
the 1890 U.S. census. Punched cards
had a successful 65-year product
life until they were largely replaced
by magnetic tapes in the 1950s. In
the mid-20th century, data was typi-
cally stored on a magnetic tape and
dedicated to a specific application.
A tape might, for example, be used
by an inventory-control application.
Periodically, maybe once a week, the
inventory-control job would read the
tape sequentially, applying updates
as it went along and producing a new,
updated inventory tape. (As a college
student in 1964, I had a summer job
as a computer operator, running jobs
like this.)

The advent of magnetic disks, in-
troduced with the IBM RAMAC in
1956,16 had a radical impact on how
data was stored and processed. It was
no longer necessary for applications
to process data sequentially, since
data items stored on disks could be
accessed directly in any order. This
gave rise to a new wave of innovation
in how data should be organized on
disk.

In the 1960s, a team of IBM engi-
neers working on a NASA contract
developed a disk-based information
storage and retrieval system for use
in the Apollo moon landing program.

E . F. CODD’ S “A Relational Model of Data for Large
Shared Data Banks”10 is one of the most influential
papers in all of computer science. In it, Codd defined
concepts that are still in widespread use today,
more than five decades later, including defining the
theoretical foundation of the relational database
industry.

When Codd’s paper appeared in Communications
of the ACM in June 1970, I was a student member of
ACM, but I didn’t receive the issue right away. I was
driving cross-country from Stanford University to take
a summer job at IBM’s T.J. Watson Research Center
in Yorktown Heights, New York. Before long, my
summer job turned into a permanent IBM job, and I
joined a group that was looking into the future of data
management. My first task was to get up to speed on
the current state of the art.

Data has been stored in digital form for a long time.
Herman Hollerith invented punched cards to process

50 Years
of Queries

DOI:10.1145/3649887

A discussion of the evolution of the database
industry over the past half century, and why
the relational database concepts introduced
by E.F. Codd have proven to be so resilient
over several decades.

BY DONALD CHAMBERLIN

110 COMMUNICATIONS OF THE ACM | AUGUST 2024 | VOL. 67 | NO. 8

B
A

C
H

M
A

N
 P

H
O

T
O

:
D

E
N

N
I

S
 H

A
M

I
LT

O
N

/W
I

K
I

M
E

D
I

A
.O

R
G

 (
C

C
 B

Y
 2

.0
).

 C
O

D
D

 P
H

O
T

O
:

R
E

S
E

A
R

C
H

.I
B

M
.C

O
M

/R
E

S
O

U
R

C
E

S
/N

E
W

S
 V

I
A

 W
I

K
I

P
E

D
I

A
.O

R
G

.
L

O
G

O
S

:
W

I
K

I
M

E
D

I
A

.O
R

G
 (

P
U

B
L

I
C

 D
O

M
A

I
N

).
 S

Q
L

 S
Y

N
T

A
X

:
P

S
I

H
E

D
E

L
I

S
T

O
/W

I
K

I
M

E
D

I
A

.O
R

G
 (

C
C

 B
Y

-S
A

 4
.0

).
 B

A
C

H
M

A
N

 P
A

P
E

R
:

H
A

C
K

E
R

N
E

W
S

/U
D

O
C

Z
.

C
O

M
.

C
O

D
D

 P
A

P
E

R
:

S
E

A
S

.U
P

E
N

N
.E

D
U

 V
I

A
 L

E
A

R
N

S
Q

L
.C

O
M

/B
L

O
G

.
C

H
A

M
B

E
R

L
I

N
 &

 B
O

Y
C

E
 P

A
P

E
R

:
R

E
S

E
A

R
C

H
E

R
.W

A
T

S
O

N
.I

B
M

.C
O

M
 V

I
A

 H
I

S
T

O
R

Y
O

F
I

N
F

O
R

M
A

T
I

O
N

.C
O

M
.

I
S

O
I

E
C

9
0

7
5

 C
O

V
E

R
:

G
L

O
B

A
L

 C
O

M
P

L
I

A
N

C
E

 C
E

R
T

I
F

I
C

A
T

I
O

N
/L

I
N

K
E

D
I

N
.C

O
M

/P
O

S
T

S
.

A
L

L
 O

T
H

E
R

 I
M

A
G

E
S

:
S

H
U

T
T

E
R

S
T

O
C

K
.C

O
M

.

research and advances

 key insights
 ˽ The relational data model, proposed by

E.F. Codd in 1970, is the most widely
used format for business data. Its
practical feasibility was demonstrated
in the 1970s by experimental prototypes
at IBM Research and the University of
California. The 1980s saw a proliferation
of relational database products.

 ˽ SEQUEL (later shortened to SQL) was
designed in 1974 as a language for
untrained users, but it has been used
mainly by professional programmers.
Acceptance of SQL was aided by its
adoption as an ANSI Standard and by the
availability of high-quality open-source
implementations. Today, SQL remains the
most widely used query language.

 ˽ Current requirements for massive
scalability have led to new "NoSQL"
system designs that relax some of the
constraints of relational systems.

https://dx.doi.org/10.1145/3649887
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649887&domain=pdf&date_stamp=2024-08-01

AUGUST 2024 | VOL. 67 | NO. 8 | COMMUNICATIONS OF THE ACM 111

This system, named Information
Management System (IMS), was made
generally available to IBM customers
in 1969. IMS organized data on disk
in the form of hierarchies of “parent”
and “child” records.

At about the same time, a General
Electric employee named Charles
Bachman, known to his friends as
Charlie, was designing a system—
called Integrated Data Store (IDS)—
for storing and retrieving data. Like
IMS, IDS stored data on disk in the
form of records and connections be-
tween records. Users retrieved infor-
mation by explicitly referencing these
connections, following paths from
one record to another. Unlike IMS,
however, IDS did not constrain the
records to be connected in a hierar-
chical pattern but allowed records to
be connected in networks of arbitrary
complexity.

As he worked on the design of IDS,
Bachman had an important insight. If
data was to be stored on disk and ac-
cessed in arbitrary order, there would
no longer be a need for it to be dedicat-
ed to a single application. A new ab-
straction layer could be added above
the operating system, managing
shared data for multiple applications.
This new abstraction layer, called
a “database management system,”
could eliminate redundancy and
make data consistent across applica-
tions. It could provide control over
access to data by different categories
of users. The database management
system could provide services such as
backup and recovery in the event of
hardware or software failures. It could
also provide transaction semantics to
keep multiple concurrent users from
interfering with each other.

