Indexes and Index Structures

. DATABASE
= SYSTEMS

THE
COMPLETE
BOOK

SECOND EDITION

Hector Garcia-Molina
Jeffrey D. Ullman
Jennifer Widom

Alan G. Labouseur, Ph.D.
Alan.Labouseur@Marist.edu

mailto:Alan.Labouseur@Marist.edu

Our CAP Database

¢

There’s not much data in our beloved CAP database.
What if there were more? A lot more?
Like 9 billon people rather than just 9 ?

People Products
pid | prefix | firstName | 1lastName | suffix | homeCity | DOB prodld | name | city | gqtyOnHand | priceUSD
————— et e i e et bl bbbty e ettt St it bbbl
11 Dr. | Neil | Peart | Ph.D | Toronto | 1952-09-12 p01 | Heisenberg Compensator | Dallas | 47 | 67.50
2 | Ms. | Regina | Schock | | Toronto | 1957-08-31 p02 | Universal Translator | Newark | 2399 | 5.50
31 Mr. | Bruce | Crump I Jr. | Jacksonville | 1957-07-17 p03 | Commodore PET | Duluth | 1979 | 65.02
4 | Mr. | Todd | Sucherman | | Chicago | 1969-05-02 p04 | LCARS module | Duluth | 31 47.00
51 Mr. | Bernard | Purdie | | Teaneck | 1939-06-11 p@5 | Remo drumhead | Dallas | 8675309 | 16.61
6 | Ms. | Demetra | Plakas | Esq. | Santa Monica | 1960-11-09 p06 | Trapper Keeper | Dallas | 1982 | 2.00
7 | Ms. | Terri Lyne | Carrington | | Boston | 1965-08-04 p@7 | Flux Capacitor | Newark | 1007 | 1.00
8 | Dr. | Bill | Bruford | Ph.D. | Kent | 1949-05-17 p08 | HAL 9000 memory core | Newark | 200 | 1.25
9 | Mr. | Alan | White | III | Pelton | 1949-06-14 p@9 | Red Barchetta | Toronto | 1 | 379000.47
Customers Agents
pid | paymentTerms | discountPct pid | paymentTerms | commissionPct
————— et et S e L L e e T e
1 | Net 30 | 21.12 2 | Quarterly | 5.00
4 | Net 15 | 4.04 3 | Annually | 10.00
5 | In Advance | 5.50 5 | Monthly | 2.00
7 | On Receipt | 2.00 6 | Weekly | 1.00
8 | Net 30 | 10.00
Orders
orderNum | dateOrdered | custId | agentId | prodId | quantityOrdered | totalUSD
—————————— o e e e e e e e e e e e e e e e e
1011 | 2020-01-23 | 11 2 | po1l | 1100 | 58568.40
1012 | 2020-01-23 | 4 | 3 | p03 | 1200 | 74871.83
1015 | 2020-01-23 | 51 3 | p@5 | 1000 | 15696.45
1016 | 2020-01-23 | 8 | 3 | pol | 1000 | 60750.00
1017 | 2020-02-14 | 11 3 | p03 | 500 | 25643.89
1018 | 2020-02-14 | 11 3 | po4 | 600 | 22244.16
1019 | 2020-02-14 | 11 2 | p02 | 400 | 1735.36
1020 | 2020-02-14 | 4 | 5 | po7 | 600 | 575.76
1021 | 2020-02-14 | 4 | 5 | po1l | 1000 | 64773.00
1022 | 2020-03-15 | 11 3 | po6 | 450 | 709.92
1023 | 2020-03-15 | 11 2 | p@5 | 500 | 6550.98
o o ; 1024 | 2020-03-15 | 5 1 2 | pol | 880 | 56133.00
Originally from Database Principles, Programming, and
Fcange ek O on s Ot a2 e e
Modified over and over by Alan G. Labouseur. P

Scanning through 9 billion people

Table Scan of unordered data

check row 1 Peart
check row 2 Schock
check row 3 Crump

check row 8,009,099,098 White
check row 8,999,099,099 Purdie
check row 9,000,000,000 Bruford

Sometimes we will find the selected person early in the table.
Sometimes we will find the selected person late in the table.

QQ: What’s the average — or expected — case for n rows?

