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Type Systems

The Basics


What is a Type?

• A set of values

• A set of operations on those values


Type errors happen when we try to perform operations 
on values that do not support them.


Type expressions are textual representations of type

• primitive: 	int, boolean, real, date, time, char, pointer, …

• complex: 	 timestamp, latitude, longitude, student-id, …


What about string? Or String?
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Type Systems

The Basics


What is a Type?

• A set of values

• A set of operations on those values


Type errors happen when we try to perform operations 
on values that do not support them.


Type expressions are textual representations of type

• primitive: 	int, boolean, real, date, time, char, pointer, …

• complex: 	 string, timestamp, latitude, longitude, student-id, …


Type systems consist of rules governing what operations 
are permitted on what values.


• strong type systems prevent type errors at runtime.

• weak type systems allow encourage type errors at runtime.

• Type systems can be documented and reasoned about using inferences rules. 
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Type Systems

Specifying a Type System with Inference Rules 


We can use inference rules from mathematics and 
Axiomatic Semantics. Why?


• It’s fun.

• It’s accurate. We need a rigorous definition of types and type systems  so that we 

can enforce them in the compiler.

• It gives flexibility in implementation because it’s not tied to any grammar.

• It allows for formal verification of program properties.

• It’s what used in the computer science literature.

preconditions


postconditions
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Inference Rules

An inference rule is written


It expresses that if f1, f2, … fn are theorems — that is, they are proven 
well-formed formulae (WFF) — then we can infer that f0 is another 
theorem.


That’s nice, but how do we know? 

How can we actually prove things?


Let’s look at famous inference rule: Modus Ponens.


f1,  f2, … fn


f0
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A Famous Inference Rule

Modus Ponens


Modus Ponens (“the mode that affirms”) can be read:

if 

	 	 we have p (meaning, p is true) and 

	 	 p implies q 

then 

	 	 we can infer that q is true.

end if


The implication/conditional operator (⇒) is like a contract: 

if p then q.

p,  p ⇒ q


q
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Inference Rule vs. Propositional Connective

Modus Ponens


Modus Ponens (“the mode that affirms”) can be read:

if 

	 	 we have p (meaning, p is true) and 

	 	 p implies q 

then 

	 	 we can infer that q is true.

end if


The implication/conditional operator (⇒) is like a contract: 

if p then q.


Let’s review this in Propositional logic.

p,  p ⇒ q


q
Inference Rule

Propositional

Connective
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Propositional Logic

Truth Tables


p q⇒ 

0 0

0 1

1 0

1 1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


(propositional connectors)
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Truth Tables


p q p∧q⇒

0 0  0

0 1  0

1 0  0

1 1  1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Propositional Logic
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Truth Tables


p q p∧q p∨q⇒

0 0  0   0

0 1  0   1

1 0  0   1

1 1  1   1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p⇒

0 0  0   0  1

0 1  0   1  1

1 0  0   1  0

1 1  1   1  0


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Do we need more?  (Do we even need all of these?)

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p⇒

0 0  0   0  1

0 1  0   1  1

1 0  0   1  0

1 1  1   1  0


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Do we need more? No.  (Do we even need all of these? No.)


p∨q = ¬(¬p∧¬q)

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q

0 0  0   0  1

0 1  0   1  1

1 0  0   1  0

1 1  1   1  0


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q

0 0  0   0  1   1

0 1  0   1  1   1

1 0  0   1  0

1 1  1   1  0


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

These are vacuously true because p is false and 
false can imply anything because it’s an invalid 
premise.


Also, we take “if p then q” to be false only 
when p is true and q is false.

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q

0 0  0   0  1   1

0 1  0   1  1   1

1 0  0   1  0   0

1 1  1   1  0


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

This is false because p is true and q is 
false, and “true implies false” is false.

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q

0 0  0   0  1   1

0 1  0   1  1   1

1 0  0   1  0   0

1 1  1   1  0   1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

This is true because p is true and q is 
true, and “true implies true” is true.