For his work in developing the
concept of an integrated data man-
agement system, exemplified by IDS,
Charlie Bachman received the ACM
A.M. Turing Award in 1973. That year,
at the ACM annual conference in At-
lanta, Bachman presented a Turing
Lecture titled “The Programmer as
Navigator,”2 in which he presented the
concept of data as a “space” in which
programmers could navigate, follow-
ing connections between records to
find the answer to a question. The to-
pology of a data space might be based
on hierarchies, as in IMS, or on more

general networks, as in IDS. Systems
based on one of these data models
came to be known as “navigational”
systems.

DBTG
When I arrived at IBM Yorktown in
1970, Charlie Bachman had not yet
received the Turing Award, but his
ideas were already quite influential
in the database industry. A move-
ment was underway to standardize
the interface presented to application
programs by a database management
system. Standardization of this inter-
face would allow multiple vendors to
develop compatible database systems
and applications to run on multiple
database systems.

COBOL, a popular programming
language for business applications,
had been designed by an organiza-
tion called the Conference on Data
System Languages (CODASYL). In the
late 1960s, CODASYL created a work-
ing group called the Data Base Task
Group (DBTG) to define a standard
sublanguage for database applica-
tions, to be embedded in COBOL.
Charlie Bachman was a member of
DBTG, and its work was strongly in-
fluenced by his ideas and experience
in designing IDS. DBTG issued a pre-
liminary report in 1969 and a final
report in 1971.9 In the early 1970s, the
DBTG report was considered the lead-
ing candidate for a standard database
language.

In mid-1972, my research group at
IBM acquired another new employee,
Ray Boyce, who had just completed his
Ph.D. at Purdue. Together, Ray and I
studied the DBTG report. The report
called for data to be organized us-
ing a concept called sets (I use italics
here to distinguish a DBTG set from a
mathematical set.) A set consisted of
one owner record and possibly many
member records. A member record
of one set could be an owner record
of one or more other sets. Each type
of record had a “location mode” that
controlled how the record could be
accessed, and a “set occurence selec-
tion” rule that controlled how new
records would be assigned to sets. An
application program could navigate,
one record at a time, following con-
nections from one set to another. A
collection of “currency indicators” re-

In the 1960s, a team
of IBM engineers
working on a NASA
contract developed
a disk-based
information storage
and retrieval
system for use in
the Apollo moon
landing program.

112 COMMUNICATIONS OF THE ACM | AUGUST 2024 | VOL. 67 | NO. 8

research and advances

in person for the first time, on the
beach at the Fontainebleau Hotel.

I attended Chris Date’s tutorial,
and I can only describe it as a conver-
sion experience. For the first time, I
understood the simplicity and pow-
er of the relational data model. The
model had no currency indicators or
set occurrence selection rules, yet it
allowed queries to be expressed, in
a compact and accessible form, that
would require long and complex pro-
grams in the DBTG approach. At the
symposium, I spent some time with
Ted Codd and Chris Date, discuss-
ing relational databases and learning
about Ted’s ongoing work at the IBM
research lab in San Jose.

When I returned to New York, I was
no longer interested in DBTG queries,
and my enthusiasm spread quickly to
my friend Ray. We stopped thinking
about incremental changes to DBTG
and began thinking about relational
query languages.

Research Prototypes
The essence of a relational system is
that all information is represented
by data values, never by explicit con-
nections between records. Queries
are framed in a high-level descriptive
language based only on data values.
An optimizing compiler then trans-
lates each query into an efficient
plan, using access aids that underlie
the data values (B-tree indexes, hash
tables, sort-merge join algorithms,
and so on). Users do not need to see
the access aids—in fact, they can be
changed and new ones can be added,
without affecting existing applica-
tions (except possibly by improving
performance). This is basically the
same idea found in high-level pro-
gramming languages, in which math-
ematical formulas are compiled into
procedures for loading registers and
performing arithmetic.

Following the publication of
Codd’s 1970 paper, relational databas-
es were getting a good deal of atten-
tion, but it still wasn’t clear how prac-
tical they were. The whole idea hinged
on building an optimizing compiler
to translate high-level descriptive que-
ries into efficient access plans. Some
people were skeptical that a compiler
could do this job as well as an expert
human programmer could. The job of

corded the “current record” of each set
and of the “run unit.” Navigation was
done by a FIND command that had
seven different formats. The meaning
of each command depended implic-
itly on currency indicators, location
modes, and set occurrence selection
rules. The navigation process was
constrained to follow paths that had
been anticipated and built into the
database design.

Ray and I studied the DBTG pro-
gramming interface and wrote a few
example applications. We hoped to
contribute to the technical literature
by writing a review of the DBTG re-
port and making some proposals for
improving it. We were confident that
if we could master something as com-
plex as this, our careers would be off
to a good start.

As I was learning the ropes at IBM
Yorktown, E.F. (Ted) Codd was con-
tinuing his work on the relational
data model at the IBM San Jose Re-
search Laboratory, a sister lab to Yor-
ktown. As part of my work in learning
the state of the art in database man-
agement, I read Codd’s 1970 paper. On
first reading, I was not too impressed.
The paper contained a lot of math-
ematical jargon. It introduced the
concepts of data independence and
normalization, defined a relation as
a subset of the Cartesian product of
a set of domains, proposed that the
first-order predicate calculus could
serve as a standard for measuring the
expressive power of query languages,
and introduced a set of operators that
became known as the “relational al-
gebra.” My impression was that the
paper was of some theoretical interest
but was not grounded in practical en-
gineering.

In the fall of 1972, I attended a sem-
inar at IBM Yorktown that improved
my understanding of Codd’s relation-
al data model. I was interested enough
in this work that I requested permis-
sion to attend an event later that year
in Miami Beach called COINS-72, the
4th International Symposium on Com-
puter and Information Sciences. Trav-
eling from New York to Miami Beach
in December had a certain appeal;
best of all, one of the scheduled speak-
ers was Chris Date, presenting a tuto-
rial on relational database systems. I
attended COINS-72 and met Ted Codd

optimizing a database query is much
more complex than managing regis-
ters. The advantages of the relational
approach for users were well under-
stood, but the question remained
whether a relational system could
meet the requirements of large-scale,
multi-user database applications.

In the early 1970s, work on relation-
al database systems was underway at
multiple IBM locations. The Peterlee
Relational Test Vehicle (PRTV) was
under construction at the IBM Scien-
tific Center in Peterlee, U.K.23 Devel-
opment of a relational product called
Business System 12 was taking place
at IBM’s Bureau Service subsidiary in
Uithoorn, Netherlands.17 In 1973, the
IBM Research Division decided to cre-
ate a new project at their San Jose, CA
laboratory, where Ted Codd was work-
ing. The project, to be called “System
R,” would build an industrial-strength
relational database prototype, to gain
experience and to influence IBM’s
plans for future database products.

