Club Penguin -

é ‘Relational ‘Database >

‘Table of Contents

ExecUtive SUMMAIY ~———— = P

Entity-Relationship Diagram =======-==--------== = 4
T] ettt e 5
B N T e 24
R R T I =~~~ ~— - -~ =~~—~~=7= === o———-m—-——-oo—-oooooooocooooooo e 31
Stored Procetl i = -~ -~ == e == - <15}
T g ers ——————— = R 42
S Uty ——mm=m= === e 47

Known Problems & R e e e e i S S = === e et SRR

‘Executive Summary

Club Penguinis children’s online game that | grew up playing. Though it shut down in
2017, I still think about it now and then, and how | would design things were | in charge.
Throughout this document, | will go over my interpretation of a database for this game.
My objective was to design a database that would include all data necessary to keep track
of in managing an online game. As such, the database keeps track of things like players,
locations, in-game items and their acquisition, and more. It also allows moderators to
monitor user reports and prior bans. Besides player data and certain IDs, the sample data

| use is all real data from the original game.

= = - Entity-Relationship

K
PK |startDate text
} int
) endDate date
isMemberitem | boolean FK |cataloglD int
FK |roomID int o
itemID = puffielD la l am
cataloglD

;lﬁ |
- Note: Underlined items are
e | non-nullable

ifflell)
L. -
“ e m

furnitureTyp

PK | petiD it Clotheslnventory roomiD
FK |playeriD char(10)
FK |puffield |int
puffieName | text
adoptDate | timestamp

favoriteToy |text

b
S

speed text

char(10)
PK, FK | clothesiD [int

boolean

Furniturelnventory

layeriD har(10
et char(10} layerlD
PK, FK | furiturelD playeriD S
atyOwned PK [partyiD
numPlaced | playerD partyName
= Players
startDate
PK | playeriD har(10)
layer char(10) endDate
playeriD = username text roomiD
i + userPassword text roomName
reportediD email text maxCapacity
Reports. joinDate timestamp
PK, FK char(10) isVerified boolean
PK, FK | reportedIiD char(10) isMember boolean
PK datel timestamp
reportReason text
playeriD

layerID
Playe Minigames

gameID
gameName |text
roomiD int

HighScores
playerlD.
gamelD
score

gateScored

char(10)

playeriD
banDate

banReason
timestamp

endDate

playerlD char(10)

W stamplD int
P pre— o stampID dateEarned timestamp
stampName | text
category. text
description | text
difficulty text
FK_|gameld int

‘Players

This table keeps track of all accounts

made in the game.

Functional dependencies: playerID —

username, userPassword, email,

p123456789
p000000000
p777777777
p111222333

.

p002000001

databasegod
penguin
birdy14193
EVILPENGUIN

happyguy

joinDate, isVerified, isMember

$1$8ulMJcz0Stqt4Ae8vApezNLclgXhdé.
1sHyZX7hq$40N/OBxH.IBYi1T6u1ToB1
1yUd98w/ESqLcJOpMUgzN.dHWCO.YZb/
$1SgRIatDOASZhD5N7tZGhfC7sgBreezf0
$1SFMMXAFJUSdZa.ZYNhdYPnJOg1XFrcX/

CREATE TABLE Players (

playerID char(10)
username text
userPassword text

email text

joinDate timestamp
isVerified boolean
isMember boolean

labouseur@email.com
penguin@email.com
bird@birdy.com
someone@gmail.com

sunshine@yahoo.com

primary key(playerID)

2025-01-01 12:30:43
2005-10-04 00:00:00
2010-08-08 14:12:48
2008-05-27 22:09:52
2010-02-12 06:31:09

null unique,
null unique,

null,

null unique,

null,
null,
null,

‘Parties

CREATE TABLE Parties (

This table keeps track of all events partyID int not null unique,
partyName text not null,
startDate timestamp not null,
endDate timestamp not null,

primary key(partyID)

that occur in-game.

Functional dependencies: partylD —

partyName, startDate, endDate)3

0 Beta Test Party 2005-09-21 15:00:00 2005-09-21 17:00:00
12345 April Fools Party 2009 2009-03-28 00:00:00 2009-04-02 00:00:00
55555 Operation: Blackout 2012-11-15 00:00:00 2012-12-04 00:00:00

&
A K

‘Rooms

This table keeps track of all locations

in-game.