Scanning through 9 billion people

Table Scan (aka Linear Search or Sequential Search)

check row 1 Peart
check row 2 Schock
check row 3 Crump

check row 8,009,099,098 White
check row 8,999,099,099 Purdie
check row 9,000,000,000 Bruford

QQ: What’s the average — or expected — case for n rows?
A: The expected case is Y2 n, which requires
examining 4.5B rows in this example.

Scanning through 9 billion people

Table Scan
check row 1 Peart 'lO“hat S what Wetcall .
check row 2 Schock (n) in computer science.
check row 3 Crump Pronounced “Big Oh of n”, it

means that the time or effort
required to complete the task
scales in a linear fashion with the
number of items being worked
on, n. (We ignore constant
factors, like 1/2.)

check row 8,009,099,098 White
check row 8,999,099,099 Purdie
check row 9,000,000,000 Bruford

Q: What’s the average
A: The expected case
examining 4.5B ro?

wxpected — case for n rows?
hich requires
is example.

Scanning through 9 billion people

Table Scan
check row 1 Peart
check row 2 Schock
check row 3 Crump

' v
check row 8,999.099,098 White There must be a better way!

check row 8,999,099,099 Purdie
check row 9,000,000,000 Bruford

Q: What’s the average
A: The expected case
examining 4.5B ro?

wxpected — case for n rows?
hich requires
is example.

Searching 9 billion people

What if we could search through sorted data?

check row 1 Bruford
check row 2 Crump
check row 3 Peart

check row 8,0909,0909,098 Purdie
check row 8,999,099,099 Schock
check row 9,000,000,000 White

How would you do it?
What’s your strategy?

Want to play a number guessing game?

Searching 9 billion people

What if we could search through sorted data?

check row 1 Bruford
check row 2 Crump
check row 3 Peart

check row 8,0909,0909,098 Purdie
check row 8,999,099,099 Schock
check row 9,000,000,000 White

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

Q: What’s the average or — expected — case for n rows?

Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

>

1

?
(lower)

Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

> - >0
> - >0
> - >»0
> - >»0
> - >»0
> - >0
> - >0
> - >0
> - >0
> - >» 0
> - >0
> - >»0
> - >» 0
> - >»0
> - >»0
> - >0
> - >0
> - >»0

1/2 of the data left

10

Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

> - >0
> - >0
> - >»0
> - >»0
> - >»0
> - >0
> - >0
> - >0
> - >0
> - >» 0
> - >0
> - >»0
> - >» 0
> - >»0
> - >»0
> - >0
> - >0
> - >»0

|

(lov.ver)

11

Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

> - >0
> - >0
> - >»0
> - >»0
> - >»0
> - >0
> - >» 0
> - >0
> - >0
> - >» 0
> - >0
> - >»0
> - >» 0
> - >0
> - >»0
> - >0
> - >0
> - >»0

/5 of the data left

> - >»0
> - >»0
> - >»0
> - >»0
> - >»0
> - >»0
> - >»0

1/4 of the data left

D D
A A
T T
A A

12

Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

> - >0
> - >0
> - >»0
> - >»0
> - >»0
> - >0
> - >» 0
> - >0
> - >0
> - >» 0
> - >0
> - >»0
> - >» 0
> - >0
> - >»0
> - >0
> - >0
> - >»0

/5 of the data left

> - >» 0
> - >»0

> - >»0
> - >»0
> - >»0
> - >»0
> - >»0
> - >»0
> - >»0

1/4 of the data left

Sl
Sl
|

(higher)

13

Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

> - >0
> - >0
> - >»0
> - >»0
> - >»0
> - >0
> - >» 0
> - >0
> - >0
> - >» 0
> - >0
> - >»0
> - >» 0
> - >0
> - >»0
> - >0
> - >0
> - >0

/5 of the data left

> - >» 0
> - >»0
> - >»0
> - >»0
> - >»0
> - >»0
> - >»0
> - >»0
> - >»0

1/4 of the data left

> - >» 0
> - >»0

> - >» 0
> - >0
> - >» 0

15 of the data left

14

Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

> - >0
> - >0
> - >»0
> - >»0
> - >»0
> - >0
> - >» 0
> - >0
> - >0
> - >» 0
> - >0
> - >»0
> - >0
> - >0
> - >»0
> - >0
> - >0
> - >0

/5 of the data left

Q: What’s the average or — expected — case for n rows?

