
1

Alan G. Labouseur, Ph.D.

Alan.Labouseur@Marist.edu

Indexes and Index Structures

mailto:Alan.Labouseur@Marist.edu

2

Our CAP Database

There’s not much data in our beloved CAP database.

What if there were more? A lot more?

Like 9 billon people rather than just 9 ?

3

Scanning through 9 billion people

Table Scan of unordered data

	 check row 1

	 check row 2

	 check row 3

	 	 .

	 	 .

	 	 .

	 check row 8,999,999,998

	 check row 8,999,999,999

	 check row 9,000,000,000

	

Sometimes we will find the selected person early in the table.

Sometimes we will find the selected person late in the table.

Q: What’s the average — or expected — case for n rows?

Peart

Schock

Crump

White

Purdie

Bruford

4

Scanning through 9 billion people

Table Scan (aka Linear Search or Sequential Search)

	 check row 1

	 check row 2

	 check row 3

	 	 .

	 	 .

	 	 .

	 check row 8,999,999,998

	 check row 8,999,999,999

	 check row 9,000,000,000

	

Sometimes we will find the selected person early in the table.

Sometimes we will find the selected person late in the table.

Q: What’s the average — or expected — case for n rows?

A: The expected case is ½ n, which requires

	 	 examining 4.5B rows in this example.

Peart

Schock

Crump

White

Purdie

Bruford

5

Scanning through 9 billion people

Table Scan

	 check row 1

	 check row 2

	 check row 3

	 	 .

	 	 .

	 	 .

	 check row 8,999,999,998

	 check row 8,999,999,999

	 check row 9,000,000,000

	

Sometimes we will find the selected person early in the table.

Sometimes we will find the selected person late in the table.

Q: What’s the average — or expected — case for n rows?

A: The expected case is ½ n, which requires

	 	 examining 4.5B rows in this example.

That’s what we call

O(n) in computer science.

Pronounced “Big Oh of n”, it
means that the time or effort
required to complete the task
scales in a linear fashion with the
number of items being worked
on, n. (We ignore constant
factors, like ½.)

Peart

Schock

Crump

White

Purdie

Bruford

6

Scanning through 9 billion people

Table Scan

	 check row 1

	 check row 2

	 check row 3

	 	 .

	 	 .

	 	 .

	 check row 8,999,999,998

	 check row 8,999,999,999

	 check row 9,000,000,000

	

Sometimes we will find the selected person early in the table.

Sometimes we will find the selected person late in the table.

Q: What’s the average — or expected — case for n rows?

A: The expected case is ½ n, which requires

	 	 examining 4.5B rows in this example.

There must be a better way!

Peart

Schock

Crump

White

Purdie

Bruford

7

Searching 9 billion people

What if we could search through sorted data?

	 check row 1

	 check row 2

	 check row 3

	 	 .

	 	 .

	 	 .

	 check row 8,999,999,998

	 check row 8,999,999,999

	 check row 9,000,000,000

	

How would you do it?

What’s your strategy?

Want to play a number guessing game?

Bruford

Crump

Peart

Purdie

Schock

White

}

8

Searching 9 billion people

What if we could search through sorted data?

	 check row 1

	 check row 2

	 check row 3

	 	 .

	 	 .

	 	 .

	 check row 8,999,999,998

	 check row 8,999,999,999

	 check row 9,000,000,000

	

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

Q: What’s the average or — expected — case for n rows?

Bruford

Crump

Peart

Purdie

Schock

White

9

Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

?

(lower)

10

Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

½ of the data left

11

Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

?

(lower)

½ of the data left

12

Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

¼ of the data left

½ of the data left

13

Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

?

(higher)

¼ of the data left

½ of the data left

14

Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

½ of the data left

¼ of the data left

⅛ of the data left

15

Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

½ of the data left

¼ of the data left

⅛ of the data left

Q: What’s the average or — expected — case for n rows?

16

Searching 9 billion people

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

½ of the data left

¼ of the data left

⅛ of the data left

Q: What’s the average or — expected — case for n rows?

A: The expected case is log2 n, because we cut it in half each time.

17

Searching 9 billion people

What if we could search through sorted data?

	 check row 1

	 check row 2

	 check row 3

	 	 .

	 	 .

	 	 .

	 check row 8,999,999,998

	 check row 8,999,999,999

	 check row 9,000,000,000

	

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

Q: What’s the average or — expected — case for n rows?