Research Division employees with
interest or experience in data man-
agement were gathered from several
locations and moved to San Jose at the
company's expense to work on System
R. Already in Codd’s group at San Jose
were Morton Astrahan, Jim Gray, Jim
Mehl, Phyllis Reisner, Don Slutz, and
Irv Traiger. Moved to San Jose from
Yorktown were myself, Mike Blasgen,
Ray Boyce, Frank King, Franco Put-
zolu, and Vera Watson. From IBM’s
Cambridge Scientific Center came
Raymond Lorie. We were soon joined
by some new hires with recent Ph.Ds:
Tom Price from Stanford, Bruce Lind-
say from UC Berkeley, Pat Selinger
from Harvard, and Brad Wade from
Purdue. Other participants at various
times included Ron Fagin, Bob Yost,
Mario Schkolnick, Ray Strong, and Ka-
pali Eswaran. The typical size of the
System R staff during the seven-year
life of the project was about 14 profes-
sionals.

At about the same time, a research
project was taking shape at UC Berke-
ley under the leadership of Professors
Michael Stonebraker and Gene Wong.
This project was called INGRES, an
acronym for Interactive Graphics
and Retrieval System (also the name
of an 18th century French artist, Jean
Auguste Dominique Ingres). Like Sys-

AUGUST 2024 | VOL. 67 | NO. 8 | COMMUNICATIONS OF THE ACM 113

research and advances

interfaces and query languages. In
his early papers, Codd had described
two relational query languages; a “re-
lational algebra” consisting of opera-
tors like “projection” and “join”; and a
“Relational Calculus,” based on first-
order logic. Codd’s papers proved that
these two languages were equivalent
in their expressive power.

Ray and I understood the power
and elegance of the relational ap-
proach, but we thought that Codd’s
ideas might get more traction if they
were couched in terminology that was
more familiar to people with no math-
ematical background. We set out to
define a more “user-friendly” relation-
al query language. Our target user was
someone whose work required access
to large volumes of data, but who had
no programming experience and did
not want to become a computer pro-
grammer. This user might be an ur-
ban planner or an insurance analyst.
This user might make up questions
and want them answered quickly,
without turning them over to a tech-
nical staff. The questions might vary
from day to day and could not be an-
ticipated in advance by a database de-
signer. To serve the needs of this user,
Ray and I wanted to express questions
in a way that was as close as possible
to natural language, while still hav-
ing a well-defined syntax and seman-
tics. Our specific goals were to design
a query language with the following
properties:

 ˲ The language should be declara-
tive (non-procedural) and based on
Codd’s relational concepts.

 ˲ The language should be framed
in familiar English keywords, with no
jargon or special symbols, and easy to
type on a keyboard.

 ˲ In addition to the usual relational
operations of selection, projection,
and join, the language should provide
a way to partition a table into groups
and apply aggregating functions such
as SUM or AVERAGE to the groups.

 ˲ Queries should resemble natural
language to the extent that a user with
no specialized training could, in sim-
ple cases, understand the meaning of
a query simply by reading it. We called
this the “walk-up-and-read” property.

We called this language SEQUEL,
an acronym for “Structured English
Query Language.” While design-

face-to-face panel discussion featur-
ing both Bachman and Codd (it was
billed as a panel discussion, but every-
one knew that it was a debate).

From my perspective, the SIGFI-
DET meeting of 1974 was a watershed
event for the database industry. Before
this meeting, the network data model,
exemplified by the DBTG report, was
considered the “mainstream” in data
management, and the relational data
model was considered a “challenger,”
a disruptive and unproven proposal.
After the SIGFIDET meeting, the ad-
vantages of the relational model, iso-
lating logical information from its
physical representation, were well
understood. The relational model had
become the new mainstream for re-
search in data management, but the
question of a practical implementa-
tion remained open: Were relational
databases a form of science fiction, or
were they ready for prime time? The
two research groups, INGRES and Sys-
tem R, were focused on finding the an-
swer to this question.

Two more facts about SIGFIDET
1974 may be worth mentioning. The
first is that, after this meeting, the
participants in the Special Interest
Group realized that what they were do-
ing was managing data, and changed
the name of the group to SIGMOD,
the Special Interest Group on Man-
agement of Data. SIGMOD continues
to hold annual meetings, which are
among the most widely respected
conferences in the field of data man-
agement. The second fact is that, hid-
den on page 249 of the Proceedings of
SIGFIDET 1974 was a short paper by
Don Chamberlin and Ray Boyce, titled
“SEQUEL: A Structured English Query
Language”.8

A paradigm shift like the change
from network-structured data to re-
lational data happens slowly. But,
because it featured a direct confron-
tation between advocates of the two
alternative data models, I consider
SIGFIDET 1974 to be the event that
“starts the clock” on 50 years of rela-
tional databases.

SEQUEL
When Ray Boyce and I arrived at the
IBM Research Laboratory in San Jose,
at the start of the System R project,
our interests were focused on user

tem R, INGRES intended to explore
relational database technology and
demonstrate its feasibility for use in a
production environment. Funding for
INGRES was provided by several fed-
eral agencies, including the National
Science Foundation. Over its active
life from 1973 to 1979, INGRES provid-
ed research opportunities and prac-
tical experience for about two dozen
UC students, many of whom went on
to take leading positions at various
companies in the rapidly growing da-
tabase industry.

Both the System R group and the
INGRES group had ambitious agen-
das. They had to develop software
techniques for implementing rela-
tional data on top of an operating sys-
tem (VM/CMS in the case of System R;
Unix in the case of INGRES). They also
had to design a user interface, includ-
ing a relational query language, and
build an optimizing compiler to trans-
late that query language into efficient
execution plans. Both System R and
INGRES existed in environments that
encouraged their members to attend
conferences, share experiences with
colleagues (including each other), and
publish papers in the open technical
literature. This open collaborative en-
vironment would prove to be crucial
to the impact that both projects would
have on the software industry. Over
the course of their existence, System
R and INGRES each published more
than 40 technical papers.6,22 In 1988,
System R and INGRES jointly received
the ACM Software System Award for
their contributions to relational data-
base technology.

SIGFIDET 1974
The principal venue for exchange of
research on data management in the
early 1970s was the annual meeting of
ACM SIGFIDET, the Special Interest
Group on File Definition and Transla-
tion. The SIGFIDET meeting of 1974
took place in June, in Ann Arbor, Mich-
igan. This meeting was particularly
interesting because it was attended by
both Bachman and Codd, the princi-
pal advocates of the network and rela-
tional data models, respectively. In a
special session, Bachman and Codd
each presented a talk on the advan-
tages of their respective data models.
The prepared talks were followed by a

114 COMMUNICATIONS OF THE ACM | AUGUST 2024 | VOL. 67 | NO. 8

research and advances

ming or data handling could gain a
reasonable proficiency with SEQUEL
after a few hours of instruction.21

As the System R project matured,
the SEQUEL language continued to
evolve. A 1976 paper titled SEQUEL
27 extended the query syntax to cover
insert, delete, and update operations;
view definitions; integrity assertions;
and triggered actions. The language
defined in that paper would be im-
mediately recognized by database de-
velopers working today. In 1977, the
SEQUEL name was shortened to SQL,
an acronym for “Structured Query
Language.”