> - >0
> - >»0
> - >»0
> - >»0
> - >»0
> - >»0
> - >»0
> - >»0
> - >»0

1/4 of the data left

> - >» 0

> - > 0
> - >» 0
> - >0
> - >» 0

15 of the data left

15

Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

> - >0
> - >0
> - >»0
> - >»0
> - >»0
> - >0
> - >» 0
> - >0
> - >0
> - >» 0
> - >0
> - >»0
> - >0
> - >0
> - >»0
> - >0
> - >0
> - >0

/5 of the data left

Q: What’s the average or — expected — case for n rows?

A: The expected case is log> n, because we cut it in half each time.
16

> - >0
> - >»0
> - >»0
> - >»0
> - >»0
> - >»0
> - >»0
> - >»0
> - >»0

1/4 of the data left

> - >» 0

> - > 0
> - >» 0
> - >0
> - >» 0

15 of the data left

Searching 9 billion people

What if we could search through sorted data?

)

o6
D D oD
—

7
D
+
D
)
Q.

™N

B
Q9|0

N |

1M

IR IR
P
3
<
<
Qo
T O w
-

)
@

ck row 8,999,999,998

AT raYaYaWaYaYaWra O
VW O I 99599 F57 35
AIA_ OO OO OO OO
U

AVWAY
wW9Q,000,000,000

N~
3
D
Q

7

=ai=al=3

@ | D

DN O
(@

W . rﬁ
(©N

|_I

(D

(@)
—+ E)

e
e Hie
N

|

__
=
|_

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

Q: What’s the average or — expected — case for n rows?
A: The expected case is log- n. By the way, log- 9B is...?

17

Searching 9 billion people

What if we could search through sorted data?

al
(1

=S
D

)

D

7

LUVY 4L

1M

1

CRECEReE
@ @ @
CRECENeE
3
D
\
O O W
-

= R
)
Q C

a
L1

)
@

ck row 8,999,999,998

AT raYaYaWaYaYaWra O
LUW OsT9995FFFsF I
PAAL O OO OO O OO
1V

AVWAY
wW9Q,000,000,000

=ai=al=3

@ | D

oo

DN O
(@

W . rﬁ
(©N

|_I

(D

o
(@)
—+ E)

oo

__
=
|_

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether

our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

Q: What’s the average or — expected — case for n rows?
A: The expected case is log- n. By the way, log- 9B is . . . 3:

) = g > g

18

Searching 9 billion people

What if we could search through sorted data?

check row 1 Bruford
check row 2 Crump
check row 3 Peart

check row 8,0909,0909,098 Purdie
check row 8,999,099,099 Schock
check row 9,000,000,000 White

Now that is a better way!
33 < 4.5B

the middle of the remaining half. Repeat.

Q: What's the average or — expected — case for n rowg’
A: The expected case is log- n. By the way, log. 9B is .

19

SO ...

How do we take advantage of sorted
data when tables are sets of rows and
therefore have no intrinsic order?

20

Text Books

Consider a text book. ..

S ... physically arranged chronologically from

W()RLD page 1 to n.
HIST ()RY

PATTERNS OF INTERACTION

.. with an index in the back arranged by topic,
with page number references.

.. and another index arranged by geography
with page number references.

Atlas by £22 RAND MCNALLY.

21

Indexes

An index is a database object that increases search and lookup
speed by imposing order.

Indexes (or indicies) are created with the CREATE INDEX SQL
command.

CREATE [UNIQUE] INDEX [CONCURRENTLY] [[IF NOT EXISTS] name] ON [ONLY] table name [USING method]

({ column_name | (expression) } [COLLATE collation] [opclass [(opclass parameter = value [, ... 1)] 1 [ASC | DESC] [NULLS { FIRST | LAST }] [, «--1)
[INCLUDE (column name [, ...])]
[WITH (storage parameter [= value] [, ...]) 1

[TABLESPACE tablespace name |
[WHERE predicate]

Indexes are created on one or more columns in a table. E.g.,
CREATE INDEX NameDex ON People (lastName, firstName);

There are two kinds of index:
(1) a clustered index
(2) alogical index

22

Clustered Index

A clustered index is the physical order of the rows of a base table
1In storage.

