
1

Type Systems

Alan G. Labouseur, Ph.D.

Alan.Labouseur@Marist.edu

mailto:Alan.Labouseur@Marist.edu

2

Type Systems

The Basics

What is a Type?

• A set of values

• A set of operations on those values

Type errors happen when we try to perform operations
on values that do not support them.

Type expressions are textual representations of type

• primitive: 	int, boolean, real, date, time, char, pointer, …

• complex: 	 timestamp, latitude, longitude, student-id, …

What about string? Or String?

3

Type Systems

The Basics

What is a Type?

• A set of values

• A set of operations on those values

Type errors happen when we try to perform operations
on values that do not support them.

Type expressions are textual representations of type

• primitive: 	int, boolean, real, date, time, char, pointer, …

• complex: 	 string, timestamp, latitude, longitude, student-id, …

Type systems consist of rules governing what operations
are permitted on what values.

• strong type systems prevent type errors at runtime.

• weak type systems allow encourage type errors at runtime.

• Type systems can be documented and reasoned about using inferences rules.

4

Type Systems

Specifying a Type System with Inference Rules

We can use inference rules from mathematics and
Axiomatic Semantics. Why?

• It’s fun.

• It’s accurate. We need a rigorous definition of types and type systems so that we

can enforce them in the compiler.

• It gives flexibility in implementation because it’s not tied to any grammar.

• It allows for formal verification of program properties.

• It’s what used in the computer science literature.

preconditions

postconditions

5

Inference Rules

An inference rule is written

It expresses that if f1, f2, … fn are theorems — that is, they are proven
well-formed formulae (WFF) — then we can infer that f0 is another
theorem.

That’s nice, but how do we know?

How can we actually prove things?

Let’s look at famous inference rule: Modus Ponens.

f1, f2, … fn

f0

6

A Famous Inference Rule

Modus Ponens

Modus Ponens (“the mode that affirms”) can be read:

if

	 	 we have p (meaning, p is true) and

	 	 p implies q

then

	 	 we can infer that q is true.

end if

The implication/conditional operator (⇒) is like a contract:

if p then q.

p, p ⇒ q

q

7

Inference Rule vs. Propositional Connective

Modus Ponens

Modus Ponens (“the mode that affirms”) can be read:

if

	 	 we have p (meaning, p is true) and

	 	 p implies q

then

	 	 we can infer that q is true.

end if

The implication/conditional operator (⇒) is like a contract:

if p then q.

Let’s review this in Propositional logic.

p, p ⇒ q

q
Inference Rule

Propositional

Connective

8

Propositional Logic

Truth Tables

p q⇒

0 0

0 1

1 0

1 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

(propositional connectors)

9

Truth Tables

p q p∧q⇒

0 0 0

0 1 0

1 0 0

1 1 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Propositional Logic

10

Truth Tables

p q p∧q p∨q⇒

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Propositional Logic

11

Truth Tables

p q p∧q p∨q ¬p⇒

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Do we need more? (Do we even need all of these?)

Propositional Logic

12

Truth Tables

p q p∧q p∨q ¬p⇒

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Do we need more? No. (Do we even need all of these? No.)

p∨q = ¬(¬p∧¬q)

Propositional Logic

13

Truth Tables

p q p∧q p∨q ¬p p⇒q

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

Propositional Logic

14

Truth Tables

p q p∧q p∨q ¬p p⇒q

0 0 0 0 1 1

0 1 0 1 1 1

1 0 0 1 0

1 1 1 1 0

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

These are vacuously true because p is false and
false can imply anything because it’s an invalid
premise.

Also, we take “if p then q” to be false only
when p is true and q is false.

Propositional Logic

15

Truth Tables

p q p∧q p∨q ¬p p⇒q

0 0 0 0 1 1

0 1 0 1 1 1

1 0 0 1 0 0

1 1 1 1 0

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

This is false because p is true and q is
false, and “true implies false” is false.

Propositional Logic

16

Truth Tables

p q p∧q p∨q ¬p p⇒q

0 0 0 0 1 1

0 1 0 1 1 1

1 0 0 1 0 0

1 1 1 1 0 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

This is true because p is true and q is
true, and “true implies true” is true.

