
1

Alan G. Labouseur, Ph.D.

Alan.Labouseur@Marist.edu

Locking, Transactions, and the WAL

mailto:Alan.Labouseur@Marist.edu

2

Transactions

A transaction (in a good data management system) is a set of
operations that the database engine guarantees will be either done in
its entirety or not at all. E.g., EON: Everything or Nothing

begin transaction

 SQL and other commands

 control structures

 insert/update/delete

commit / rollback

There are four important properties for transactions:

• Atomic

• Consistent

• Independent

• Durable

We’ll call them ACID for short.

{ }

3

ACID

Transactions should be . . .

• Atomic

Indivisible. Everything or nothing. No partial work.

The results of a transaction are seen in their entirety or not at all.

• Consistent

All transactions leave the database in a consistent state.

Constraints that were true before the transactions are true after.

• Independent or Isolated

Transactions running concurrently act as if they were running sequentially,
isolated and independent of each other.

• Durable

The effects of completed transactions are resilient against failures.

One complete, transaction results will not be lost regardless of what happens next.

4

Locking and Blocking

The “A”, “C”, and “I” in ACID are achieved with locking and blocking.

Lock Types

• read / shared	 	 — multiple

• write / exclusive	 — one at a time

Lock Terms

• short	 	 	 	 — lasts only as long as the access

• long	 	 	 	 — lasts until the end of the transaction

Lock Granularity

• Database	 	 	 — the whole database

• Table	 	 	 	 — one table in the database

• Page	 	 	 	 — one page (TSB) on the disk

• Row	 	 	 	 — one or more rows in the table

• Field	 	 	 	 — one or more columns in a row

5

Locking and Blocking

Locking Rules

• If a transactions wants to read an object, it must first acquire a

read/shared lock.

• If a transactions wants to write an object, it must first acquire a

write/exclusive lock.

• The database engine will permit many shared locks per object,
but only one exclusive lock per object.

	 	 	 	 	 	 	 (That might be a problem.)

Deadlock

• A “deadly embrace” when two or more transactions are all waiting

for others’ resources (objects on which they have or want locks).

• Represented as a wait-for graph.

Q: How do we fix that?

6

Locking and Blocking

T1 T2

T3

7

Locking and Blocking

Deadlock

• A “deadly embrace” when two or more transactions are all waiting

for others’ resources (objects on which they have or want locks).

• Represented as a wait-for graph.

Q: How do we fix that?

A: Roll back (abort) one of the transactions, releasing their locks.

T1 T2

T3X

Deadlock

• Can be non-obvious.

8

Locking and Blocking

?

Deadlock

• Can be non-obvious.

A depth-first traversal of the wait-for-graph will reveal deadlock
when a “back-edge” (denoting a cycle) is found.

9

Locking and Blocking

10

Why Bother?

Consider bank account transactions for user “A”.

Two accounts: A1 = $900 A2 = $100 ($900 + $100 = $1000)

Consider two simultaneous transactions:

	 	 T1 — Transfer $400 from A1 to A2.

	 	 T2 — Balance check to influence a credit offer.

11

Why Bother?

Consider bank account transactions for user “A”.

Two accounts: A1 = $900 A2 = $100 ($900 + $100 = $1000)

T1 — Transfer $400 from A1 to A2. ($500 + $500 = $1000)

Consistent

12

Why Bother?

Consider bank account transactions for user “A”.

Two accounts: A1 = $900 A2 = $100 ($1000 total)

T2 — Balance check to influence a credit offer.

13

Why Bother?

Consider bank account transactions for user “A”.

Two accounts: A1 = $900 A2 = $100 ($1000 total)

What can go wrong?

(from	O’Neil	and	O’Neil’s	awesome	Database	book)

14

Why Bother?

Consider bank account transactions for user “A”.

Two accounts: A1 = $900 A2 = $100 ($1000 total)

Inconsistent !

15

Why Bother? Because it preserves consistency.

Consider bank account transactions for user “A”.

Two accounts: A1 = $900 A2 = $100 ($1000 total)

Consistent

16

What about deadlock?

(from	O’Neil	and	O’Neil’s	awesome	Database	book)

17

What about deadlock!

T1 T2

18

Two-phase Locking

Locking Rules

• If a transactions wants to read an object, it must first acquire a

read/shared lock.

• If a transactions wants to write an object, it must first acquire a

write/exclusive lock.

• The database engine will permit many shared locks per object, but

only one exclusive lock per object.

Two-phase Locking

• Growing phase — Transaction acquires all the locks it’s ever

going to need before doing anything else. It never asks for more.