P Y
O

>

Each table can have only one clustered index because it can be stored
only in one physical order.

Q: Primary Key values make for nice clustered indexes. Why?

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White

1 2 3 4 5 9 I 8 9

CREATE CLUSTERED INDEX PEOPLE_ PKEY ON PEOPLE(PID); // this is T-SQL syntax, not PostgreSQL.

23

Clustered Index

A clustered index is the physical order of the rows of a base table
1In storage.

>

Each table can have only one clustered index because it can be stored
only in one physical order.

Q: Primary Key values make for nice clustered indexes. Why?
A: Most joins are PK-FK, so the query engine can cross-reference
them in log-based lookup time, making joins perform fast.

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White

1 2 3 4 5 9 I 8 9

CREATE CLUSTERED INDEX PEOPLE_ PKEY ON PEOPLE(PID); // this is T-SQL syntax, not PostgreSQL.

24

Clustered Index

A clustered index is the physical order of the rows of a base table
1In storage.

>

N

Q: What happens if we need to add a new value anywhere other
than the end of the clustered index?

25

Clustered Index

A clustered index is the physical order of the rows of a base table
1In storage.

>

_

Q: What happens if we need to add a new value anywhere other
than the end of the clustered index?

A: We need to re-organize (“smush”) everything from that
point on to make room in the table.

26

Clustered Index

A clustered index is the physical order of the rows of a base table
1In storage.

>

Q: What happens if we need to add a new value anywhere other
than the end of the clustered index?

A: We need to re-organize (“smush”) everything from that
point on to make room in the table.
This can take considerable time; a “stop the world” event inside
the database.

Let’s not do that.

27

Clustered Index

A clustered index is the physical order of the rows of a base table
1In storage.

>

We can trade space for time by setting aside some empty space in the
table so that it’s not fully packed. In this manner there is space
available for future inserts and updates.

This is called “fill factor”. Fully packed means a fill factor of 100%.
Leaving 10% empty space means a 90% fill factor.

fillfactor (integer)

The fillfactor for a table is a percentage between 10 and 100. 100 (complete packing) is the default. When a smaller fillfactor is specified, INSERT operations pack table
pages only to the indicated percentage; the remaining space on each page is reserved for updating rows on that page. This gives UPDATE a chance to place the updated
copy of a row on the same page as the original, which is more efficient than placing it on a different page. For a table whose entries are never updated, complete packing
is the best choice, but in heavily updated tables smaller fillfactors are appropriate. This parameter cannot be set for TOAST tables.

28

Logical Index

A logical index is a tree of pointers to the physical rows of a
base table in storage.

Each table can have many logical indices because they are stored
separately.

Consider an index on last name in People:
CREATE INDEX NameDex ON People (lastName);

Since the clustered index is on pid (meaning the rows are stored in pid
order) we need a different structure to access the People table in a
different order, like by last name for example. We'll use a tree of
pointers for that.

29

Logical Index

&b
h 24

CREATE INDEX NameDex ON People (lastName);

We'll make a tree of pointers
based on the lastName column
of the People table.

We'll call it a b-tree.

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White

1 2 3 4 5 9 /

Clustered index on pid.

8

9

30

Logical Index

b
h o4

CREATE INDEX NameDex ON People (lastName);

/Plakas\
///EBCQHEi\\ /fffy?ski\\~
Carrington Peart Purdie Sucherman
Bruford White

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White

1 2 3 4 5 9 I 8 9

Clustered index on pid.

31

Logical Index

&b
O

CREATE INDEX NameDex ON People (lastName);

What do you notice Plakas
about this tree b-tree? / \
Crump Schock
Carringfg;//\\\\beart Purdfg///\\;akherman
Bruford \\\\White

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White

1 2 3 4 5 9 I 8 9

Clustered index on pid.