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q ¬p∨q

0 0  0   0  1   1

0 1  0   1  1   1

1 0  0   1  0   0

1 1  1   1  0   1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q ¬p∨q

0 0  0   0  1   1    1

0 1  0   1  1   1    1

1 0  0   1  0   0    0

1 1  1   1  0   1    1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.

These two columns are the same.

Both are implication.

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0  0   0  1   1    1

0 1  0   1  1   1    1

1 0  0   1  0   0    0

1 1  1   1  0   1    1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.


A tautology is logical statement that is always true regardless of the 
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0  0   0  1   1    1     1

0 1  0   1  1   1    1     1

1 0  0   1  0   0    0     1

1 1  1   1  0   1    1     1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.


A tautology is logical statement that is always true regardless of the 
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

}

Propositional Logic

Tautology
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Truth Tables


p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0  0   0  1   1    1     1

0 1  0   1  1   1    1     1

1 0  0   1  0   0    0     1

1 1  1   1  0   1    1     1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.


A tautology is logical statement that is always true regardless of the 
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

What’s the opposite 
of a tautology, where 
the statement is 
always false?

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0  0   0  1   1    1     1

0 1  0   1  1   1    1     1

1 0  0   1  0   0    0     1

1 1  1   1  0   1    1     1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.


A tautology is logical statement that is always true regardless of the 
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

What’s the opposite 
of a tautology, where 
the statement is 
always false?

A contradiction.

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)       p∧¬p

0 0  0   0  1   1    1     1            0

0 1  0   1  1   1    1     1            0

1 0  0   1  0   0    0     1            0

1 1  1   1  0   1    1     1            0


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.


A tautology is logical statement that is always true regardless of the 
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

Propositional Logic

A contradiction

Contradictions 
cannot exist.
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Back to that Famous Inference Rule

Propositional Logic for Modus Ponens


p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0  0   0  1   1    1     1

0 1  0   1  1   1    1     1

1 0  0   1  0   0    0     1

1 1  1   1  0   1    1     1


Modus Ponens


can be written “if p and p ⇒ q then q”, which can be written


                              ( p   ∧  (p ⇒ q) )  ⇒ q 

p,  p ⇒ q


q



25

A Famous Inference Rule

Propositional Logic for Modus Ponens


p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q) p∧(p⇒q)

0 0  0   0  1   1    1     1        0

0 1  0   1  1   1    1     1        0

1 0  0   1  0   0    0     1        0

1 1  1   1  0   1    1     1        1


Modus Ponens


can be written “if p and p ⇒ q then q”, which can be written


                              ( p   ∧  (p ⇒ q) )  ⇒ q 

p,  p ⇒ q


q
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A Famous Inference Rule

Propositional Logic for Modus Ponens


p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q) p∧(p⇒q)(p∧(p⇒q))⇒q

0 0  0   0  1   1    1     1        0        1

0 1  0   1  1   1    1     1        0        1

1 0  0   1  0   0    0     1        0        1

1 1  1   1  0   1    1     1        1        1


Modus Ponens


can be written “if p and p ⇒ q then q”, which can be written


                              ( p   ∧  (p ⇒ q) )  ⇒ q 

p,  p ⇒ q


q
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A Famous Inference Rule

Propositional Logic for Modus Ponens


p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q) p∧(p⇒q)(p∧(p⇒q))⇒q

0 0  0   0  1   1    1     1        0        1

0 1  0   1  1   1    1     1        0        1

1 0  0   1  0   0    0     1        0        1

1 1  1   1  0   1    1     1        1        1


Modus Ponens


can be written “if p and p ⇒ q then q”, which can be written


                              ( p   ∧  (p ⇒ q) )  ⇒ q 

p,  p ⇒ q


q

Tautology. Woot!
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Inference Rules for Type Systems

With Modus Ponens proved and used as the basis for inference rules, 
we need to move from Propositional logic to Predicate logic.