Commercialization
The System R project produced an ex-
perimental prototype that was used
at about 20 internal IBM laboratories
and, on a “joint study” basis, by three
selected IBM customers: Boeing, Up-
john, and Pratt & Whitney. The proto-
type ran on IBM mainframes under
the VM/CMS operating system. The
System R research project ended in
1979 and its results were turned over
to IBM product development divisions
for commercialization.

In 1977, the founders of a small com-
pany named Software Development
Laboratories (SDL) took an interest in
some of the System R papers, includ-
ing the SQL specifications published
in 1974 and 1976. The SDL founders
saw an opportunity here. Assuming
correctly that IBM would eventually re-
lease an SQL product on its mainframe
computers, they decided to build a
compatible product on a less expensive
platform, to be named Oracle, which
was developed on a DEC PDP-11. Its
source code was written in C, which
made it easily portable to other plat-
forms. Oracle Database, the first com-
mercial implementation of the SQL
language, was released in 1979. Avail-
able on the popular DEC VAX mini-
computer, Oracle was an immediate
commercial success. In 1983, the SDL
company changed its name to Oracle.

The INGRES project at UC Berke-
ley also produced an experimental
prototype and distributed it freely to
other universities and research labs.
By 1978, INGRES had about 300 in-
stallations and had become the de
facto standard for use in university
classes on database management. In

ing SEQUEL, Ray and I engaged in
something that we called the “Query
Game.” Experimenting with differ-
ent syntaxes, we made up example
queries and challenged each other to
express them. Some of these queries
were based on a simple table of em-
ployees with the following structure:

Table 1. A table of employee records.

Emp

Name Deptno Salary Manager

Harry A15 65000 Sally

Sally A01 59000 Megan

Queries 1 and 2 (below) are ex-
amples from the Query Game, with
their expressions in SEQUEL, as the
language (now SQL) currently exists.
These queries demonstrate two im-
portant features: join (in this case,
self-join) and grouping.

Query 1: Find employees who earn
more than their managers, and list their
names, salaries, and manager’s salaries.

SELECT e.Name, e.Salary,
m.Salary AS mgr_salary

FℝOM Emp AS e, Emp AS m
WHEℝE e.Manager = m.Name
AND e.Salary > m.Salary

Query 2: List the department num-
bers and average and maximum sala-
ries of departments having 10 or more
employees.

 SELECT Deptno,
AVG(Salary) AS avgsal,
MAX(Salary) AS maxsal

FℝOM Emp
GℝOUP BY Deptno
HAVING COUNT(*) >= 10

The first publication of the pro-
posed SEQUEL language was the pa-
per that appeared in the Proceedings
of SIGFIDET 1974.8 Shortly after this
paper appeared, my friend Ray Boyce
died, suddenly and unexpectedly, of a
brain aneurism.

Ray’s death was a great loss, but
the SEQUEL work continued. To test
our hypothesis that SEQUEL could be
understood by non-programmers, a
psychologist at IBM Research named
Phyllis Reisner conducted an experi-
ment at San Jose State University in
which she showed that college stu-
dents with no experience in program-

The relational
model had
become the new
mainstream for
research in data
management,
but the question
of a practical
implementation
remained open:
Were relational
databases a form of
science fiction, or
were they ready for
prime time?

AUGUST 2024 | VOL. 67 | NO. 8 | COMMUNICATIONS OF THE ACM 115

research and advances

of its history.
The initial work of the H2 commit-

tee was focused on developing a net-
work data language (NDL) based on the
CODASYL DBTG Report of April 1971.
But in 1982, as relational database sys-
tems were beginning to appear in the
marketplace, H2's charter was extend-
ed to include development of a stan-
dard relational database language, ini-
tially referred to as RDL. The first task
of the committee was to find a starting
point for the design of RDL.

Two relational query languages
were available in the marketplace in
1982: SQL, marketed by IBM and SDL
(later Oracle); and QUEL, marketed by
RTI (later Ingres). Either of these lan-
guages might have served as the start-
ing point for a relational language
standard. The H2 committee decided
to base its future work on SQL, pos-
sibly because the IBM representative
to H2 presented a detailed language
specification.

Beginning with the SQL specifi-
cation from IBM, the H2 commit-
tee spent about two years debating
various modifications and improve-
ments to the language. By 1984, the
committee faced a difficult decision.
SQL products from IBM and Oracle
were achieving success in the market-
place and were (mostly) compatible
with each other. The H2 committee
could choose to base its standard on
the existing products, in which case
it would have a living standard with
multiple implementations and would
be in a strong position to influence
the future evolution of the industry.
Alternatively, it could continue its
work developing an (arguably better)
language that might never be imple-
mented. At a meeting in October 1984,
the H2 committee chose the former
approach.12 The first SQL language
standard, about 90 pages long, was ad-
opted as an American National Stan-
dard in 19861 and as an International
Standard early in the following year.18
Since its initial publication, the SQL
Standard continues to evolve, with
a new version published about every
five years. The latest version, infor-
mally called SQL:2023, was published
in June 2023.

Another significant development
came from the National Institute of
Standards and Technology (NIST).

1980, the leaders of the INGRES proj-
ect spun off a commercial company,
funded by venture capital and initial-
ly named Relational Technology Inc.
(RTI), which had its own management
and technical staff that was indepen-
dent of the university. This enabled
the INGRES project at the university to
continue its focus on research issues
of academic interest. The first task
for RTI was to port the INGRES code
from Unix to run on the DEC VAX plat-
form. The resulting commercial prod-
uct was released in 1981, supporting
a query language called QUEL. RDI
changed its name to Ingres Corpora-
tion in 1989.

IBM was not in a hurry to release a
relational database system on its stra-
tegic mainframes to compete with its
successful IMS database product. But
IBM’s mid-range platform, a competi-
tor to DEC VAX, needed a database
system to compete with Oracle and
INGRES. It took IBM about two years
to turn the System R prototype into a
commercial product running on the
VSE and VM operating systems. This
product, called SQL/DS, was released
in 1981, at about the same time as IN-
GRES but two years behind Oracle.

IBM eventually released a relation-
al database product on MVS, its stra-
tegic mainframe platform. This prod-
uct, named DB2, was released on a
limited basis in 1983, followed by gen-
eral availability the following year.15
By this time, Oracle had established
a commanding lead in the relational
database industry.