32

Logical Index

b
h o4

CREATE INDEX NameDex ON People (lastName);

All of the left-hand values

are alphabetically less than the Plakas
root and all of the right-hand
values are alphabetically
greater than the root. Crump Schock
Carrington Peart Purdie Sucherman
Bruford White

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White

1 2 3 4 5 9 I 8 9

33

Logical Index

CREATE INDEX NameDex ON People (lastName);

This relationship holds at Plakas

every level so we can
search it in log.(n) time. / \

///faCQHEi\\ /ffty?ski\\~
Carrington Peart Purdie Sucherman
Bruford White

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White

1 2 3 4 5 9 I 8 9

34

Logical Index

CREATE INDEX NameDex ON People (lastName);

This relationship holds at Plakas

every level so we can
search it in log.(n) time. / \

Crump Schock
Carrington Peart Purdie Sucherman
Bruford White

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White

1 2 3 4 5 9 I 8 9

35

Logical Index

CREATE INDEX NameDex ON People (lastName);

fi hat we’
Once we find what we're P1 akas

looking for we need
pointers into the
data heap.

///faCQHEi\\ /ffty?ski\\~
Carrington Peart Purdie Sucherman
Bruford White

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White

1 2 3 4 5 9 I 8 9

Logical Index

CREATE INDEX NameDex ON People (lastName);

/Plakas\
///facqﬂfi\\ /fffy?ski\\~
Carrington Peart Purdie Sucherman
Bruford White

—

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White

1 2 3 4 5 9 I 8 9

37

Logical Index

CREATE INDEX NameDex ON People (lastName);

/Plakas\
///EEQT\\\ Schock
Carrlngton Peart Purdle Sucherman
Bruford Wh1te

\ —7

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White

1 2 3 4 5 9 I 8 9

Logical Index

CREATE INDEX NameDex ON People (lastName);

S inters!
0 many pointers Pl akas

We’'ll call them
bookmarks.
They record physical

locations in storage
(like TSB).

Carrington ’ Sucherman

" e

Bruford

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White
1 2 3 4 5 6 / 8 9

PostgreSQL Internal Index Structures

Internal

Leaf

Heap

Index Page Structure

B <N
g
///
//// \X E
A (o] Special

PostgreSQL Internals, Through Pictures 54/72

by Bruce Momjian

40

PostgreSQL Internal Index Structures

Index

Heap

Btree Index Scan

o [

PostgreSQL Internals, Through Pictures 30/72

by Bruce Momjian

41

PostgreSQL Internal Index Structures

Index

Heap

Btree Index Scan

Key

PostgreSQL Internals, Through Pictures

30/72

by Bruce Momjian

42

Text Books and Database Systems

Consider a text book. ..

Clustered Index

..|physically arranged|chronologically from

page 1 to n.
Logical Index

.. with an/index in the back arranged by topic,

with page number references.

.. and another index arranged by geography

with|[page number references|.
Pointers

43

CAP Default Indexes

Ol SELECT ~*

7 FROM pg_catalog.pg_indexes
8 WHERE schemaname = 'public'
9

Data Output Explain Messages Notifications

schemaname tablename indexname tablespace indexdef
a a a P a

4 name name name name text

1 public people people_pkey [null] CREATE UNIQUE INDEX people_pkey ON public.people USING btree (pid)

2 public customers customers_pkey [null] CREATE UNIQUE INDEX customers_pkey ON public.customers USING btree (pid)
3 public agents agents_pkey [null] CREATE UNIQUE INDEX agents_pkey ON public.agents USING btree (pid)
4 public products products_pkey [null] CREATE UNIQUE INDEX products_pkey ON public.products USING btree (prodid)
5 public orders orders_pkey [null] CREATE UNIQUE INDEX orders_pkey ON public.orders USING btree (ordernum)

PostgreSQL created these automatically.
Interestingly, though these are PK indexes, they are logical
(because they are btree indexes) and not clustered.

(That’s why the syntax for creating a clustered index a few slides ago is from
SQL Server’s T-SQL language.)

44

Make Your Own Indexes?

When should you create your own indexes?

Do make indexes for frequently accessed columns that have
many or mostly unique values (high selectivity).

Do not make indexes for columns that have few unique values
(low selectivity).

Do not make indexes for columns that are frequently updated
because indexes need to be updated too. That’s a trade-off of
using them: slower insert and update but faster retrieval.

What’s the other trade-oft?

45

