
6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 1 of 26http://www.infoq.com/articles/new-groovy-20

What’s new in Groovy 2.0?

Posted by Guillaume Laforge on Jun 28, 2012

Sections
Development

Topics
Groovy ,
JVM Languages ,
Dynamic Languages ,
Java ,
Languages ,
Programming

The newly released Groovy 2.0 brings key static features to the language with
static type checking and static compilation, adopts JDK 7 related improve-
ments with Project Coin syntax enhancements and the support of the new
"invoke dynamic" JVM instruction, and becomes more modular than before. In
this article, we’re going to look into those new features in more detail.

A "static theme" for a dynamic language

Static type checking

Groovy, by nature, is and will always be a dynamic language. However,
Groovy is often used as a "Java scripting language", or as a "better Java" (ie. a
Java with less boilerplate and more power features). A lot of Java developers
actually use and embed Groovy in their Java applications as an extension lan-
guage, to author more expressive business rules, to further customize the appli-
cation for different customers, etc. For such Java-oriented use cases, developers
don't need all the dynamic capabilities offered by the language, and they usual-

http://www.infoq.com/author/Guillaume-Laforge;jsessionid=77054DBAC334D9334B882538B120D385
http://www.infoq.com/development;jsessionid=77054DBAC334D9334B882538B120D385
http://www.infoq.com/groovy;jsessionid=77054DBAC334D9334B882538B120D385
http://www.infoq.com/JVM_Langugaes;jsessionid=77054DBAC334D9334B882538B120D385
http://www.infoq.com/dynamic_languages;jsessionid=77054DBAC334D9334B882538B120D385
http://www.infoq.com/java;jsessionid=77054DBAC334D9334B882538B120D385
http://www.infoq.com/languages;jsessionid=77054DBAC334D9334B882538B120D385
http://www.infoq.com/Programming;jsessionid=77054DBAC334D9334B882538B120D385

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 2 of 26http://www.infoq.com/articles/new-groovy-20

ly expect the same kind of feedback from the Groovy compiler as the one given
by javac. In particular, they want to get compilation errors (rather than runtime
errors) for things like typos on variable or method names, incorrect type as-
signments and the like. That's why Groovy 2 features static type checking sup-
port.

Spotting obvious typos

The static type checker is built using Groovy’s existing powerful AST (Abstract
Syntax Tree) transformation mechanisms but for those not familiar with these
mechanisms you can think of it as an optional compiler plugin triggered
through an annotation. Being an optional feature, you are not forced to use it if
you don’t need it. To trigger static type checking, just use the @TypeChecked
annotation on a method or on a class to turn on checking at your desired level
of granularity. Let’s see that in action with a first example:

import groovy.transform.TypeChecked

void someMethod() {}

@TypeChecked
void test() {
 // compilation error:
 // cannot find matching method sommeeMethod()
 sommeeMethod()

 def name = "Marion"

 // compilation error:
 // the variable naaammme is undeclared
 println naaammme

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 3 of 26http://www.infoq.com/articles/new-groovy-20

}

We annotated the test() method with the @TypeChecked annotation, which
instructs the Groovy compiler to run the static type checking for that particular
method at compilation time. We’re trying to call someMethod() with some
obvious typos, and to print the name variable again with another typo, and the
compiler will throw two compilation errors because respectively, the method
and variable are not found or declared.

Check your assignments and return values

The static type checker also verifies that the return types and values of your as-
signments are coherent:

import groovy.transform.TypeChecked

@TypeChecked
Date test() {
 // compilation error:
 // cannot assign value of Date
 // to variable of type int
 int object = new Date()

 String[] letters = ['a', 'b', 'c']
 // compilation error:
 // cannot assign value of type String
 // to variable of type Date
 Date aDateVariable = letters[0]

 // compilation error:
 // cannot return value of type String

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 4 of 26http://www.infoq.com/articles/new-groovy-20

 // on method returning type Date
 return "today"
}

In this example, the compiler will complain about the fact you cannot assign a
Date in an int variable, nor can you return a String instead of a Date value
specified in the method signature. The compilation error from the middle of
the script is also interesting, as not only does it complain of the wrong assign-
ment, but also because it shows type inference at play, because the type check-
er, of course, knows that letters[0] is of type String, because we’re deal-
ing with an array of Strings.