The complexity of reasoning about type systems cannot be handled 
with truth tables because we need to accommodate ideas like any, all, 
or some. Also, we need variables and functions. This leads us to . . .


First Order Logic

• variables

• domains

• named constants

• relations (>, <, etc.)

• functions (math operations)

• logical operators

• quantifiers (for-all “∀” and there-exists “∃”)


Now we can reason about type systems.
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Type Systems

Primitives / Literals / Intrinsic Types


Boolean literals


String literals


Integer literals

s is a string literal or constant

⊢ s: string

i is an integer literal or constant

⊢ i: integer

⊢ true: boolean ⊢ false: boolean

An empty pre-condition means 
“under any circumstances”.
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Type Systems

Addition


Boolean literals


String literals


Integer literals
⊢ e1 : integer


⊢ e2 : integer


⊢ e1 + e2 : integer

We cannot add Booleans because no inference rules 
are given to support that.

⊢ e1 : string


⊢ e2 : string


⊢ e1 + e2 : string

This would be better labeled as 
concatenation, since it’s not really 
addition. Maybe we should choose a 
different operator, like “・”.

Something is missing here . . .
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Type Systems

Assignment


Comparisons

⊢ e1 : T


⊢ e2 : T


T is a primitive type

⊢ e1 = e2 : T

I’ve got a bad feeling about this . . .

⊢ e1 : T


⊢ e2 : T


T is a primitive type

⊢ e1 == e2 : boolean

⊢ e1 : T


⊢ e2 : T


T is a primitive type

⊢ e1 != e2 : boolean

⊢ e1 : T


⊢ e2 : T


T is a primitive type

⊢ e1 > e2 : boolean

⊢ e1 : T


⊢ e2 : T


T is a primitive type

⊢ e1 < e2 : boolean
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Type Systems

Example

string x = “I have a”;

string y = “bad feeling”;


int aboutThis(int x) {

   return x + y;

}


main() {

   int z;

   z = aboutThis(42);

   print(z);

}
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Type Systems

Example

string x = “I have a”;

string y = “bad feeling”;


int aboutThis(int x) {

   return x + y;

}


main() {

   int z;

   z = aboutThis(42);

   print(z);

}

Things we know

x: string

y: string

x: int

z: int
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Type Systems

Example

string x = “I have a”;

string y = “bad feeling”;


int aboutThis(int x) {

   return x + y;

}


main() {

   int z;

   z = aboutThis(42);

   print(z);

}

Things we know

x: string

y: string

x: int

z: int


Things we wonder about

Is x + y a legal operation under our type rules?

⊢ e1 : integer


⊢ e2 : integer


⊢ e1 + e2 : integer

⊢ e1 : string


⊢ e2 : string


⊢ e1 + e2 : string
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Type Systems

Example

string x = “I have a”;

string y = “bad feeling”;


int aboutThis(int x) {

   return x + y;

}


main() {

   int z;

   z = aboutThis(42);

   print(z);

}

Things we know

x: string

y: string

x: int

z: int


Things we wonder about

Is x + y a legal operation under our type rules?

Which x is that?

⊢ e1 : integer


⊢ e2 : integer


⊢ e1 + e2 : integer

⊢ e1 : string


⊢ e2 : string


⊢ e1 + e2 : string
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Type Systems

Example - No Context


The problem is that our type rules lack context. We need to 
strengthen them to specify under what circumstances they apply. 
In other words, we need scope.

string x = “I have a”;

string y = “bad feeling”;


int aboutThis(int x) {

   return x + y;

}


main() {

   int z;

   z = aboutThis(42);

   print(z);

}

Things we know

x: string

y: string

x: int

z: int


Things we wonder about

Is x + y a legal operation under our type rules?

⊢ e1 : integer


⊢ e2 : integer


⊢ e1 + e2 : integer

⊢ e1 : string


⊢ e2 : string


⊢ e1 + e2 : string
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Type Systems

Addition with Scope Context


Boolean literals


String literals


Integer literals
S ⊢ e1 : integer


S ⊢ e2 : integer


S ⊢ e1 + e2 : integer

We cannot add Booleans because no inference rules 
are given to support that.