A: The expected case is log2 n. By the way, log2 9B is . . . ?

Bruford

Crump

Peart

Purdie

Schock

White

18

Searching 9 billion people

What if we could search through sorted data?

	 check row 1

	 check row 2

	 check row 3

	 	 .

	 	 .

	 	 .

	 check row 8,999,999,998

	 check row 8,999,999,999

	 check row 9,000,000,000

	

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

Q: What’s the average or — expected — case for n rows?

A: The expected case is log2 n. By the way, log2 9B is . . . 33

Bruford

Crump

Peart

Purdie

Schock

White

19

Searching 9 billion people

What if we could search through sorted data?

	 check row 1

	 check row 2

	 check row 3

	 	 .

	 	 .

	 	 .

	 check row 8,999,999,998

	 check row 8,999,999,999

	 check row 9,000,000,000

	

We could pick from the middle. If that’s not our target, then we
exclude the lower or upper half of the data, depending on whether
our target is greater or lesser than the value we picked. Then we pick
the middle of the remaining half. Repeat.

Q: What’s the average or — expected — case for n rows?

A: The expected case is log2 n. By the way, log2 9B is . . . 33

Bruford

Crump

Peart

Purdie

Schock

White

Now that is a better way!
33 < 4.5B

20

So . . .

How do we take advantage of sorted
data when tables are sets of rows and
therefore have no intrinsic order?

21

Text Books
Consider a text book . . .

… physically arranged chronologically from

	 	 page 1 to n.

… with an index in the back arranged by topic,

	 	 with page number references.

… and another index arranged by geography

	 	 with page number references.

22

Indexes

An index is a database object that increases search and lookup
speed by imposing order.

Indexes (or indicies) are created with the CREATE INDEX SQL
command.

Indexes are created on one or more columns in a table. E.g.,

	 	 CREATE INDEX NameDex ON People (lastName,	firstName);

There are two kinds of index:

(1) a clustered index

(2) a logical index

23

Clustered Index

A clustered index is the physical order of the rows of a base table
in storage.

Each table can have only one clustered index because it can be stored
only in one physical order.

Q:	 Primary Key values make for nice clustered indexes. Why?

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White
 1 2 3 4 5 6 7 8 9

CREATE CLUSTERED INDEX PEOPLE_PKEY ON PEOPLE(PID); // this is T-SQL syntax, not PostgreSQL.

24

Clustered Index

A clustered index is the physical order of the rows of a base table
in storage.

Each table can have only one clustered index because it can be stored
only in one physical order.

Q:	 Primary Key values make for nice clustered indexes. Why?

A:	 Most joins are PK-FK, so the query engine can cross-reference

	 	 them in log-based lookup time, making joins perform fast.

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White
 1 2 3 4 5 6 7 8 9

CREATE CLUSTERED INDEX PEOPLE_PKEY ON PEOPLE(PID); // this is T-SQL syntax, not PostgreSQL.

25

Clustered Index

A clustered index is the physical order of the rows of a base table
in storage.

Q:	 What happens if we need to add a new value anywhere other

	 	 than the end of the clustered index?

 1 2 3 4 5 6 7 8 9

26

Clustered Index

A clustered index is the physical order of the rows of a base table
in storage.

Q:	 What happens if we need to add a new value anywhere other

	 	 than the end of the clustered index?

A:	 We need to re-organize (“smush”) everything from that

	 	 point on to make room in the table.

 1 2 3 4 5 6 7 8 9

27

Clustered Index

A clustered index is the physical order of the rows of a base table
in storage.

Q:	 What happens if we need to add a new value anywhere other

	 	 than the end of the clustered index?

A:	 We need to re-organize (“smush”) everything from that

	 	 point on to make room in the table.

	 	 This can take considerable time; a “stop the world” event inside

	 	 the database.

	 	 Let’s not do that.
 1 2 3 4 5 6 7 8 9

28

Clustered Index

A clustered index is the physical order of the rows of a base table
in storage.

We can trade space for time by setting aside some empty space in the
table so that it’s not fully packed. In this manner there is space
available for future inserts and updates.

This is called “fill factor”. Fully packed means a fill factor of 100%.
Leaving 10% empty space means a 90% fill factor.

 1 2 3 4 5 6 7 8 9

29

Logical Index

A logical index is a tree of pointers to the physical rows of a
base table in storage.

Each table can have many logical indices because they are stored
separately.