More on type inference

Since we’re mentioning type inference, let’s have a look at some other occur-
rences of it. We mentioned the type checker tracks the return types and values:

import groovy.transform.TypeChecked

@TypeChecked
int method() {
 if (true) {
 // compilation error:
 // cannot return value of type String
 // on method returning type int
 'String'
 } else {
 42
 }
}

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 5 of 26http://www.infoq.com/articles/new-groovy-20

Given a method returning a value of primitive type int, the type checker is
able to also check the values returned from different constructs like if /
else branches, try / catch blocks or switch / case blocks. Here, in
our example, one branch of the if / else blocks tries to return a String
value instead of a primitive int, and the compiler complains about it.

Common type conversions still allowed

The static type checker, however, won’t complain for certain automatic type
conversions that Groovy supports. For instance, for method signatures return-
ing String, boolean or Class, Groovy converts return values to these
types automatically:

import groovy.transform.TypeChecked

@TypeChecked
boolean booleanMethod() {
 "non empty strings are evaluated to true"
}

assert booleanMethod() == true

@TypeChecked
String stringMethod() {
 // StringBuilder converted to String calling
toString()

 new StringBuilder() << "non empty string"
}

assert stringMethod() instanceof String

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 6 of 26http://www.infoq.com/articles/new-groovy-20

@TypeChecked
Class classMethod() {
 // the java.util.List class will be returned
 "java.util.List"
}

assert classMethod() == List

The static type checker is also clever enough to do type inference:

import groovy.transform.TypeChecked

@TypeChecked
void method() {
 def name = " Guillaume "

 // String type inferred (even inside GString)
 println "NAME = ${name.toUpperCase()}"

 // Groovy GDK method support
 // (GDK operator overloading too)
 println name.trim()

 int[] numbers = [1, 2, 3]
 // Element n is an int
 for (int n in numbers) {
 println
 }
}

Although the name variable was defined with def, the type checker under-

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 7 of 26http://www.infoq.com/articles/new-groovy-20

stands it is of type String. Then, when this variable is used in the interpolated
string, it knows it can call String’s toUpperCase() method, or the
trim() method later one, which is a method added by the Groovy Develop-
ment Kit decorating the String class. Last, when iterating over the elements
of an array of primitive ints, it also understands that an element of that array
is obviously an int.

Mixing dynamic features and statically typed methods

An important aspect to have in mind is that using the static type checking facil-
ity restricts what you are allowed to use in Groovy. Most runtime dynamic fea-
tures are not allowed, as they can’t be statically type checked at compilation
time. So adding a new method at runtime through the type’s metaclasses is not
allowed. But when you need to use some particular dynamic feature, like
Groovy’s builders, you can opt out of static type checking should you wish to.

The @TypeChecked annotation can be put at the class level or at the method
level. So if you want to have a whole class type checked, put the annotation on
the class, and if you want only a few methods type checked, put the annotation
on just those methods. Also, if you want to have everything type checked, ex-
cept a specific method, you can annotate the latter with
@TypeChecked(TypeCheckingMode.SKIP) - or @TypeChecked(SKIP)
for short, if you statically import the associated enum. Let’s illustrate the situa-
tion with the following script, where the greeting() method is type checked,
whereas the generateMarkup() method is not:

import groovy.transform.TypeChecked
import groovy.xml.MarkupBuilder

// this method and its code are type checked

@TypeChecked

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 8 of 26http://www.infoq.com/articles/new-groovy-20

String greeting(String name) {
 generateMarkup(name.toUpperCase())
}

// this method isn't type checked

// and you can use dynamic features like the markup

builder

String generateMarkup(String name) {
 def sw =new StringWriter()
 new MarkupBuilder(sw).html {
 body {
 div name
 }
 }
 sw.toString()
}

assert greeting("Cédric").contains("<div>CÉDRIC</div>")

Type inference and instanceof checks

Current production releases of Java don’t support general type inference; hence
we find today many places where code is often quite verbose and cluttered
with boilerplate constructs. This obscures the intent of the code and without
the support of powerful IDEs is also harder to write. This is the case with in‐
stanceof checks: You often check the class of a value with instanceof inside
an if condition, and afterwards in the if block, you must still use casts to be
able to use methods of the value at hand. In plain Groovy, as well as in the new
static type checking mode, you can completely get rid of those casts.

import groovy.transform.TypeChecked

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 9 of 26http://www.infoq.com/articles/new-groovy-20

import groovy.xml.MarkupBuilder

@TypeChecked
String test(Object val) {
 if (val instanceof String) {
 // unlike Java:
 // return ((String)val).toUpperCase()
 val.toUpperCase()
 } else if (val instanceof Number) {
 // unlike Java:
 // return ((Number)val).intValue().multiply(2)
 val.intValue() * 2
 }
}

assert test('abc') == 'ABC'
assert test(123) == '246'

In the above example, the static type checker knows that the val parameter is of
type String inside the if block, and of type Number in the else if block,
without requiring any cast.