Standardization
In 1978, as the database industry was
growing in importance, the American
National Standards Institute (ANSI)
formed a committee to develop stan-
dards for database languages. The
purpose of these standards was to
create a market in which database
vendors could compete to imple-
ment a standard interface, and users
could be assured of multiple sources
of compatible products. The original
name of the database committee was
ANSI X3H2, but the committee has
undergone several name changes and
is currently called INCITS DM32. In
this article, I’ll refer to the committee
as “H2,” which has been an enduring
part of its official name during most

The first SQL
language standard,
about 90 pages
long, was adopted
as an American
National Standard
in 1986.

116 COMMUNICATIONS OF THE ACM | AUGUST 2024 | VOL. 67 | NO. 8

research and advances

and SQLite. For companies developing
new Web applications, these systems
offered a compelling business model.

MySQL (https://mysql.com), devel-
oped by Michael Widenius and David
Axmark, was first released in 1995
by the Swedish company MySQL AB.
MySQL soon became popular as part
of the LAMP stack (Linux, Apache,
MySQL, and PHP) for developing
Web applications. It now has an ac-
tive installed base of 5 million users.
In 2008, MySQL was acquired by Sun
Microsystems, which in turn was ac-
quired by Oracle in 2010.

At the time of the Oracle acquisi-
tion, a copy of MySQL was separated
from the Oracle version and is being
maintained independently by Mi-
chael Widenius and some of the oth-
er original MySQL developers under
the name MariaDB (https://mariadb.
org). MariaDB is promised to be open-
source forever and is now evolving
separately from MySQL. MySQL and
MariaDB are named after Widenius’
two daughters, My and Maria.

PostgreSQL (https://postgresql.
org) is derived from POSTGRES, the
successor to the INGRES project at
U.C. Berkeley. As a research project,
POSTGRES focused on an extensi-
ble type system. When the research
project ended, the POSTGRES code
continued to be maintained by a vol-
unteer organization called the Post-
greSQL Global Development Group.
Its first SQL-based version was re-
leased in 1997. PostgreSQL is the most
fully featured and most complex of
the open-source SQL implementa-
tions. For their work on POSTGRES,
Michael Stonebraker and Larry Rowe
received the SIGMOD Systems Award
in 2015.

SQLite (https://sqlite.org), de-
signed by Richard Hipp, was first re-
leased in 2000. Unlike MySQL and
PostgreSQL, SQLite is not a client-
server system in which the server runs
as a separate process. Instead, SQLite
is a library of C-language functions
that can be called directly from appli-
cation code and run in the application
process. SQLite claims to be the most
widely deployed database system in
the world. It is embedded (invisibly) in
every Apple or Android smartphone;
every Mac or Windows computer; ev-
ery Firefox, Chrome, or Safari brows-

paved the way and the federal govern-
ment had given its blessing with FIPS
127, relational databases clearly rep-
resented the future of data manage-
ment. A good account of the growth
of the relational database industry
during the 1980s has been published
in a special issue of IEEE Annals of the
History of Computing.14

During the early 1980s, the market
leaders in relational database man-
agement were Oracle and RDI (later
INGRES), both of which ran on the
popular DEC VAX platform. When
the IBM Personal Computer became
available, it became a popular tool
for developing Oracle applications,
which could then be moved to the VAX
for production. The INGRES system
continued to feature the QUEL query
language until 1984, when it added an
SQL interface in order to compete di-
rectly with Oracle.

Informix (initially Relational Data-
base Systems Inc.) was formed in 1980
by Roger Sippl to bring relational da-
tabase technology to the Unix world
(interestingly, at about the same time,
INGRES, developed on Unix, was be-
ing ported to run on VAX/VMS). Infor-
mix initially marketed its own query
language but, like INGRES, it transi-
tioned to SQL in 1984. Informix was
ultimately acquired by IBM.

Other notable SQL implementa-
tions that became available during
the 1980s include Sybase, founded in
1984 by Bob Epstein, an alumnus of
the INGRES project; NonStop SQL, a
fault-tolerant system released by Tan-
dem in 1986; and Microsoft SQL Serv-
er, released by Microsoft in 1989.

Relational database systems were
attracting so much attention during
the 1980s that Codd published a list
of Twelve Rules11 (actually 13 rules,
numbered 0 to 12) which served as
his definition of a genuine relational
system. The most important of these
rules, called the Information Rule,
stated that “all information in a rela-
tional database must be represented
explicitly at the logical level and in
exactly one way: by values in rows and
columns of tables.”

Open source. The mid-1990s saw
some game-changing developments
in the database industry. Three open-
source SQL implementations became
available for free: MySQL, PostgreSQL,

Unlike ANSI, which is a voluntary as-
sociation of private companies, NIST
is a branch of the federal government.
In 1992, NIST published a Federal
Information Processing Standard,
called FIPS-127,19 which specified the
requirements for relational database
systems to be purchased by the U.S.
government. FIPS-127 was essentially
identical to the ANSI SQL standard
that was current at the time (SQL:1992
Entry Level). Most importantly, NIST
created a test suite of several hun-
dred test cases, and offered a service
of testing systems for conformance to
FIPS-127. About a dozen companies
had their SQL products certified un-
der FIPS-127 and became eligible to
sell them to the federal government.
Naturally, this was a big help in mar-
keting these products.

The H2 committee’s strategy of ty-
ing standards closely to commercial
products proved to be successful.
Over several decades, H2 provided a
mechanism for the controlled evolu-
tion of SQL to meet changing require-
ments. Under the guidance of H2, the
SQL standard has grown to include
referential integrity, outer joins, date
and time datatypes, OLAP features,
window functions, recursive queries,
stored procedures, constraints and
triggers, and many more features.

During the nearly four-decade life
of the SQL Standard, the H2 commit-
tee has been chaired by Don Deutsch,
and the editor of the Standard, do-
ing most of the writing, has been
Jim Melton. I believe that Don and
Jim deserve a great deal of credit for
maintaining SQL as a well-defined
standard while allowing it to evolve to
meet changing requirements.

Proliferation
The 1980s saw the introduction of a
new generation of minicomputers
that were dramatically less expensive
than earlier computers. For the first
time, computers capable of manag-
ing data were within the financial
reach of small companies or depart-
ments of large companies. The result
was an explosion of demand for data-
base systems. Relational databases,
with their simple data model and
easy-to-learn user interface, were ide-
ally positioned to meet this demand.
Since IBM, Oracle, and INGRES had

AUGUST 2024 | VOL. 67 | NO. 8 | COMMUNICATIONS OF THE ACM 117

research and advances

Consider a chain of stores that
gathers daily information from each
store, including the number of cus-
tomers who visited the store, the sales
volume in dollars, and the returned-
item volume in dollars. This informa-
tion might be represented by the SQL
table shown in Table 2. (P.K. indicates
that the Store and Day columns, to-
gether, form the Primary Key).