• Shrinking phase — Transaction releases it’s locks, typically on

commit or rollback.

• Does not prevent deadlock in all cases, but helps reduce it.

19

Locking Recipes

Great. So what lock types, duration, and granularity should we use?

	 Lock Types:		 	 read/shared, write/exclusive

	 Lock Terms:	 	 short, long

	 Lock Granularity:	 database, table, page, row, field

Rather than get lost in the many combinations of lock type,
duration, and granularity, let’s look at some pre-defined locking
schemes, called “isolation levels”.

20

Locking Isolation Levels

(from	O’Neil	and	O’Neil’s	awesome	Database	book)

21

Locking Isolation Levels

contentionperformance

Accuracy?

The “A”, “C”, and “I” in ACID are achieved with locking and blocking.

What about “D” — durability?
22

Locking Isolation Levels

PostgreSQL Locking Modes and Uses

(from	the	great	Bruce	Momjian)

23

The Log File

The “D” in ACID comes from the log file.

Specifically the Write-Ahead Log file

(from	the	great	Bruce	Momjian)

24

The Write-Ahead Log

When a transaction begins, the plan is written to a log file, along
with the values of the data elements involved as they exist at that
time, called a “before” image.

T1 before

A1 = $900

A2 = $100

25

The Write-Ahead Log

When a transaction begins, the plan is written to a log file, along
with the values of the data elements involved as they exist at that
time, called a “before” image.

T1 before

A1 = $900

A2 = $100

T1 after

A1 = $500

A2 = $500

When that same transaction commits,
the new values are written to the log file
as an “after image” and then saved in
the database.

26

The Write-Ahead Log

When a transaction begins, the plan is written to a log file, along
with the values of the data elements involved as they exist at that
time, called a “before” image.

T1 before

A1 = $900

A2 = $100

T1 after

A1 = $500

A2 = $500

When that same transaction commits,
the new values are written to the log file
as an “after image” and then saved in
the database.

But if there is a rollback instead, the
before values are restored.

Everything or Nothing.

X

27

The Write-Ahead Log

When the database brought back online after a server failure, the
recovery process looks at WAL for transactions that were running at
the time of the failure. Those transactions…

• can be completed if there is enough data in the WAL.
This is REDO.

• can be rolled back by restoring their before images.
This is UNDO.

• In either case, the EON guarantee holds.

That’s Durability.

T1 before

A1 = $900

A2 = $100

T1 after

A1 = $500

A2 = $500

T3 before

A1 = $900

A2 = $100

T4 before

A1 = $500

A2 = $500

T4 after

A1 = $500

A2 = $500

T3 after

A1 = $900

A2 = $100

. . .

28

The Write-Ahead Log

Another Example
(from	Andy	Pavlo’s	CMU	Database	class)

CRASH!

29

The Write-Ahead Log

Another Example

< transaction id, object id, before value, after value>

Log Sequence Number

CRASH!

(from	Andy	Pavlo’s	CMU	Database	class)

30

The Write-Ahead Log

Another Example
(from	Andy	Pavlo’s	CMU	Database	class)

Recovering

What should the recovery manager do
about transaction T1?

31

The Write-Ahead Log

Another Example
(from	Andy	Pavlo’s	CMU	Database	class)

What should the recovery manager do
about transaction T1?

Nothing. T1 was committed before the
checkpoint (all changes written to the
disk) so it’s fine. There’s nothing to do.

Recovering

32

The Write-Ahead Log

Another Example
(from	Andy	Pavlo’s	CMU	Database	class)

What should the recovery manager do
about transaction T2?

Recovering

33

The Write-Ahead Log

Another Example
(from	Andy	Pavlo’s	CMU	Database	class)

What should the recovery manager do
about transaction T2?

UNDO. T2 never committed so all its
changes need to be undone.

Recovering

34

The Write-Ahead Log

Another Example
(from	Andy	Pavlo’s	CMU	Database	class)

What should the recovery manager do
about transaction T3?

Recovering

35

The Write-Ahead Log

Another Example
(from	Andy	Pavlo’s	CMU	Database	class)

What should the recovery manager do
about transaction T3?

REDO. T3 committed after the
checkpoint so the recovery manager
needs to redo all of its changes.

Recovering

36

The Write-Ahead Log

Another Example
(from	Andy	Pavlo’s	CMU	Database	class)

Values after recovery is complete:

X = 2	 (T1 committed before checkpoint)

Y = 1	 (T2 changes undone in roll back)

Z = 3	 (T3 changes redone in roll forward)

Recovery complete