Lowest Upper Bound

The static type checker goes a bit further in terms of type inference in the sense
that it has a more granular understanding of the type of your objects. Consider
the following code:

import groovy.transform.TypeChecked

// inferred return type:

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 10 of 26http://www.infoq.com/articles/new-groovy-20

// a list of numbers which are comparable and serializable

@TypeChecked test() {
 // an integer and a BigDecimal
 return [1234, 3.14]
}

In this example, we return, intuitively, a list of numbers: an Integer and a
BigDecimal. But the static type checker computes what we call a "lowest upper
bound", which is actually a list of numbers which are also serializable and com-
parable. It’s not possible to denote that type with the standard Java type nota-
tion, but if we had some kind of intersection operator like an ampersand, it
could look like List<Number & Serializable & Comparable>.

Flow typing

Although this is not really recommended as a good practice, sometimes devel-
opers use the same untyped variable to store values of different types. Look at
this method body:

import groovy.transform.TypeChecked

@TypeChecked test() {
 def var = 123 // inferred type is int
 var = "123" // assign var with a String

 println var.toInteger() // no problem, no need to
cast

 var = 123
 println var.toUpperCase() // error, var is int!
}

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 11 of 26http://www.infoq.com/articles/new-groovy-20

The var variable is initialized with an int. Then, a String is assigned. The
"flow typing" algorithm follows the flow of assignment and understands that
the variable now holds a String, so the static type checker will be happy with
the toInteger() method added by Groovy on top of String. Next, a num-
ber is put back in the var variable, but then, when calling toUpperCase(), the
type checker will throw a compilation error, as there’s no toUpperCase()
method on Integer.

There are some special cases for the flow typing algorithm when a variable is
shared with a closure which are interesting. What happens when a local vari-
able is referenced in a closure inside a method where that variable is defined?
Let’s have a look at this example:

import groovy.transform.TypeChecked

@TypeChecked test() {
 def var = "abc"
 def cl = {
 if (new Random().nextBoolean()) var = new Date()
 }
 cl()
 var.toUpperCase() // compilation error!
}

The var local variable is assigned a String, but then, var might be assigned a
Date if some random value is true. Typically, it’s only at runtime that we real-
ly know if the condition in the if statement of the closure is made or not. Hence,
at compile-time, there’s no chance the compiler can know if var now contains
a String or a Date. That’s why the compiler will actually complain about the
toUpperCase() call, as it is not able to infer that the variable contains a
String or not. This example is certainly a bit contrived, but there are some

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 12 of 26http://www.infoq.com/articles/new-groovy-20

more interesting cases:

import groovy.transform.TypeChecked

class A { void foo() {} }
class B extends A { void bar() {} }

@TypeChecked test() {
 def var = new A()
 def cl = { var = new B() }
 cl()
 // var is at least an instance of A
 // so we are allowed to call method foo()
 var.foo()
}

In the test() method above, var is assigned an instance of A, and then an in-
stance of B in the closure which is call afterwards, so we can at least infer that
var is of type A.

All those checks added to the Groovy compiler are done at compile-time, but
the generated bytecode is still the same dynamic code as usual - no changes in
behavior at all.

Since the compiler now knows a lot more about your program in terms of
types, it opens up some interesting possibilities: what about compiling that
type checked code statically? The obvious advantage will be that the generated
bytecode will more closely resemble the bytecode created by the javac compiler
itself, making statically compiled Groovy code as fast as plain Java, among oth-
er advantages. In the next section, we’ll learn more about Groovy’s static com-
pilation.