On some days, one or more of the
data items (Customers, Sales, or Re-
turns) might be missing. One way to
represent the missing data items is by
null values, as shown in Table 2.

Query 3 is an example that might
have been written by an analyst at the
store chain.

Query 3: Compute, for each store, the
average revenue (sales minus returns)
per customer.

SELECT Store,
 AVG((Sales - ℝeturns) /
 Customers) AS rpc

FℝOM Stores_data
WHEℝE Customers > 0
GℝOUP BY Store
OℝDEℝ BY Store;

In this query, the AVG function ig-
nores all rows that contain null val-
ues, and returns a result based on
rows that are fully populated with
non-null values. This is arguably the
best available approximation to the
answer the analyst is looking for.

If it is desired to avoid null values,
the attribute columns (Customers,
Sales, and Returns) can all be de-
clared NOT NULL. This table design
has a serious flaw: No data can be re-
corded for a given store on days when
any attribute (Customers, Sales, or Re-
turns) is missing. For example, if the
Returns data is missing for some day,
the table cannot record the Custom-
ers and Sales data for that day, even if
they are known.

An alternative design might be to
replace the Stores_data table by three
smaller tables named Customers_
data, Sales_data, and Returns_data.
Each of these three-column tables
would contain the primary key (Store
and Day) and one of the non-key at-
tributes. For a store and day on which
Customers information is missing,
there would simply be no row in the
Customers_data table; a similar rule
applies to the other two tables. In this

Boyce and I did not think we were de-
signing a language for programmers.
As described earlier, our target user
was someone who had no program-
ming experience and did not want
to become (or rely on) a computer ex-
pert. We were aiming for a language
with the “walk-up-and-read” proper-
ty, in which an untrained user could
often understand a query simply by
reading it. For this purpose, we mod-
eled SEQUEL on a small subset of the
English language (hence the name).
English, of course, is not an orthogo-
nal language.

As it turned out, Ray and I were
wrong about the predominant usage
of SQL. Typically, SQL is embedded
in a host programming language and
used by professional programmers.
In this environment, orthogonal-
ity might be more important than
an English-like syntax. It’s useless to
speculate whether Ray and I would
have put more emphasis on orthogo-
nality if we had known that most of
our users would be programmers. It’s
also unknowable whether our attempt
to make SQL a “walk-up-and-read”
language played some role in its wide-
spread acceptance.

Nulls. In real data, values are some-
times missing. They might be missing
because they are unknown, not ap-
plicable, not available yet, or for some
other reason. Dealing with missing
values is one of the biggest challenges
of data management. Every way that I
know to solve this problem has draw-
backs.

The SQL CREATE TABLE statement
allows users to declare, on a column-
by-column basis, whether null values
are permitted. The general philoso-
phy of SQL is to provide a flexible set
of tools and to trust users to use these
tools to serve their own best inter-
ests. One aspect of this flexibility is
the choice of whether to use the NOT
NULL declaration. An example might
be helpful in examining the trade-off
involved in this choice.

er; and countless well-known applica-
tions. For designing SQLite, Richard
Hipp received the SIGMOD Systems
Award in 2017.

MySQL, MariaDB, PostgreSQL, and
SQLite are all reliable, high-perfor-
mance, standard-compliant database
systems. They are all well-document-
ed and supported by large, active user
communities, and all are available
with open source to everyone at no
cost. Each provides an optional means
by which users can pay for additional
services and functionality. Because of
their high quality and low cost, these
four systems have become among the
most widely used database systems in
the world.

Controversy
Over the years, SQL has attracted a
good deal of criticism, from intel-
ligent and thoughtful critics. The
points they have raised are substan-
tive and deserve a respectful response.
Among these criticisms, the following
three stand out as being serious and
persistent:

1. As a language, SQL lacks orthog-
onality.

2. Unlike relations, SQL tables (and
query results) may contain null values.

3. Unlike relations, SQL tables (and
query results) may contain duplicate
rows.

Of course, all of these statements
are true. What follows is my personal
perspective on each of these state-
ments.

Orthogonality. The operators of an
orthogonal language return values
without side effects, and can be nest-
ed with full generality. Orthogonality
is a good design principle because it
simplifies the rules that govern how
the operators of a language can be
combined.

SQL is not an orthogonal language.
It has some operators, like GROUP
BY, that can be used only in a specific
context, and that have side effects.
This is because, in the early days, Ray

Table 2. A table that records the daily results of some stores.

Stores_data

Store (P.K.) Day (P.K.) Customers Sales Returns

Denver 2023-06-10 null 5500 250

Tucson 2023-06-15 150 4500 null

118 COMMUNICATIONS OF THE ACM | AUGUST 2024 | VOL. 67 | NO. 8

research and advances

as needed. If it were necessary to
avoid duplicate rows, the application
could generate a (rather long) primary
key for each individual grocery item,
but since the data will be processed
only in aggregate form, this might
seem unnecessary. Alternatively, the
application could maintain a coun-
ter for each product code, customer,
and date, and for each grocery item,
it could increment (or create) the ap-
propriate counter. This approach
would require a table lookup by a
three-part key for each grocery item,
a slower and more complex operation
than a simple insert. The point here is
not that one design is better than an-
other; it is that the database system
should be flexible enough to permit
the application designer to explore
these trade-offs.

In summary, SQL is based on a
belief that users have good common
sense and will make decisions that
serve their own interests if they are
empowered to do so. An SQL data-
base can be used with “relational dis-
cipline” by designing tables in such
a way that each table has at most one
column that might potentially have
missing data, and by specifying a pri-
mary key for each table and NOT NULL
on all non-key columns. Query writers
would be required to specify SELECT
DISTINCT on all query-blocks, and to
avoid use of features, such as outer
join, that might generate null values.
It is the job of a database designer, in
the context of a specific application,
to weigh the advantages of relational
discipline against its cost in terms
of time, space, and complexity. Over
time, we can expect users to evaluate
this trade-off and to “vote with their
feet.”

Resilience
Fifty-four years after its introduc-
tion by Codd in 1970, the relational
data model remains pervasive in the
database industry. According to the
market survey site db-engines.com,
the four most popular database sys-
tems in the world in December 2023
were all relational systems: Oracle,
MySQL, Microsoft SQL Server, and
PostgreSQL.13

Fifty years after its first publica-
tion in 1974, SQL is still the most
widely used database query language.

design, every row represents a true
statement, and all information that
is known can be stored without using
null values. However, in this design,
the simple Query 3 must be replaced
by the three-way join shown in Query
4. Query 4 returns the same result as
Query 3, but probably runs more slow-
ly. In addition, the three tables occupy
significantly more space than the sin-
gle table, because each primary key is
replicated three times.

