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Gamma: the Big Idea
• Database - stores data

• Relational

‣ structured data

‣ tables of rows and columns

‣ context turns data into information

• Supports Data Definition

• Supports Data Manipulation: CRUD



Gamma: the Big Idea
• Parallel - many processors, many disks

• Three keys to parallelism:

1. tables are horizontally partitioned

2.parallel hash algorithms for 
relational operators

3. coordinated dataflow scheduling

• Shared-nothing architecture
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History
• Began with DIRECT (1977-1984)

‣ One of the first operational parallel 
database systems. [2]

‣ Built on the DEC PDP 11  (16-bit)



History
• 1984  - The GAMMA project began in 

January 1984 and ran until late 1992 at 
which point the code was so broken from 
years of patching that we gave up.

- David J. DeWitt on his 
web site [2]

• Built on a network of  
VAX computers (32-bit)

• Operational in 1985
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• 1984



History
• 1984



History
• 1988: Intel ipsc/2 hypercube - 32 i386 CPUs

• Nodes connected via VLSI routers.

‣ Small messages sent as datagrams.

‣ Large messages sent via circuits.
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Hardware Architecture
• Shared-nothing

‣ All nodes are self-sufficient and 
independent, sharing neither disks nor 
memory nor CPU nor . . . anything, 
communicating only by sending 
messages. (Like people.)

• Storage is distributed among the nodes.

• Nodes are connected . . .



Hardware Architecture
• Why shared-nothing?

‣ In scalable, tunable, nearly delightful data 
bases, [shared-nothing] systems will have 
no apparent disadvantages compared to 
the other alternatives [shared memory, 
disk].  - Michael Stonebraker [3]

• This remains an excellent approach today. 
(Erlang, Scala with Akka, others.)

• Shared-nothing scales better than shared 
architectures. Why?



Hardware Architecture
• Converting from VAX to Intel 

uncovered previously unseen bugs in 
their code.

‣ The VAX did not trap null pointer 
dereference errors.

‣ The Intel 386 did. They found a 
number of hidden bugs.

• They also had to rewrite a lot of code 
because the VAX began numbering 
nodes at 1 while Intel began at 0.
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Software Architecture
• Storage Organization

‣ Tables are Horizontally Partitioned 
across all disks at all nodes.

- exploits all available I/O bandwidth

‣ This “declustering” (Bubba) makes 
parallelizing selections trivial.

- Just send a message to each node to 
execute the selection operator with 
the passed-in parameters.



Software Architecture
• Storage Organization

‣ Three declustering strategies.

1. round robin - default method

2. hashed - keys hashed into node ids

3. range partitioned (“shards”) 

- Specify a range of keys for each 
node in a Range Table.

- MongoDB and others do this today.



Software Architecture
• Storage Organization - Round Robin
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Software Architecture
• Storage Organization - Round Robin
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Software Architecture
• Storage Organization - Hashed
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Software Architecture
• Storage Organization - Hashed
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Software Architecture
• Storage Organization - Shards
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Software Architecture
• Storage Organization

‣ Partition data is stored in the system 
catalog via the Catalog Manager.

‣ This partition data is used in query 
optimization and planning.

‣ Indexes are supported -- both 
clustered and non-clustered -- and are 
used in query optimization and 
planning.



Software Architecture
• Indexes [4]

‣ No Index

- Scan the data

‣ With Index

- Clustered (not 
pictured)

- Non-clustered 
B-Tree



Software Architecture
• Gamma’s Process Structure



Software Architecture
• Catalog Manager

‣ Central repository 
for all schema and 
partition data.

‣ Loaded when 
database is started.

‣ Ensures consistency among cached 
copies elsewhere.
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Scheduler
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DATABASE

Gamma Processors



Software Architecture
• Query Manager

‣ Each user gets a 
Query Manager 
process.

‣ Locally caches 
schema data.

‣ Provides interface for ad-hoc queries

‣ Performs query parsing, optimization, 
planning, and compilation.

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes
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DATABASE

Host
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DATABASE
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DATABASE
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Software Architecture
• Scheduler Processes

‣ Each query is 
controlled by a 
scheduler process.

‣ Activates operator 
processes on 
participating  nodes.

‣ They can be run on any node, ensuring 
that none becomes a bottleneck.
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Software Architecture
• Scheduler Processes

‣ If the Query 
Manager/optimizer 
notes that a query 
requires only a 
single site it is sent 
to the appropriate 
node for execution. 