Propositional Logic

17

Truth Tables

p q p∧q p∨q ¬p p⇒q ¬p∨q

0 0 0 0 1 1

0 1 0 1 1 1

1 0 0 1 0 0

1 1 1 1 0 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.

Propositional Logic

18

Truth Tables

p q p∧q p∨q ¬p p⇒q ¬p∨q

0 0 0 0 1 1 1

0 1 0 1 1 1 1

1 0 0 1 0 0 0

1 1 1 1 0 1 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.

These two columns are the same.

Both are implication.

Propositional Logic

19

Truth Tables

p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0 0 0 1 1 1

0 1 0 1 1 1 1

1 0 0 1 0 0 0

1 1 1 1 0 1 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.

A tautology is logical statement that is always true regardless of the
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

Propositional Logic

20

Truth Tables

p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0 0 0 1 1 1 1

0 1 0 1 1 1 1 1

1 0 0 1 0 0 0 1

1 1 1 1 0 1 1 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.

A tautology is logical statement that is always true regardless of the
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

}

Propositional Logic

Tautology

21

Truth Tables

p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0 0 0 1 1 1 1

0 1 0 1 1 1 1 1

1 0 0 1 0 0 0 1

1 1 1 1 0 1 1 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.

A tautology is logical statement that is always true regardless of the
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

What’s the opposite
of a tautology, where
the statement is
always false?

Propositional Logic

22

Truth Tables

p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0 0 0 1 1 1 1

0 1 0 1 1 1 1 1

1 0 0 1 0 0 0 1

1 1 1 1 0 1 1 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.

A tautology is logical statement that is always true regardless of the
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

What’s the opposite
of a tautology, where
the statement is
always false?

A contradiction.

Propositional Logic

23

Truth Tables

p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q) p∧¬p

0 0 0 0 1 1 1 1 0

0 1 0 1 1 1 1 1 0

1 0 0 1 0 0 0 1 0

1 1 1 1 0 1 1 1 0

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.

A tautology is logical statement that is always true regardless of the
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

Propositional Logic

A contradiction

Contradictions
cannot exist.

24

Back to that Famous Inference Rule

Propositional Logic for Modus Ponens

p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0 0 0 1 1 1 1

0 1 0 1 1 1 1 1

1 0 0 1 0 0 0 1

1 1 1 1 0 1 1 1

Modus Ponens

can be written “if p and p ⇒ q then q”, which can be written

 (p ∧ (p ⇒ q)) ⇒ q

p, p ⇒ q

q

25

A Famous Inference Rule

Propositional Logic for Modus Ponens

p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q) p∧(p⇒q)

0 0 0 0 1 1 1 1 0

0 1 0 1 1 1 1 1 0

1 0 0 1 0 0 0 1 0

1 1 1 1 0 1 1 1 1

Modus Ponens

can be written “if p and p ⇒ q then q”, which can be written

 (p ∧ (p ⇒ q)) ⇒ q

p, p ⇒ q

q

26

A Famous Inference Rule

Propositional Logic for Modus Ponens

p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q) p∧(p⇒q)(p∧(p⇒q))⇒q

0 0 0 0 1 1 1 1 0 1

0 1 0 1 1 1 1 1 0 1

1 0 0 1 0 0 0 1 0 1

1 1 1 1 0 1 1 1 1 1

Modus Ponens

can be written “if p and p ⇒ q then q”, which can be written

 (p ∧ (p ⇒ q)) ⇒ q

p, p ⇒ q

q

27

A Famous Inference Rule

Propositional Logic for Modus Ponens

p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q) p∧(p⇒q)(p∧(p⇒q))⇒q

0 0 0 0 1 1 1 1 0 1

0 1 0 1 1 1 1 1 0 1

1 0 0 1 0 0 0 1 0 1

1 1 1 1 0 1 1 1 1 1

Modus Ponens

can be written “if p and p ⇒ q then q”, which can be written

 (p ∧ (p ⇒ q)) ⇒ q

p, p ⇒ q

q

Tautology. Woot!