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 13 of 26http://www.infoq.com/articles/new-groovy-20

Static compilation

As we shall see in the following chapter about the JDK 7 alignments, Groovy
2.0 supports the new "invoke dynamic" instruction of the JVM and its related
APIs, facilitating the development of dynamic languages on the Java platform
and bringing some additional performance to Groovy’s dynamic calls. Howev-
er, unfortunately shall I say, JDK 7 is not widely deployed in production at the
time of this writing, so not everybody has the chance to run on the latest ver-
sion. So developers looking for performance improvements would not see
much changes in Groovy 2.0, if they aren’t able to run on JDK 7. Luckily, the
Groovy development team thought those developers could get interesting per-
formance boost, among other advantages, by allowing type checked code to be
compiled statically.

Without further ado, let’s dive in and use the new @CompileStatic trans-
form:

import groovy.transform.CompileStatic

@CompileStatic
int squarePlusOne(int num) {
 num * num + 1
}

assert squarePlusOne(3) == 10

This time, instead of using @TypeChecked, use @CompileStatic, and your
code will be statically compiled, and the bytecode generated here will look like
javac’s bytecode, running just as fast. Like the @TypeChecked annotation,
@CompileStatic can annotate classes and methods, and @CompileStat‐
ic(SKIP) can bypass static compilation for a specific method, when its class

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 14 of 26http://www.infoq.com/articles/new-groovy-20

is marked with @CompileStatic.

Another advantage of the javac-like bytecode generation is that the size of the
bytecode for those annotated methods will be smaller than the usual bytecode
generated by Groovy for dynamic methods, since to support Groovy’s dynamic
features, the bytecode in the dynamic case contains additional instructions to
call into Groovy’s runtime system.

Last but not least, static compilation can be used by framework or library code
writers to help avoid adverse interactions when dynamic metaprogramming is
in use in several parts of the codebase. The dynamic features available in lan-
guages like Groovy are what give developers incredible power and flexibility
but if care is not taken, different assumptions can exist in different parts of the
system with regards to what metaprogramming features are in play and this
can have unintended consequences. As a slightly contrived example, consider
what happens if you are using two different libraries, both of which add a simi-
larly named but differently implemented method to one of your core classes.
What behaviour is expected? Experienced users of dynamic languages will
have seen this problem before and probably heard it referred to as "monkey
patching". Being able to statically compile parts of your code base - those parts
that don’t need dynamic features - shields you from the effects of monkey
patching, as the statically compiled code doesn’t go through Groovy’s dynamic
runtime system. Although dynamic runtime aspects of the language are not al-
lowed in a static compilation context, all the usual AST transformation mecha-
nisms work just as well as before, since most AST transforms perform their
magic at compilation time.

In terms of performance, Groovy’s statically compiled code is usually more or
less as fast as javac’s. In the few micro-benchmarks the development team
used, performance is identical in several cases, and sometimes it’s slightly
slower.

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 15 of 26http://www.infoq.com/articles/new-groovy-20

Historically, thanks to the transparent and seamless integration of Java and
Groovy, we used to advise developers to optimize some hotspot routines in
Java for further performance gains, but now, with this static compilation op-
tion, this is no longer the case, and people wishing to develop their projects in
full Groovy can do so.

The Java 7 and JDK 7 theme

The grammar of the Groovy programming language actually derives from the
Java grammar itself, but obviously, Groovy provides additional nice shortcuts
to make developers more productive. This familiarity of syntax for Java devel-
opers has always been a key selling point for the project and its wide adoption,
thanks to a flat learning curve. And of course, we expect Groovy users and
newcomers to also want to benefit from the few syntax refinements offered by
Java 7 with its "Project Coin" additions.

Beyond the syntax aspects, JDK 7 also brings interesting novelties to its APIs,
and for a first time in a long time, even a new bytecode instruction called "in-
voke dynamic", which is geared towards helping implementors develop their
dynamic languages more easily and benefit from more performance.

Project Coin syntax enhancements

Since day 1 (that was back in 2003 already!) Groovy has had several syntax en-
hancements and features on top of Java. One can think of closures, for example,
but also the ability to put more than just discrete values in switch / case
statements, where Java 7 only allows Strings in addition. So some of the
Project Coin syntax enhancements, like Strings in switch, were already
present in Groovy. However, some of the enhancements are new, such as bina-
ry literals, underscore in number literals, or the multi catch block, and Groovy
2 supports them. The sole omission from the Project Coin enhancements is the

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 16 of 26http://www.infoq.com/articles/new-groovy-20

"try with resources" construct, for which Groovy already provides various al-
ternatives through the rich API of the Groovy Development Kit.