‣ In that case the scheduler processes 
are bypassed.

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
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Software Architecture
• Execution/Operator Processes

‣ There is one 
operator process 
for every relational 
operator (select, 
join, etc.) in the 
compiled query.

‣ The scheduler spreads these out 
over the nodes participating in the 
query execution.

Catalog Manager Query ManagerQuery Manager
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Software Architecture
• Query Execution Overview

‣ User invokes ad-
hoc query 
interface.

‣ Range of u is users 
Retrieve u.name 
Where u.clue > 0

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes

SCHEMA

Node N

DATABASE

Host

Node 0

DATABASE

Node 1

DATABASE

Gamma Processors

Hey... What language is that?



Software Architecture
• Query Execution Overview

‣ A Query 
Manager process 
starts

Catalog Manager Query ManagerQuery Manager
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Software Architecture
• Query Execution Overview

‣ A Query 
Manager process 
starts, 

‣ connects itself to 
the Catalog 
Manager process

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes
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Host
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Software Architecture
• Query Execution Overview

‣ A Query 
Manager process 
starts, 

‣ connects itself to 
the Catalog 
Manager process, 

‣ and gets to work on the query.

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes

SCHEMA

Node N

DATABASE

Host

Node 0

DATABASE

Node 1

DATABASE

Gamma Processors

Range of u is users 
Retrieve u.name 
Where u.clue > 0



Software Architecture
• Query Execution Overview

‣ The Query 
Manager does...

- parsing

- optimization

- planning

‣ ... in the traditional relational ways,

‣ but with only hash-based joins.
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Range of u is users 
Retrieve u.name 
Where u.clue > 0



Software Architecture
• Aside: Three Common Join Types

‣ the Nested-Loop join

‣ the Merge join

‣ the Hash join



Software Architecture
• Aside: the 

Nested Loop Join 
[4]



Software Architecture
• Aside: the Merge Join [4]



Software Architecture
• Aside: the Hash Join [4] - Gamma’s Join

Inner TableOuter Table



Software Architecture
• Query Execution Overview

‣ The Query 
Manager does...

- parsing

- optimization

- planning

‣ ... in the traditional relational ways,

‣ but with only hash-based joins.
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Software Architecture
• Query Execution Overview

‣ Now the Query 
Manager 
connects to an 
idle scheduler
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Software Architecture
• Query Execution Overview

‣ Now the Query 
Manager 
connects to an 
idle scheduler, 

‣ and sends it the 
planned, 
compiled query.

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes

SCHEMA

Node N

DATABASE

Host

Node 0

DATABASE

Node 1

DATABASE

Gamma Processors

Range of u is users 
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Software Architecture
• Query Execution Overview

‣ The scheduler 
activates operator 
processes (select, 
join, etc.) at 
various nodes to 
execute the query.

‣ The Query Manager waits as 
the scheduler monitors the 
progress.

Catalog Manager Query ManagerQuery Manager
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Software Architecture
• Query Execution Overview

‣ Each participating 
operator process reads 
tuples from the 
database at its node, 

‣ performs its operation 
(index select, scan, etc.)

‣ and sends the matching 
tuples . . . somewhere?

Operator Process
at Node N

DATABASE

Gamma Processor

Stream of Tuples

?
Matching Tuples



Software Architecture
• Query Execution Overview

‣ If we’re doing a join, 
then there are other 
processes available to 
help with the join.

‣ But who gets what?

‣ How do we parallelize 
the work of a join?

‣ Remember the Hash Join?

Operator Process
at Node N

DATABASE

Gamma Processor

Stream of Tuples

Join Processors

Matching Tuples



Software Architecture
• Gamma’s Hash Join [4] modified

Inner Table
Data Horizontally Partitioned Across Gamma Nodes

Node 0

Outer Table

Node 1

Node 2



Software Architecture
• Query Execution Overview

‣ The operator process 
performs a hash on the 
join attribute of each 
resulting tuple,

‣ and sends it to the 
appropriate join node.

‣ But where is that node?

