§] found at (10:2)

Lex completed with 0 errors

© 2026-2112 Alan G. Labouseur, All Rights Reserved

Page 3 of 9

Compilers
CMPT 432

Input: s

s

{{{{}}} /* comments are ignored */ }}}}$.

{/* comments are still ignored */ int @}$::EQE: !:F?“nf [’:-I;JRg;%E 3...
LEXER: "{" --> [LBRACE]
LEXER: "{" --> [LBRACE]
LEXER: "{" --> [LBRACE]

Output to screen: LEXER: "{" --> [LBRACE]
LEXER: "{" --> [LBRACE]
DEBUG: Running in verbose mode PARSER: parseStatement() LEXER: "}" --> [RBRACE]
PARSER: parseBlock() LEXER: "}" --> [RBRACE]
LEXER: Lexing program 1... PARSER: parseStatementList() LEXER: "}" --> [RBRACE]
LEXER --> [LBRACE] PARSER: parseStatement() LEXER: "}" --> [RBRACE]
LEXER --> [RBRACE] PARSER: parseBlock() LEXER: "}" --> [RBRACE]
LEXER: "$" --> [EOP] PARSER: parseStatementList() LEXER: "}" --> [RBRACE]
LEXER: Lex completed successfully PARSER: parseStatementList() LEXER: "}" --> [RBRACE]
PARSER: parseStatementList8 LEXER: "$" —> [EOL]
PARSER: Parsing program 1... PARSER: parseStatementList)
PARSER: parse() PARSER: parseStatementList() LEXER: Lex completed successfully
PARSER: parseProgram() PARSER: parseStatementList() i .
PARSER: parseBlock() PARSER: Parse completed successfully Eﬁ:ggg P:E':(? program 3...
PARSER: parseStatementList() PARSER: p P
PARSER: Parse completed successfully CST for program 2... : parseProgram()
<Program> PARSER: parseBlock())
CST for program 1... <Block> PARSER: parseStatementList()
<Program> ~[] PARSER: parseStatement()
-<Block> --<Statement List> PARSER: parseBlock()
-l —-<Statement> PARSER: parseStatementList()
-<Statement List> ——<Block> PARSER: parseStatement()
-} - PARSER: parseBlock()

PARSER: parseStatementList()
PARSER: parseStatement()
PARSER: parseBlock()
PARSER: parseStatementList()
PARSER: parseStatement()

LEXER: Lexing program 2...
LEXER: "{" --> [LBRACE]

LEXER --> [LBRACE] --<Statement> PARSER: parseBlock()

LEXER: "{" --> [LBRACE] ---<Block> PARSER: parseStatementList()

LEXER: "{" --> [LBRACE] —[{] PARSER: parseStatement()

LEXER: "{" --> [LBRACE] - -<Statement List> PARSER: parseBlock()

LEXER --> [LBRACE] - PARSER: parseStatementList()
s> [RBRACE] - PARSER: parseStatementList()

LEXER: "}" --> [RBRACE] -) PARSER: parseStatementList()

tg‘(g: ; {232223 PARSER: parseStatementList()

LEXER 5 [RBRACE] B PARSER: parseStatementList()

PARSER: parseStatementList()
PARSER: ERROR: Expected [EOL] got [RBRACE] with value '}’ on line 0
PARSER: Parse failed with 1 error

--> [RBRACE] -
-->[EOP] -
LEXER: Lex completed successfully -
PARSER: Parsing program 2... - CST for program 3: Skipped due to PARSER error(s).
PARSER: parse() -

PARSER: parseProgram() -1 i

PARSER: parseBlock() -1 LEXER: Lexing program 4...

PARSER: parseStatementList() -[$] LEXER: "{" --> [LBRACE]

PARSER: parseStatement() LEXER: "int" --> [TYPE]

PARSER: parseBlock() LEXER: ERROR: Unrecognized Token: @
PARSER: parseStatementList() LEXER: "}" --> [RBRACE]

PARSER: parseStatement() LEXER: "$" --> [EOL]

PARSER: parseBlock() LEXER: Lex completed with 1 error
PARSER: parseStatementList()

PARSER: parseStatement() PARSER: Skipped due to LEXER error(s)
PARSER: parseBlock()

PARSER: parseStatementList() CST for program 4: Skipped due to LEXER error(s).

Project © 2026-2112 Alan G. Labouseur, All Rights Reserved Page 4 of 9

Project

Compilers
CMPT 432

Input:

{
int a
boolean b

{

string c
a=>5
b = true /* no comment */
c = "inta"
print(c)
}
print(b)
print(a)
}$
Output:

Program 1 Lexical Analysis
Program 1 Lexical analysis produced
0 error(s) and 0 warning(s)

Program 1 Parsing
Program 1 Parsing produced 0
error(s) and 0 warnings

Program 1 Semantic Analysis
Program 1 Semantic Analysis produced
0 error(s) and 0 warning(s)

Program 1 Concrete Syntax Tree

< Program >

-< Bloc
-—[{

k >

]
--< Statement List >
---< Statement >

[1
---< Statement List >

————< S
——<

-<

-0 }]
-[$]

tatement >
Variable Declaration >

]
< Statement List >
-< Statement >

]
Expression >
-< Int Expression >
==[5]
-< Statement List >
--< Statement >
-< Assignment Statement >
__{k_)]
-< Expression >
--< Boolean Expression >
————[true]
< Statement List >
-< Statement >
-< Assignment Statement >
c