Binary literals

In Java 6 and before, as well as in Groovy, numbers could be represented in
decimal, octal and hexadecimal bases, and with Java 7 and Groovy 2, you can
use a binary notation with the "0b" prefix:

int x = 0b10101111
assert x == 175

byte aByte = 0b00100001
assert aByte == 33

int anInt = 0b1010000101000101
assert anInt == 41285

Underscore in number literals

When writing long literal numbers, it’s harder on the eye to figure out how
some numbers are grouped together, for example with groups of thousands, of
words, etc. By allowing you to place underscore in number literals, it’s easier to
spot those groups:

long creditCardNumber = 1234_5678_9012_3456L
long socialSecurityNumbers = 999_99_9999L
double monetaryAmount = 12_345_132.12
long hexBytes = 0xFF_EC_DE_5E
long hexWords = 0xFFEC_DE5E
long maxLong = 0x7fff_ffff_ffff_ffffL
long alsoMaxLong = 9_223_372_036_854_775_807L

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 17 of 26http://www.infoq.com/articles/new-groovy-20

long bytes = 0b11010010_01101001_10010100_10010010

Multicatch block

When catching exceptions, we often replicate the catch block for two or more
exceptions as we want to handle them in the same way. A workaround is either
to factor out the commonalities in its own method, or in a more ugly fashion to
have a catch-all approach by catching Exception, or worse, Throwable.
With the multi catch block, we’re able to define several exceptions to be catch
and treated by the same catch block:

try {
 /* ... */
} catch(IOException | NullPointerException e) {
 /* one block to handle 2 exceptions */
}

Invoke Dynamic support

As we mentioned earlier in this article, JDK 7 came with a new bytecode in-
struction called "invoke dynamic", as well as with its associated APIs. Their goal
is to help dynamic language implementors in their job of crafting their lan-
guages on top of the Java platform, by simplifying the wiring of dynamic
method calls, by defining "call sites" where dynamic method call section can be
cached, "method handles" as method pointers, "class values" to store any kind of
metadata along class objects, and a few other things. One caveat though, de-
spite promising performance improvements, "invoke dynamic" hasn’t yet fully
been optimized inside the JVM, and doesn’t yet always deliver the best perfor-
mance possible, but update after update, the optimizations are coming.

Groovy brought its own implementation techniques, to speed up method selec-
tion and invocation with "call site caching", to store metaclasses (the dynamic

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 18 of 26http://www.infoq.com/articles/new-groovy-20

runtime equivalent of classes) with its metaclass registry, to perform native
primitive calculations as fast as Java, and much more. But with the advent of
"invoke dynamic", we can rebase the implementation of Groovy on top of these
APIs and this JVM bytecode instruction, to gain performance improvements
and to simplify our code base.

If you’re lucky to run on JDK 7, you’ll be able to use a new version of the
Groovy JARs which has been compiled with the "invoke dynamic" support.
Those JARs are easily recognizable as they use the "-indy" classifier in their
names.

Enabling invoke dynamic support

Using the "indy" JARs is not enough, however, to compile your Groovy code so
that it leverages the "invoke dynamic" support. For that, you’ll have to use the -
-indy flag when using the "groovyc" compiler or the "groovy" command. This
also means that even if you’re using the indy JARs, you can still target JDK 5 or
6 for compilation.

Similarly, if you’re using the groovyc Ant task for compiling your projects, you
can also specify the indy attribute:

...
<taskdef name="groovyc"
 classname="org.codehaus.groovy.ant.Groovyc"
 classpathref="cp"/>
...
<groovyc srcdir="${srcDir}" destdir="${destDir}"
indy="true">
 <classpath>
...
 </classpath>

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 19 of 26http://www.infoq.com/articles/new-groovy-20

</groovyc>
...

The Groovy Eclipse Maven compiler plugin hasn’t yet been updated with the
support of Groovy 2.0 but this will be the case shortly. For GMaven plugin
users, although it’s possible to configure the plugin to use Groovy 2.0 already,
there’s currently no flag to enable the invoke dynamic support. Again, GMaven
will also be updated soon in that regard.