Operator Process
at Node N

DATABASE

Gamma Processor

Stream of Tuples

Even

Goofy Hash function

Odd

Matching Tuples



Software Architecture
• Query Execution Overview

‣ Gamma builds Split 
Tables to demultiplex 
matching tuples to join 
operator processes. Operator Process

at Node N

DATABASE

Gamma Processor

Stream of Tuples

Hash function

Matching Tuples

Split Table

Join Node

Split Table
Value Destination Process

Even 0

Odd 1



Software Architecture
• Query Execution Overview

‣ Each join process 
operates in two phases 
(controlled by the 
scheduler)

- Building Phase

- Probing Phase

Join Process at Node N

Gamma Processor

Hash function

Matching Tuples

Split Table



Software Architecture
• Query Execution Overview

‣ Each join process 
operates in two phases:

- Building Phase

๏ An in-memory hash 
table is built for the 
join’s inner table.

Join Process at Node N

Gamma Processor

Hash function

Matching Tuples

Split Table



Software Architecture
• Query Execution Overview

‣ Each join process 
operates in two phases:

- Building Phase

- Probing Phase

๏ Tuples from the 
outer table are used 
to probe the hash 
table for matches.

Join Process at Node N

Gamma Processor

Hash function

Matching Tuples

Split Table



Software Architecture
• Query Execution Overview

‣ The scheduler, 
who has been 
monitoring and 
controlling all of 
this, collects the 
partial results as 
the various 
probing phases 
complete.

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes
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Software Architecture
• Query Execution Overview

‣ Finally, the Query 
Manager reads 
the combined 
results from the 
scheduler and 
returns them to 
the user.

‣ Warning: No Rows Selected.

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
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(That was cool, wasn’t it?)



Query Algorithms
• Selection - two cases

‣ Selection on a partitioning attribute

- Scheduler initiates selection operator 
on a subset of nodes.

‣ Selection on a non-partitioning 
attribute or we used round-robin 
partitioning in the first place

- Scheduler initiates the selection 
operation at all nodes.



Query Algorithms
• Aggregates - sum, min, max, etc.

‣ Each participating node maps the 
aggregate operator to the elements 
of its portion of the data in parallel.

‣ The individual node results are 
collected (by the scheduler) and 
combined (reduced) to the final 
answer.

‣ Does this sound familiar?



Query Algorithms
• Aggregates - sum, min, max, etc.

‣ Each participating node maps the 
aggregate operator to the elements 
of its portion of the data in parallel.

‣ The individual node results are 
collected (by the scheduler) and 
combined (reduced) to the final 
answer.

‣ Does this sound familiar? It should.



Query Algorithms
• Updates - insert, update, delete

‣ Mostly done as typical RDBMS do it.

‣ Exception: modifying the partitioning 
attribute.

- Use the split tables or partition data 
in the system catalog held at the 
Catalog Manager to reroute the 
modified tuples to the proper node.



The Plan
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• Summary

(Still cool.)



Transactions
• (Pessimistic) Concurrency Control - Locks

‣ Basic Lock Types

- S: shared / read

- X: exclusive / write

‣ Lock Terms

- Short-term: until end of access

- Long-term: until end of transaction



Transactions
• Concurrency Control - Locks

‣ Lock Types + Lock Terms = Lock Modes

‣ Gamma’s Lock Modes: S, X, IS, IX, SIX

- The “I” is for “intent”

[6]



Transactions
• Concurrency Control - Locks

‣ Lock Granularity

- Database, Table, Page, Row, Field

- Gamma supports “file” and page 
locking granularities.

๏ This means there could be a lot of 
lock contention in the average to 
worst case, depending on the data 
and its indexes.



Transactions
• Concurrency Control - Locks

‣ Two-phase locking

- Growing phase: acquiring locks

- Shrinking phase: releasing locks

‣ This helps relieve some lock contention.

‣ But deadlock is still a worry.



Transactions
• Concurrency Control - Deadlock

‣ Deadlock - mutual waiting, the dreaded 
deadly embrace

- Transaction T1 needs resources A, and 
B, has a lock on A, waiting for B.

- Transaction T2 needs resources A and 
B, has a lock on B, waiting for A.

‣ What will we do?   What will we do!?



Transactions
• Concurrency Control - Deadlock

‣ Each Gamma Node has a Lock Manager 
that maintains a wait-for graph

- One vertex (V) for each transaction

- An edge from Vi to Vj means that Vi is 
blocked and waiting for a resource 
that Vj is holding (has locked).



Transactions
• Concurrency Control - Deadlock

‣ Deadlock - mutual waiting, the dreaded 
deadly embrace

- Transaction T1 needs resources A, and 
B, has a lock on A, waiting for B at T2.