Functional dependencies: roomID —

roomName, maxCapacity

‘«:m*"*e 262

Allrey - £ 55)
o 5 Nlu’”’ C"/ . :} 2
»'e B “‘ 5 ‘5

CREATE TABLE Rooms (
roomID 1int not null unique,
roomName text not null unique,
maxCapacity int not null,

primary key(roomID)

)3

= 110 Coffee Shop 80
130 Gift Shop 80
100 Town 120
- 310 Pet Shop 80
808 Mine 80
- 340 Stage 80

Catalogs

CREATE TABLE Catalogs (

. catalogID 1int not null unique
This table keeps track of all catalogs S .q p
catalogName text not null unique,

and their locations. Since some roomID int references Rooms (roomID),

. : rimary key(catalogID)
catalogs are found in a specific room,) ,p X o 5

b

it references rooml|D to point to

where.

Functional dependencies: cataloglD

Furniture & Igloo Catalog [null]
Penguin Style 130
Puffle Catalog 310

Costume Trunk 340 % ;

— catalogName, roomID

‘Items

This table keeps track of all in-game
items. priceCoins is nullable, since

some items are free.

Functional dependencies: itemID —
itemName, priceCoins,

isMemberltem

CREATE TABLE Items (
itemID 1int
itemName text
priceCoins 1int,

isMemberItem boolean not null,
primary key(itemID)

)

O O N o o & N =

rary |y |y
N = O

itemid
[PK] integer
477
204
5588
112
7259
5189
106
893
617
750
759
5230

itemname
text

Court Jester Hat

Astro Barrier T-Shirt

Fruitcake
Light Blue
Herbertech Pin
Cool Mittens
Mona Lisa
Banana Couch
Salon Chair
Blue Puffle
Brown Puffle

Rainbow Puffle

. pricecoins

250
200
[null]
20
[null]
200
3000
[null]
400
400
400
[null]

not null unique,
not null unique,

ismemberitem
boolean

Ve
true
true
false
false
false
true
true
false
true
false

true

true

4 o 3 K CREATE TABLE ItemAvailability (
te val a] lw itemID int not null references Items(itemID),
startDate date not null,

. endDate date,
This table keeps track of when and catalogID int references Catalogs(catalogID),

roomID 1int references Rooms (roomID)
CHECK (catalogID is not null or roomID is not null),
primary key(itemID, startDate)
I[tems can be available in multiple place);

where items are available in-game.

/ over multiple windows of time, can be
permanently available, and can be

available in either a catalog or a room. 2007-12-14 2008-01-11

2009-05-01 2009-09-04
Functional dependencies: itemID,

startDate — endDate, cataloglD,

roomliD

2005-08-22
2016-02-17
2005-08-22
2006-03-17

[null]
2016-03-02
2006-10-20
[null]

(Clothes

, This table is a subtype of Items. It
contains data regarding things the

player can have their avatar wear.

Functional dependencies: clothesID —

clothesType

CREATE TABLE Clothes (
clothesID 1int not null unique references Items(itemID),
clothesType text not null
CHECK (lower (clothesType) in ('head', 'face',
primary key(clothesID)

)5

'neck', 'body',

'feet!',

"hand',

veolot? ,

'background',

'pin')),

Clotbés‘lnenory

This table maps which players own

p777777777
which clothing items, and if they are p123456789

wearing them. p123456789

p000000000

Functional dependencies: playerID,
p777777777

clothesID — isEquipped

CREATE TABLE ClothesInventory (
playerID char(10) not null references Players(playerID),
clothesID 1int not null references Clothes(clothesID),
isEquipped boolean default FALSE,
primary key(playerID, clothesID)
)3

Furpiture

This table is a subtype of Items. It

contains data regarding things the e |
nthrigho a6 wal
player can place in their igloo (a player’s

893 floor
617 pet

house).

Functional dependencies: furniturelD

— furnitureType

CREATE TABLE Furniture (

furnitureID int not null unique references Items(itemID),
furnitureType text not null

CHECK(lower (furnitureType) in ('wall', 'room', 'floor', 'pet')),
primary key(furniturelD)

g
: @ 3
.9

Furpiture? nventory

This table maps which players own which furniture items, how many they own, and how

many they have placed.

Functional dependencies: playerlID, furniturelD — qtyOwned, numPlaced

CREATE TABLE FurnitureInventory (
playerID char(10) not null references Players(playerID),
furnitureID 1int not null references Furniture(furniturelD),

qtyOwned 1int not null,
numPlaced 1int default 0, I
CHECK (numPlaced <= qtyOwned), .
primary key(playerID, furniturelD) - '
p123456789

)3
’ p111222333 106 5 3

av”’ 777777777 893 2 2
D :¢ - 5 . 5 p B TR

Puffles

This table is a subtype of Items. Puffles
are in-game pets. This table keeps track [FK] Intege ,
of the different types of puffles. 750 Beach ball
, 759 Rocket
5230 Cloud

Functional dependencies: pufflelD —

favoriteToy, speed

 CREATE TABLE Puffles (
puffleID int not null unique references Items(itemID),
favoriteToy text,
speed text,
primary key(pufflelD)

PetPufjles

This table holds data about puffles that have been adopted and belong to players. A player

can have many puffles, including multiple of the same type.