Query 4: Same as Query 3, for a dif-
ferent database design.

SELECT sd.Store,
 AVG((sd.Sales - rd.ℝeturns)
 / cd.Customers) AS rpc

FℝOM Sales_data AS sd,
Customers_data AS cd,
ℝeturns_data AS rd

WHEℝE sd.Store = cd.Store
AND sd.Day = cd.Day
AND sd.Store = rd.Store
AND sd.Day = rd.Day
AND cd.Customers > 0
GℝOUP BY sd.Store
OℝDEℝ BY sd.Store;

Duplicates. Elimination of dupli-
cate rows is another area in which
SQL empowers users to ask for what
they want. Consider a query that re-
turns the names and addresses of all
University of California students ma-
joring in History. There may be thou-
sands of them. It is not very likely that
there are duplicates; that would mean
two or more history majors share the
same name and the same address. But
if there are a few duplicates like that,
the user might not care very much.
The user might not want to pay the
cost of sorting or hashing thousands
of records to ensure there are no du-
plicates. In this case, the user would
probably specify SELECT rather than
SELECT DISTINCT. SQL allows users
to make this choice, both for outer-
level queries and nested subqueries.

As another example, consider a
point-of-sale application that gath-
ers data as products slide through
the scanner at a supermarket. In a
straightforward design, each scanned
product code might produce a row in
an SQL table. If a grocery cart con-
tains three identical cartons of milk,
this design would result in three iden-
tical rows in the table. SQL queries
could organize the data into groups

The general
philosophy of SQL is
to provide a flexible
set of tools and to
trust users to use
these tools to serve
their own best
interests.

AUGUST 2024 | VOL. 67 | NO. 8 | COMMUNICATIONS OF THE ACM 119

research and advances

 ˲ Standards. The ANSI Standard
provided a formal definition for SQL.
It created a market in which new
vendors could, and did, compete for
business. The H2 committee brought
together a group of smart people
from multiple vendors to guide the
evolution of SQL. And FIPS 127 pro-
vided a standard compliance test and
a license to sell database systems to
the government, which did not hurt
a bit.

 ˲ High-quality open source imple-
mentations. Web applications have
produced an enormous stream of data
that needs a place to live. MySQL, Mari-
aDB, PostgreSQL, and SQLite offer ro-
bust, standards-compliant SQL imple-
mentations, with large, vibrant user
communities, all for free. If you are a
startup company that needs a data-
base, this is a pretty good place to look.

NoSQL
Currently, many interesting develop-
ments in database management are
part of a movement broadly known as
“NoSQL.” As described in a 2010 paper
by Rick Cattell,5 NoSQL systems are
characterized by the ability to hori-
zontally scale a high volume of simple
transactions across many servers.
These abilities are motivated by Web
applications, in which thousands or
millions of users are performing rela-
tively simple reads and updates on
shared data.

NoSQL systems usually achieve
their goals of low latency, massive
throughput, and high availability
by relaxing one or more of the con-
straints of ordinary relational sys-
tems. For example:

 ˲ Relational databases have rigid
schemas that define their database
structure. NoSQL systems may have
relaxed or partial schemas or may
have no schemas at all.

 ˲ Relational systems usually have
transactions that make certain guar-
antees, including the well-known
ACID properties. NoSQL systems
might make some compromises in
transaction semantics. For example,
an update to some piece of informa-
tion that is replicated on many nodes
might take a little while to propa-
gate to all the nodes. Some applica-
tions can afford to be patient about
this.

Each year, IEEE Spectrum publishes
a survey of “Top Programming Lan-
guages.” The survey gives each lan-
guage an overall ranking based on its
prevalence in popular development
sites such as GitHub and Stack Over-
flow, and a separate “job opportunity”
ranking based on job listings in re-
cruiting sites. In the 2023 survey,4 SQL
ranked number 7 overall, but num-
ber 1 in job opportunities. Among all
the computer languages that were in
widespread use 40 years ago, the only
ones still in the top 10 of the IEEE
2023 ranking were C and SQL.

It is interesting to consider why,
in the rapidly evolving computer in-
dustry, the relational data model, and
SQL in particular have been able to
survive and prosper for five decades.
Here is my guess for the main reasons
behind this success story:

 ˲ Codd got it right. The relational
data model, and especially Codd’s In-
formation Rule, established a simple,
powerful, flexible, and elegant way
to represent information. That’s all
there is to it. Codd had a fundamen-
tally good idea.

 ˲ We answered the performance
question. The System R and INGRES
projects proved that a high-level, user-
oriented relational language could be
implemented with sufficient perfor-
mance for use in a production envi-
ronment.

 ˲ Research was published early and
openly. IBM allowed Codd to publish
his relational data model in the open
literature. IBM also openly published
the SQL language, and all the System
R papers on query optimization and
other topics. The INGRES project at
Berkeley published all its work also,
and made INGRES available with
open source. There were no patent or
trademark issues to stand in the way
of vendors who wanted to exploit this
technology.

 ˲ Data is sticky. Relational databas-
es came along at a unique time, when
many companies were putting their
data online for the first time. Being
first counts for a lot. Once your data-
base applications are running, it is ex-
pensive to migrate them to a different
platform. Fortunately, SQL makes it
fairly easy to modify your database by
adding new tables or columns, or by
defining new views.

To a large extent,
the data that we
choose to collect,
and the ways in
which we choose
to use it, will
determine the kind
of world in which
our grandchildren
will live.

120 COMMUNICATIONS OF THE ACM | AUGUST 2024 | VOL. 67 | NO. 8

research and advances

 ˲ Relational systems usually imple-
ment the full SQL language. NoSQL
systems might support simpler user
interfaces that omit some of the more
complex and expensive operations,
such as joins and grouping. The user
interface might look more like an API
than like a query language.

 ˲ The relational data model con-
sists of homogeneous, flat tables.
NoSQL systems are sometimes based
on other data models. If they store
tables, they might allow these tables
to be nested. Or they might use some
document-oriented format, like XML
or JSON, to store documents. Or they
might even be something very simple,
like a key-value store.

A NoSQL system will probably not
include all of these features. More
likely, it will include one or two. As a
result, the term NoSQL encompasses
a variety of different systems and rep-
resents an active area of research and
development.