When integrating Groovy in your Java applications, with GroovyShell, for
example, you can also enable the invoke dynamic support by passing a Com‐
pilerConfiguration instance to the GroovyShell constructor on which
you access and set the optimization options:

CompilerConfiguration config = new CompilerConfigura‐
tion();
config.getOptimizationOptions().put("indy", true);
config.getOptimizationOptions().put("int", false);
GroovyShell shell = new GroovyShell(config);

As invokedynamic is supposed to be a full replacement to dynamic method
dispatch, it is also necessary to disable the primitive optimizations which gen-
erate extra bytecode that is here to optimize edge cases. Even if it is in some
cases slower than with primitive optimizations activated, future versions of the
JVM will feature an improved JIT which will be capable of inlining most of the
calls and remove unnecessary boxings.

Promising performance improvements

In our testing, we noticed some interesting performance gains in some areas,
whereas other programs could run slower than when not using the invoke dy-
namic support. The Groovy team has further performance improvements in the

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 20 of 26http://www.infoq.com/articles/new-groovy-20

pipeline for Groovy 2.1 however, but we noticed the JVM isn’t yet finely tuned
and still has a long way to go to be fully optimized. But fortunately, upcoming
JDK 7 updates (in particular update 8) should already contain such improve-
ments, so the situation can only improve. Furthermore, as invoke dynamic is
used for the implementation of JDK 8 Lambdas, we can be sure more improve-
ments are forthcoming.

A more modular Groovy

We’ll finish our journey through the new features of Groovy 2.0 by speaking
about modularity. Just like Java, Groovy is not just a language, but it’s also a
set of APIs serving various purposes: templating, Swing UI building, Ant
scripting, JMX integration, SQL access, servlet serving, and more. The Groovy
deliverables were bundling all these features and APIs inside a single big JAR.
However, not everybody needs everything at all times in their own applica-
tions: you might be interested in the template engine and the servlets if you’re
writing some web application, but you might only need the Swing builder
when working on a rich desktop client program.

Groovy modules

So the first goal of the modularity aspect of this release is to actually split the
original Groovy JAR into smaller modules, smaller JARs. The core Groovy JAR
is now twice as small, and we have the following feature modules available:

Ant: for scripting Ant tasks for automating administration tasks
BSF: for integrating Groovy in your Java applications with the old Apache
Bean Scripting Framework
Console: module containing the Groovy Swing console
GroovyDoc: for documenting your Groovy and Java classes
Groovysh: module corresponding to the Groovysh command-line shell

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 21 of 26http://www.infoq.com/articles/new-groovy-20

JMX: for exposing and consuming JMX beans
JSON: for producing and consuming JSON payloads
JSR-223: for integrating Groovy in your Java applications with the JDK 6+
javax.scripting APIs
Servlet: for writing and serving Groovy script servlets and templates
SQL: for querying relational databases
Swing: for building Swing UIs
Templates: for using the template engine
Test: for some test support, like the GroovyTestCase, mocking, and more
TestNG: for writing TestNG tests in Groovy
XML: for producing and consuming XML documents

With Groovy 2, you’re now able to just pick up the modules you’re interested
in, rather than bringing everything on your classpath. However, we still pro-
vide the "all" JAR which contains everything, if you don’t want to complicate
your dependencies for just a few megabytes of saved space. We also provide
those JARs compiled with the "invoke dynamic" support as well, for those run-
ning on JDK 7.

Extension modules

The work on making Groovy more modular also yielded an interesting new
feature: extension modules. By splitting Groovy into smaller modules, a mecha-
nism for modules to contribute extension methods has been created. That way,
extension modules can provide instance and static methods to other classes, in-
cluding the ones from the JDK or third-party libraries. Groovy uses this mecha-
nism to decorate classes from the JDK, to add new useful methods to classes
like String, File, streams, and many more - for example, a getText()
method on URL allows you to retrieve the content of a remote URL through an
HTTP get. Notice also that those extension methods in your modules are also
understood by the static type checker and compiler. But let’s now have a look

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 22 of 26http://www.infoq.com/articles/new-groovy-20

at how you can add new methods to existing types.

Contributing an instance method

To add new methods to an existing type, you’ll have to create a helper class
that will contain those methods. Inside that helper class, all the extension meth-
ods will actually be public (the default for Groovy but required if implement-
ing in Java) and static (although they will be available on instances of that
class). They will always take a first parameter which is actually the instance on
which this method will be called. And then following parameters will be the
parameters passed when calling the method. This is the same convention use
for Groovy categories.