28

Inference Rules for Type Systems

With Modus Ponens proved and used as the basis for inference rules,
we need to move from Propositional logic to Predicate logic.

The complexity of reasoning about type systems cannot be handled
with truth tables because we need to accommodate ideas like any, all,
or some. Also, we need variables and functions. This leads us to . . .

First Order Logic

• variables

• domains

• named constants

• relations (>, <, etc.)

• functions (math operations)

• logical operators

• quantifiers (for-all “∀” and there-exists “∃”)

Now we can reason about type systems.

29

Type Systems

Primitives / Literals / Intrinsic Types

Boolean literals

String literals

Integer literals

s is a string literal or constant

⊢ s: string

i is an integer literal or constant

⊢ i: integer

⊢ true: boolean ⊢ false: boolean

An empty pre-condition means
“under any circumstances”.

30

Type Systems

Addition

Boolean literals

String literals

Integer literals
⊢ e1 : integer

⊢ e2 : integer

⊢ e1 + e2 : integer

We cannot add Booleans because no inference rules
are given to support that.

⊢ e1 : string

⊢ e2 : string

⊢ e1 + e2 : string

This would be better labeled as
concatenation, since it’s not really
addition. Maybe we should choose a
different operator, like “・”.

Something is missing here . . .

31

Type Systems

Assignment

Comparisons

⊢ e1 : T

⊢ e2 : T

T is a primitive type

⊢ e1 = e2 : T

I’ve got a bad feeling about this . . .

⊢ e1 : T

⊢ e2 : T

T is a primitive type

⊢ e1 == e2 : boolean

⊢ e1 : T

⊢ e2 : T

T is a primitive type

⊢ e1 != e2 : boolean

⊢ e1 : T

⊢ e2 : T

T is a primitive type

⊢ e1 > e2 : boolean

⊢ e1 : T

⊢ e2 : T

T is a primitive type

⊢ e1 < e2 : boolean

32

Type Systems

Example

string x = “I have a”;

string y = “bad feeling”;

int aboutThis(int x) {

 return x + y;

}

main() {

 int z;

 z = aboutThis(42);

 print(z);

}

33

Type Systems

Example

string x = “I have a”;

string y = “bad feeling”;

int aboutThis(int x) {

 return x + y;

}

main() {

 int z;

 z = aboutThis(42);

 print(z);

}

Things we know

x: string

y: string

x: int

z: int

34

Type Systems

Example

string x = “I have a”;

string y = “bad feeling”;

int aboutThis(int x) {

 return x + y;

}

main() {

 int z;

 z = aboutThis(42);

 print(z);

}

Things we know

x: string

y: string

x: int

z: int

Things we wonder about

Is x + y a legal operation under our type rules?

⊢ e1 : integer

⊢ e2 : integer

⊢ e1 + e2 : integer

⊢ e1 : string

⊢ e2 : string

⊢ e1 + e2 : string

35

Type Systems

Example

string x = “I have a”;

string y = “bad feeling”;

int aboutThis(int x) {

 return x + y;

}

main() {

 int z;

 z = aboutThis(42);

 print(z);

}

Things we know

x: string

y: string

x: int

z: int

Things we wonder about

Is x + y a legal operation under our type rules?

Which x is that?

⊢ e1 : integer

⊢ e2 : integer

⊢ e1 + e2 : integer

⊢ e1 : string

⊢ e2 : string

⊢ e1 + e2 : string

36

Type Systems

Example - No Context

The problem is that our type rules lack context. We need to
strengthen them to specify under what circumstances they apply.
In other words, we need scope.

string x = “I have a”;

string y = “bad feeling”;

int aboutThis(int x) {

 return x + y;

}

main() {

 int z;

 z = aboutThis(42);

 print(z);

}

Things we know

x: string

y: string

x: int

z: int

Things we wonder about

Is x + y a legal operation under our type rules?