It is worth noting that not all the
NoSQL characteristics listed above
are related to query languages. A sys-
tem that has a relaxed schema and
eventual consistency, for example,
might still have a high-level query
language. That is why NoSQL is some-
times interpreted as “not only SQL.”
In fact, a compatible extension of SQL
called SQL++, designed for handling
schema-less JSON data, has been de-
signed at the University of California,
San Diego.20 An open-source imple-
mentation of SQL++ is available from
the ASTERIX project at U.C. Irvine.3

Conclusion
ACM A.M. Turing Award recipients
Charles (Charlie) Bachman and E.F.
(Ted) Codd laid out the road map that
the data management industry has
followed for more than five decades.
Bachman identified database man-
agement as a new level of abstraction,
bridging the gap between operating
systems and applications. Codd cre-
ated a simple, powerful, and elegant
definition for this new level of abstrac-
tion: the relational data model, which
now encodes much of the world’s busi-
ness data. Charlie Bachman died on
July 13, 2017 at his home in Lexington,
MA at the age of 92. Ted Codd died on
April 18, 2003 at his home in Aventura,
FL, at the age of 79.

Many individuals and groups
made important contributions to
progress along the road envisioned
by Bachman and Codd. The System
R project, led by W. Frank King, and
the INGRES project, led by Michael
Stonebraker, developed industrial-
strength relational-database proto-
types and validated them with com-
munities of early adopters. Ray Boyce
and I, as members of the System R
team, published the first SEQUEL
language specification. Pat Selinger,
also in System R, led the team that
developed the first cost-based query
optimizer and wrote the classic paper
explaining its design. The prototypes
created by System R and INGRES led
directly to commercial products. Lar-
ry Ellison and Bob Miner, founders
of Oracle, established the mass mar-
ket for relational databases with the
first widely used relational product.
The ANSI H2 committee, chaired by
Don Deutsch, maintained the offi-
cial definition of SQL and controlled
its evolution over many years. Jim
Melton, editor of the SQL Standard,
shepherded the standard document
through nine different versions from
1986 to 2023. Leonard Gallagher,
Joan Sullivan, and their colleagues
at NIST created the SQL Test Suite
that validated conformance to FIPS
127. The architects and builders of
MySQL, PostgreSQL, and SQLite
made professional-quality relational
database systems available to ev-
eryone for free, ensuring that SQL
would become a ubiquitous part of
e-commerce infrastructure. Some-
times I wish that my good friend Ray
Boyce had lived to see what happened
to some of the ideas we were kicking
around in 1974.

The database industry has been
an exciting place to work for the last
half-century. Today, almost any com-
mercial item can be obtained simply
by tapping a picture of it on a mobile
phone. Within seconds, somewhere
in the world, a robot begins moving
to find and package that item, and it
is delivered to your doorstep on the
following day (or sometimes the day
after that). Database technology has
made this possible, bringing unprec-
edented convenience to the lives of
people with disposable income. It
has also affected our culture in many

other ways, some of which are argu-
ably less beneficial. Data is a powerful
tool. To a large extent, the data that
we choose to collect, and the ways in
which we choose to use it, will deter-
mine the kind of world in which our
grandchildren will live.

References
1. American National Standards Institute. Database

language SQL. Technical Report ANSI X3.135-1986,
(1986).

2. Bachman, C.W. The programmer as navigator.
Commun. ACM 16, 11 (1973), 635–658;
10.1145/355611.362534

3. Carey, M.J. AsterixDB mid-flight: A case study in
building systems in academia. In Proceedings of the
35th IEEE Intern. Conf. on Data Engineering, (April
2019), 1–12; 10.1109/ICDE.2019.00008

4. Cass, S. The top programming languages 2023. IEEE
Spectrum (Aug. 29, 2023); https://bit.ly/3VexjkF

5. Cattell, R. Scalable SQL and NoSQL data
stores. SIGMOD Rec. 39, 4 (2010), 12–27;
10.1145/1978915.1978919

6. Chamberlin, D.D. et al. A history and evaluation of
System R. Commun. ACM 24, 10 (1981), 632–646;
10.1145/358769.358784

7. Chamberlin, D.D. et al. SEQUEL 2: A unified approach
to data definition, manipulation, and control. IBM J.
Res. Dev. 20, 6 (1976), 560–575; 10.1147/RD.206.0560.

8. Chamberlin, D.D. and Boyce, R.F. SEQUEL: A
structured English query language. In Proceedings of
1974 ACM-SIGMOD Workshop on Data Description,
Access and Control, ACM, (1974), 249–264;
10.1145/800296.811515

9. CODASYL Data Base Task Group. April 71 Report ACM
SIGMOD Anthology 6, (1971); https://bit.ly/3KBoRqz.

10. Codd, E.F. A relational model of data for large shared
data banks. Commun. ACM 13, 6 (1970), 377–387;
10.1145/362384.362685

11. Codd, E.F. Does your DBMS run by the rules?
Computerworld (Oct. 21, 1985); https://bit.ly/4bTpHLs.

12. Deutsch, D.R. The SQL standard: How it happened.
IEEE Ann. Hist. Comput. 35, 2 (2013), 72–75; 10.1109/
MAHC.2013.30

13. db-engines.com. DB-Engines Ranking; https://bit.
ly/3yXIxm8

14. Grad, B. Relational database management systems:
The business explosion [Guest editor’s introduction].
IEEE Ann. Hist. Comput. 35, 2 (2013), 8–9; 10.1109/
MAHC.2013.24

15. Haderle, D.J. and Saracco, C.M. The history and
growth of IBM’s DB2. IEEE Ann. Hist. Comput. 35, 2
(2013), 54–66; 10.1109/MAHC.2012.55

16. IBM Archives. IBM 350 Disk Storage Unit. IBM
Corp.; https://www.ibm.com/history/ramac

17. IBM Corporation. IBM Business System 12; https://
bit.ly/4cizpqF

18. ISO. Database language SQL. Technical Report
ISO 9075-1987. International Organization for
Standardization, (1987).

19. National Institute of Standards and Technology.
Federal information processing standards publication
FIPS 127. Technical Report, (1992).

20. Ong, K.W., Papakonstantinou, Y., and Vernoux, R.
The SQL++ Query Language: Configurable, Unifying,
and Semi-Structured, (2015); https://arxiv.org/
abs/1405.3631

21. Reisner, P. Use of psychological experimentation
as an aid to development of a query language. In
Proceedings of IEEE Trans. Software Eng. 3, 3 (1977),
218–229; 10.1109/TSE.1977.231131

22. The INGRES Papers: Anatomy of a Relational
Database System. M. Stonebraker (Ed.). Addison-
Wesley, 1986.

23. Todd, S. The peterlee relational test vehicle - A
system overview. IBM Syst. J. 15, 4 (1976), 285–308;
10.1147/SJ.154.0285

Donald Chamberlin (chamberlin.don@gmail.com) is a
retired IBM Fellow, from the Almaden Research Center in
San Jose, CA.

©2024 Copyright held by the owner/author(s).
Publication rights licensed to ACM.

AUGUST 2024 | VOL. 67 | NO. 8 | COMMUNICATIONS OF THE ACM 121

research and advances