Consider an index on last name in People:

	 	 CREATE INDEX NameDex ON People (lastName);

Since	the	clustered	index	is	on	pid	(meaning	the	rows	are	stored	in	pid	
order)	we	need	a	different	structure	to	access	the	People	table	in	a	
different	order,	like	by	last	name	for	example.	We’ll	use	a	tree	of	
pointers	for	that.

30

Logical Index

	 	 CREATE INDEX NameDex ON People (lastName);

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White
 1 2 3 4 5 6 7 8 9

We’ll make a tree of pointers

based on the lastName column

of the People table.

We’ll call it a b-tree.

Clustered index on pid.

31

Logical Index

	 	 CREATE INDEX NameDex ON People (lastName);

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White
 1 2 3 4 5 6 7 8 9

Plakas

Schock

Purdie Sucherman

White

Crump

PeartCarrington

Bruford

Clustered index on pid.

32

Logical Index

	 	 CREATE INDEX NameDex ON People (lastName);

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White
 1 2 3 4 5 6 7 8 9

Plakas

Schock

Purdie Sucherman

White

Crump

PeartCarrington

Bruford

Clustered index on pid.

What do you notice

about this tree b-tree?

33

Logical Index

	 	 CREATE INDEX NameDex ON People (lastName);

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White
 1 2 3 4 5 6 7 8 9

Plakas

Schock

Purdie Sucherman

White

Crump

PeartCarrington

Bruford

All of the left-hand values

are alphabetically less than the
root and all of the right-hand
values are alphabetically
greater than the root.

34

Logical Index

	 	 CREATE INDEX NameDex ON People (lastName);

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White
 1 2 3 4 5 6 7 8 9

Plakas

Schock

Purdie Sucherman

White

Crump

PeartCarrington

Bruford

This relationship holds at
every level so we can
search it in log2(n) time.

35

Logical Index

	 	 CREATE INDEX NameDex ON People (lastName);

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White
 1 2 3 4 5 6 7 8 9

Plakas

Schock

Purdie Sucherman

White

Crump

PeartCarrington

Bruford

This relationship holds at
every level so we can
search it in log2(n) time.

36

Logical Index

	 	 CREATE INDEX NameDex ON People (lastName);

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White
 1 2 3 4 5 6 7 8 9

Plakas

Schock

Purdie Sucherman

White

Crump

PeartCarrington

Bruford

Once we find what we’re

looking for we need

pointers into the

data heap.

37

Logical Index

	 	 CREATE INDEX NameDex ON People (lastName);

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White
 1 2 3 4 5 6 7 8 9

Plakas

Schock

Purdie Sucherman

White

Crump

PeartCarrington

Bruford

38

Logical Index

	 	 CREATE INDEX NameDex ON People (lastName);

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White
 1 2 3 4 5 6 7 8 9

Plakas

Schock

Purdie Sucherman

White

Crump

PeartCarrington

Bruford

39

Logical Index

	 	 CREATE INDEX NameDex ON People (lastName);

Peart Schock Crump Sucherman Purdie Plakas Carrington Bruford White
 1 2 3 4 5 6 7 8 9

Plakas

Schock

Purdie Sucherman

White

Crump

PeartCarrington

Bruford

So many pointers!

We’ll call them

bookmarks.

They record physical

locations in storage
(like TSB).

40

PostgreSQL Internal Index Structures

by Bruce Momjian

41

PostgreSQL Internal Index Structures

by Bruce Momjian

42

PostgreSQL Internal Index Structures

by Bruce Momjian

Plakas

Crump

Peart

43

Text Books and Database Systems
Consider a text book . . .

… physically arranged chronologically from

	 	 page 1 to n.

… with an index in the back arranged by topic,

	 	 with page number references.

… and another index arranged by geography

	 	 with page number references.

Clustered Index

Logical Index

Pointers

44

CAP Default Indexes

PostgreSQL created these automatically.

Interestingly, though these are PK indexes, they are logical

(because they are btree indexes) and not clustered.

(That’s why the syntax for creating a clustered index a few slides ago is from
SQL Server’s T-SQL language.)

45

Make Your Own Indexes?

When should you create your own indexes?

Do make indexes for frequently accessed columns that have
many or mostly unique values (high selectivity).

Do not make indexes for columns that have few unique values
(low selectivity).

Do not make indexes for columns that are frequently updated
because indexes need to be updated too. That’s a trade-off of
using them: slower insert and update but faster retrieval.

What’s the other trade-off?