- Transaction T2 needs resources A and 
B, has a lock on B, waiting for A at T1.

‣ Combine the pieces into one wait-for 
graph to detect deadlock.

T1 T2

T2 T1



Transactions
• Concurrency Control - Deadlock

‣ Combine the pieces into one wait-for 
graph to detect cycles and therefore 
deadlock.

‣ Gamma does this across 
many nodes.

- Lock Managers periodically exchange 
wait-for graphs with a central node 
who stitches them together for 
central deadlock detection.

T1 T2



Transactions
• Concurrency Control - Deadlock

‣ One we’ve detected deadlock, what do 
we do?

T1 T2



Transactions
• Concurrency Control - Deadlock

‣ One we’ve detected deadlock, what do 
we do?

‣ Kill (roll back) the 
transaction that’s holding 
the fewest locks.

T1 T2X



Transactions
• Concurrency Control - Deadlock

‣ One we’ve detected deadlock, what do 
we do?

‣ Kill (roll back) the 
transaction that’s holding 
the fewest locks.

‣ This unclogs the wait-for graph and lets 
the other transactions proceed.

T1 T2X



Transactions
• Log Manager

‣ When an operator process updates a 
record it generates a log record that 
contains . . .

- LSL: Log Sequence Number

- Before Image of the data

- After Image of the data



Transactions
• Log Manager

‣ Log records are sent to Log Manager 
processes at various nodes where they 
are collected, merged, and written to 
disk a page at a time.

‣ This process seems pretty fragile to me 
and I’m not convinced it worked. 
- Jim Gray had this figured out and documented in 

his famous paper 1981 paper “The Recovery 
Manager of the System R Database Manager”.



Transactions
• Recovery

‣ Log records can be read by the Log 
Manager and transactions “undone” in 
reverse LSN order, using before images.

‣ There’s more to do (checkpoints, 
write-ahead durability, and more). They 
were still working on it at the time this 
paper was written. 
- DeWitt published at least five papers with Jim 

Gray, one in 2005, the others in the early 1990s.



Transactions
• Failure Management

‣ Gamma keeps a primary copy and a 
backup copy of each table.

‣ Reads are serviced from the primary 
copy.

‣ Writes update both copies.

- I hope the data is (exclusive) 
locked until the primary copy is 
updated.
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Performance
• The authors conducted many benchmark 

experiments. Let’s look at two of the 
most interesting ones.

1.Constant number of processors (30), 
vary the number of tuples - Measure 
performance relative to table size.

2.Constant number of tuples (1M), vary 
the  number of processors - Measure 
speed up / scale up



Performance
• 30 processors, variable tuples, 6 queries

[1]



Performance
• 30 processors, variable tuples, 6 queries

[1]



Performance
• 30 processors, variable tuples, 6 queries

• Linear increases

[1]



Performance
• 30 processors, variable tuples, 6 queries

• Constant performance here

[1]



Performance
• 30 processors, variable tuples, 6 queries

• Not constant performance here. Why?

[1]



Performance
• 1M tuples, variable processors, 2 queries

• Query response 
time decreases as 
the number of 
nodes/processors 
increase.

• This is speed-up 
(or scale-up)

[1]



Performance
• 1M tuples, variable processors, 2 queries

• Same data 
expressed as 
speed-up.

• Why does the  
query with 10% 
selectivity speed 
up less?

[1]
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Summary
• David J. DeWitt’s Gamma was a big deal.

• A few projects/areas citing DeWitt, et al. [5]

DB2 Parallel Edition NUMA Clusters

IBM S/390 Parallel Sysplex vehicular ad-hoc networks

Map-reduce SAP

Sensor Networks extensible web crawlers

Data Mining, OLAP, and BI parallel query processing



Summary
• David J. DeWitt’s Gamma was a big deal.

‣ In 1995, David was named a 
Fellow of the ACM and 
received the ACM SIGMOD 
Innovations Award for his 
contributions to the database 
field. [2]



Summary
• David J. DeWitt’s Gamma was a big deal.

‣ In 2009, the ACM recognized 
the seminal contributions of 
the Gamma parallel database 
system project with the ACM 
Software Systems Award. [2]



Summary
• Gamma was a fast, parallel, relational 

database that scaled with the number of 
processors and the size of the data and 
influenced many systems we still use 
today.

Questions?  Comments?

Thank you for your attention.
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