Say we want to add a greets() method on String, that would greet the
name of the person passed in parameters, so that you could that method as fol-
low:

assert "Guillaume".greets("Paul") == "Hi Paul, I'm Guil‐
laume"

To accomplish that, you will create a helper class with an extension method
like so:

package com.acme

class MyExtension {
 static String greets(String self, String name) {
 "Hi ${name}, I'm ${self}"
 }
}

Contributing a static method

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 23 of 26http://www.infoq.com/articles/new-groovy-20

For static extension methods, this is the same mechanism and convention. Let’s
add a new static method to Random to get a random integer between two val-
ues, you could proceed as in this class:

package com.acme

class MyStaticExtension {
 static String between(Random selfType, int start, int
end) {
 new Random().nextInt(end - start + 1) + start
 }
}

That way, you are able to use that extension method as follows:

Random.between(3, 4)

Extension module descriptor

Once you’ve coded your helper classes (in Groovy or even in Java) containing
the extension methods, you need to create a descriptor for your module. You
must create a file called org.codehaus.groovy.runtime.Extension‐
Module in the META-INF/services directory of your module archive. Four
essential fields can be defined, to tell the Groovy runtime about the name and
version of your module, as well as to point at your helper classes for extension
methods with a comma-separated list of class names. Here is what our final
module descriptor looks like:

moduleName = MyExtension
moduleVersion = 1.0
extensionClasses = com.acme.MyExtension
staticExtensionClasses = com.acme.MyStaticExtension

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 24 of 26http://www.infoq.com/articles/new-groovy-20

With this extension module descriptor on the classpath, you are now able to
use those extension methods in your code, without needing an import or any-
thing else, as those extension methods are automatically registered.

Grabbing an extension

With the @Grab annotation in your scripts, you can fetch dependencies from
Maven repositories like Maven Central. With the addition of the @GrabRe-
solver annotation, you can specify your own location for your dependencies as
well. If you are "grabbing" an extension module dependency through this
mechanism, the extension method will also be installed automatically. Ideally,
for consistency, your module name and version should be coherent with the ar-
tifact id and version of your artifact.

Summary

Groovy is very popular among Java developers and offers them a mature plat-
form and ecosystem for their application needs. But without resting still, the
Groovy development team continues to further improve the language and its
APIs to help its users increase their productivity on the Java platform.

Groovy 2.0 responds to three key themes:

More performance: with the support of JDK 7 Invoke Dynamic to speed
up Groovy for those lucky to have JDK 7 already in production, but also
with static compilation for JDK 5 and beyond for everyone, and particu-
larly those ready to abandon some aspects of dynamicity to shield them-
selves from the reach of "monkey patching" and to gain the same speed as
Java.
More Java friendliness: with the support of the Java 7 Project Coin en-
hancements to keep Groovy and Java as close syntax cousins as ever, and
with the static type checker to have the same level of feedback and type

6/29/12 7:25 AMWhat’s new in Groovy 2.0?

Page 25 of 26http://www.infoq.com/articles/new-groovy-20

safety as provided by the javac compiler for developers using Groovy as a
Java scripting language
More modularity: with a new level of modularity, Groovy opens the doors
for smaller deliverables, for example for integration in mobile applica-
tions on Android, and allowing the Groovy APIs to grow and evolve with
newer versions and newer extension modules, as well as allowing users to
contribute extension methods to existing types.

About the Author

As Head of Groovy Development for SpringSource, a division of
VMware, Guillaume Laforge is the official Groovy Project Manager,
leading the Groovy dynamic language project at Codehaus.

He initiated the creation of the Grails web application framework, and founded
the Gaelyk project, a lightweight toolkit for developing applications in Groovy
for Google App Engine. He is also a frequent conference speaker presenting
Groovy, Grails, Gaelyk, Domain-Specific Languages at JavaOne, GR8Conf,
SpringOne2GX, QCon, and Devoxx, among others.

Guillaume is also one of the founding members of the French Java/OSS/IT
podcast LesCastCodeurs.

JDK 7u8? by Ashwin Jayaprakash Posted 8 hours ago

1. A lot of traditional Java developers are reluctant towards Groovy because
of its dynamic nature.
The (optional) static type checking offers the best of both worlds and hope-
fully persuades these Java developers to have a second look at Groovy.

Nice job guys!

http://glaforge.appspot.com/
http://groovy.codehaus.org/
http://grails.org/
http://gaelyk.appspot.com/
http://lescastcodeurs.com/