⊢ e1 : integer

⊢ e2 : integer

⊢ e1 + e2 : integer

⊢ e1 : string

⊢ e2 : string

⊢ e1 + e2 : string

37

Type Systems

Addition with Scope Context

Boolean literals

String literals

Integer literals
S ⊢ e1 : integer

S ⊢ e2 : integer

S ⊢ e1 + e2 : integer

We cannot add Booleans because no inference rules
are given to support that.

S ⊢ e1 : string

S ⊢ e2 : string

S ⊢ e1・e2 : string

e1 is a string in scope S

e2 is a string in scope S

e1・e2 results in a string in scope S

This is better . . .

e1 is an integer in scope S

e2 is an integer in scope S

e1 + e2 results in an integer in scope S

38

Type Systems

Assignment

with Scope Context

Comparisons

with Scope Context

S ⊢ e1 : T

S ⊢ e2 : T

T is a primitive type

S ⊢ e1 = e2 : T

I’ve got a good feeling about this.

S ⊢ e1 : T

S ⊢ e2 : T

T is a primitive type

S ⊢ e1 == e2 : boolean

S ⊢ e1 : T

S ⊢ e2 : T

T is a primitive type

S ⊢ e1 != e2 : boolean

S ⊢ e1 : T

S ⊢ e2 : T

T is a primitive type

S ⊢ e1 > e2 : boolean

S ⊢ e1 : T

S ⊢ e2 : T

T is a primitive type

S ⊢ e1 < e2 : boolean

39

Type Systems

Addition

with Scope Context

Implementation in Prolog

S ⊢ e1 : T

S ⊢ e2 : T

T is a primitive type

S ⊢ e1 + e2 : T

/* Symbol Table facts */

type(i, int).

type(j, int).

type(x, real).

type(y, real).

/* Type System Rules */

expectedtype(plus(E1,E2),T) :- type(E1,T),

 type(E2,T).

/* Queries to infer/check type */

expectedtype(plus(i,j),X) /* int */

expectedtype(plus(x,y),X) /* real */

expectedtype(plus(i,y),X) /* false - Type error (No unifying match.) */

40

Type Systems

Addition

with Scope Context

Implementation in Prolog

S ⊢ e1 : T

S ⊢ e2 : T

T is a primitive type

S ⊢ e1 + e2 : T

41

Type Systems

Addition

with Scope Context

Implementation in Prolog

S ⊢ e1 : T

S ⊢ e2 : T

T is a primitive type

S ⊢ e1 + e2 : T

42

Type Systems

Addition

with Scope Context

Implementation in Prolog

S ⊢ e1 : T

S ⊢ e2 : T

T is a primitive type

S ⊢ e1 + e2 : T

43

Type Systems

Type Equivalence and Compatibility

What does it mean to say that two variable/values are equivalent?

1 ≟ 1.0

1.0 ≟ 1.000

“c” ≟ ‘c’

There are two approaches:

Name Equivalence

Types are equivalent if they have the same name.

I.e., they are the same if the programmer says they are the same.

Restrictive, but easier to implement than structural equivalence.

Structural Equivalence

Types are equivalent if they have the same structure.

I.e., they are the same if they are built the same: same parts in the same order.

Flexible, but harder to implement than name equivalence.

44

Type Systems

Type Equivalence and Compatibility

Name Equivalence

Types are equivalent if they have the same name.

first and last are the same type.

head and tail are the same type.

first and head are different types.

Structural Equivalence

Types are equivalent if they have the same structure.

first, last, head, and tail are all the same type.

type link = ↑cell;

var first : link;

 last : link;

 head : ↑cell;

 tail : ↑cell;

45

Type Systems

Type Equivalence and Compatibility

Name Equivalence

Types are equivalent if they have the same name.

MyRec and YourRec are different types.

a1, a2, and a3 are all different types.

Structural Equivalence

Types are equivalent if they have the same structure.

MyRec and YourRec are the same type.

a1, a2, and a3 are all the same type.

val MyRec = { a=1, b=2 };

val YourRec = { a=1, b=2 };

var a1 = array[1..10] of int;

var a2 = array[1..2*5] of int;

var a3 = array[0..9] of int;