S ⊢ e1 : string


S ⊢ e2 : string


S ⊢ e1・e2 : string

e1 is a string in scope S

e2 is a string in scope S


e1・e2 results in a string in scope S

This is better . . .

e1 is an integer in scope S

e2 is an integer in scope S


e1 + e2 results in an integer in scope S
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Type Systems

Assignment

with Scope Context


Comparisons

with Scope Context

S ⊢ e1 : T


S ⊢ e2 : T


T is a primitive type

S ⊢ e1 = e2 : T

I’ve got a good feeling about this.

S ⊢ e1 : T


S ⊢ e2 : T


T is a primitive type

S ⊢ e1 == e2 : boolean

S ⊢ e1 : T


S ⊢ e2 : T


T is a primitive type

S ⊢ e1 != e2 : boolean

S ⊢ e1 : T


S ⊢ e2 : T


T is a primitive type

S ⊢ e1 > e2 : boolean

S ⊢ e1 : T


S ⊢ e2 : T


T is a primitive type

S ⊢ e1 < e2 : boolean
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Type Systems

Addition

with Scope Context


Implementation in Prolog

S ⊢ e1 : T


S ⊢ e2 : T


T is a primitive type

S ⊢ e1 + e2 : T

/* Symbol Table facts */

type(i, int).

type(j, int).

type(x, real).

type(y, real).


/* Type System Rules */

expectedtype(plus(E1,E2),T) :- type(E1,T), 

                               type(E2,T).

/* Queries to infer/check type  */


expectedtype(plus(i,j),X)   /* int */


expectedtype(plus(x,y),X)   /* real */


expectedtype(plus(i,y),X)   /* false - Type error (No unifying match.) */
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Type Systems

Addition

with Scope Context


Implementation in Prolog

S ⊢ e1 : T


S ⊢ e2 : T


T is a primitive type

S ⊢ e1 + e2 : T
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Type Systems

Addition

with Scope Context


Implementation in Prolog

S ⊢ e1 : T


S ⊢ e2 : T


T is a primitive type

S ⊢ e1 + e2 : T
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Type Systems

Addition

with Scope Context


Implementation in Prolog

S ⊢ e1 : T


S ⊢ e2 : T


T is a primitive type

S ⊢ e1 + e2 : T
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Type Systems

Type Equivalence and Compatibility


What does it mean to say that two variable/values are equivalent?

1 ≟ 1.0


1.0 ≟ 1.000


“c” ≟ ‘c’


There are two approaches:


Name Equivalence

Types are equivalent if they have the same name. 

I.e., they are the same if the programmer says they are the same.

Restrictive, but easier to implement than structural equivalence.


Structural Equivalence 

Types are equivalent if they have the same structure.

I.e., they are the same if they are built the same: same parts in the same order.

Flexible, but harder to implement than name equivalence.
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Type Systems

Type Equivalence and Compatibility


Name Equivalence

Types are equivalent if they have the same name. 


first and last are the same type.

head and tail are the same type.

first and head are different types.


Structural Equivalence 

Types are equivalent if they have the same structure.


first, last, head, and tail are all the same type.

type link = ↑cell;


var  first : link;

     last  : link;

     head  : ↑cell;

     tail  : ↑cell;
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Type Systems

Type Equivalence and Compatibility


Name Equivalence

Types are equivalent if they have the same name. 


MyRec and YourRec are different types.

a1, a2, and a3 are all different types.


Structural Equivalence 

Types are equivalent if they have the same structure.


MyRec and YourRec are the same type.

a1, a2, and a3 are all the same type.

val MyRec   = { a=1, b=2 };

val YourRec = { a=1, b=2 };


var a1 = array[1..10] of int;

var a2 = array[1..2*5] of int;

var a3 = array[0..9] of int;