< Expression > .
< String Expression >

--< Char List >
n

Statement List >

© 2026-2112 Alan G. Labouseur, All Rights Reserved

Page 5 of 9

Project

Compilers

Program 1 Abstract Syntax Tree
< BLOCK >

-< Variable Declaration >
—-=[int]

- a]

-< Variable Declaration >
—--[boolean]

--[b]

-< BLOCK >

--< Variable Declaration >
———[string]

___[c ;l

--< Assignment Statement >
-—[a]

-—=[5

--< Assignment Statement >
-——-[b1

-—=[true]

--< Assignment Statement >
-==[¢]

--=[inta]

--< Print Statement >

___[lo]

-< Print Statement >

--[b1

-< Print Statement >

--[a]

Program 1 Symbol Table

Name Type Scope Line
a int 0 2
b bool 0 3
c string 1 5

© 2026-2112 Alan G. Labouseur, All Rights Reserved

CMPT 432

Page 6 of 9

Project

Compilers
CMPT 432

Input:
e
int a

boolean b
a=1

}
print(b)

Output:

Program 2 Lexical Analysis

Program 2 Lexical analysis produced
0 error(s) and 0 warning(s)

Program 2 Parsing
Program 2 Parsing produced 0
error(s) and 0 warning(s)

Program 2 Semantic Analysis

Error: The id b on line 7 was used
before being declared.

Warning: The id a on line 2 was
declared and initialized but never
used.

Program 2 Semantic Analysis produced
1 error(s) and 1 warning(s).

Program 2 Concrete Syntax Tree

< Program >

-< Block >

-1 {1]

--< Statement List >

---< Statement >

----< Variable Declaration >

---< Statement List >

----< Statement >

_____ < Block >

------ [{1 ,

______ < Statement List >

_______ < Statement >

-------- < Variable Declaration >
_________ [boolean]

_________ [b]

[} 1
----< Statement List >
_____ < Statement >
______ < Print Statement >

——————— [
----- < Statement List >

-0} 1
-[$1

Program 2 Abstract Syntax Tree

< BLOCK >

-< Variable Declaration >
—-[int]

--[a]

-< BLOCK >

--< Variable Declaration >
—-—-[boolean]

-—-[b]

--< Assignment Statement >
-—=[a]

—I 1

-< Print Statement >
--[b]

Program 2 Symbol Table
not produced due to error(s) detected by
semantic analysis.

© 2026-2112 Alan G. Labouseur, All Rights Reserved

Page 7 of 9

Project

Compilers
CMPT 432

Input:
O,

int a

boolean b

————<ID>
--[a]

-<EXpr>
—-=<IntExpr>
--<Digit>

151
--<StatementList>

. <Statement>
strlng C -<Assign>
—-<ID>
a =5 iy
b = false -<Expr>
= "4 " <BooleanExpr>
c inta Boolval>
} [false]
print (C) ---<StatementList>
-<Statement>
print(b)
print(a)
S StringExpr>
CharList>
Output: ‘[?*}?P
i
LEX: BEGINNING LEXING PROCESS ON PROGRAM 3... CharList>
LEX: SUCCESSFULLY COMPLETED WITH (0) errors. [n?r
CharList>
PARSE: BEGINNING PARSING PROCESS ON PROGRAM 3... Char>
PARSE: PARSE PROCESS SUCCESSFULLY COMPLETED. [t]
CharList>
CST: Printing Program 3: Char>
<Program> [a]
—<B%ock> [CharList]
4] "
--<StatementList> e [StatementList]
---<Statement> - -[}]
----<VarDecl> - -<StatementList>
<Statement>
- -<Print>
- -[print]

. - =[(]
—-—-<StatementList> - -<EXpr>
----<Statement> - <ID>
_____ <Block> - -[c]

————— i ‘ -]
------<StatementList> - --[StatementList]
-------<Statement> -

-— -<VarDecl> -<StatementList>
—_— -<Type> --<Statement>
—-— —-[boolean]

_— -<ID>

—_—] .

_— <StatementList>

- -<Statement>

_— -<Block>

- {1

-—= <StatementList>

-— -<Statement>

—-— -<VarDecl>

—_— <Type>

- -[string]

[— <ID>

- ---[c] .

- -<StatementList>

- -<Statement>

[— <Block>

- -[{1 .

—_— -<StatementList>

- --<Statement>

--<Assign>

© 2026-2112 Alan G. Labouseur, All Rights Reserved

Page 8 of 9

Project

Compilers
CMPT 432

SEMANTIC: STARTING SEMANTIC ANALYSIS ON PROGRAM 3.

SEMANTIC: SEMANTIC ANALYSIS SUCCESSFULLY COMPLETED ON PROGRAM 3.

AST: Printing AST for Program 3:

<Block>
-<VarDecl>
--[int]
--[a]
-<Block>
—--<VarDecl>
—-—-[boolean]
---[b]
--<Block>
--—-<VarDecl>
—-———[string]
----[c]
---<Block>
----<Assign>

————— [false]
--—--<Assign>
_____ [Icl] n
----- ["inta"]
———<Print>
---=[c]
--<Print>
---[b]
—-<Print>
--[a]

SYMB: Printing
NAME TYPE

[a int

[b boolean

[c string

Symbol Table for Program 3:
isINIT? isUSED? SCOPE

true true 0]
true true 1]
true true 2]

© 2026-2112 Alan G. Labouseur, All Rights Reserved

Page 9 of 9