Functional dependencies: petlD — playerlD, pufflelD, puffleName, adoptDate

CREATE TABLE PetPuffles (

petID int not null unique,

playerID char(10) not null references Players(playerlD),
puffleID 1int not null references Puffles(pufflelD),
puffleName text not null,

adoptDate timestamp not null,
primary key(petID)

\:)

/9 petid ; playerid P puffleid 7 pufflename P adoptdate >
[PK] integer character (10) integer text timestamp without time zone
1 0 p777777777 759 Cookie 2010-08-10 11:19:35
2 1 p777777777 5230 Lucky 2014-09-05 19:05:44

3 2 p002000001 750 Sky 2015-10-31 00:00:00

v 477} . E
:.'. L L=t o

Minigames

This table keeps track of all minigames
Bean Counters

within the game, and where they can be
Smoothie Smash

found.
DL Puffle Launch

Functional dependencies: gamelD — Pufflescapes

gameName, roomID Cart Surfer

CREATE TABLE Minigames (

gamelID int not null unique,

gameName text not null unique,

roomID int not null references Rooms(roomID),
primary key(gamelD)

A .
)5
>
N
- AY

X
L) J

.

Highscores
This table keeps track of players’ personal highscores in minigames.

Functional dependencies: playerlD, gamelD — score, dateScored

CREATE TABLE Highscores (
playerID char(10) not null references Players(playerID),
gamelID int not null references Minigames(gamelD),
score 1int not null,
dateScored timestamp not null,
primary key(playerID, gamelD)

p123456789 2025-01-02 20:05:28
p777777777 2015-12-23 14:54:19

- 2013-04-17 18:04:52

p000000000 2009-05-05 13:02:55

p002000001 2012-09-12 15:09:28

Stamps

This table keeps track of data regarding stamps, which are Club Penguin’s form of

achievements. Some stamps are associated with certain minigames.

Functional dependencies: stamplD — stampName, category, description, difficulty, gamelD

CREATE TABLE Stamps (

stampID 1int not null unique,
stampName text not null unique,
category text not null
CHECK (lower (category) in ('characters', 'party', 'activities', 'games')),

description text,
difficulty text not null

CHECK(lower (difficulty) in ('easy', 'medium', 'hard', 'extreme')),
gameID 1int references Minigames(gamelD),
primary key(stampID)
)3 stampid stampname 7 category ’ description » difficulty ., gameid ’
[PK] integer text text text text integer
1 212 Great Balance stamp Games Recover from a wobble Easy 4
2 439 Mountaineer stamp Party Reach a mountain peak Hard [null]
3 466 Herbert stamp characters Be in the same room as Herbert extreme [null]
4 15 Going Places stamp Activities Waddle around 30 rooms without using the map medium [null]

‘tarpedStamps
This table keeps track of which stamps players have earned.

Functional dependencies: stamplD, playerlD — dateEarned

CREATE TABLE EarnedStamps (
playerID char(10) not null references Players(playerID),
stampID 1int not null references Stamps(stampID),
dateEarned timestamp not null,
primary key(playerID, stampID)

)3

p123456789 2025-01-05 00:04:54
p777777777 2015-08-08 15:29:38
p111222333 2008-05-28 02:05:33

- p002000001 2013-03-12 14:16:25

‘Reports

This table keeps track of the in-game report feature, in which players can report other players

for breaking the rules, so that a moderator can review the reported player.

Functional dependencies: complainantlID, reportedID, dateFiled — reportReason

CREATE TABLE Reports (
complainantID char(10) not null references Players(playerID),

reportedID char(10) not null references Players(playerID),
dateFiled timestamp not null,
reportReason text not null

CHECK (lower (reportReason) in ('bad words', 'personal information', 'rude or mean', 'bad penguin name')),
primary key(complainantID, reportedID, dateFiled)

p002000001 p111222333 2011-05-07 10:26:32 rude or mean
p777777777 p111222333 2012-10-12 20:54:09 bad words

p111222333 p000000000 2012-11-01 08:05:33 personal information

—

S

R
g

D
s @ 3
> @ S
e i

-
P

‘Bans

, This table keeps track of players who have been banned, and the date their ban will end. Players

0

can also be banned permanently.

Functional dependencies: playerlD, banDate — banReason, endDate

CREATE TABLE Bans (

playerID char(10) not null references Players(playerID),

%%_ banDate timestamp not null,

y banReason text not null,
endDate timestamp,

primary key(playerID, banDate)

EN

p111222333 2011-05-08 08:17:11 rude or mean 2011-05-09 08:17:11
p111222333 2012-10-12 22:58:12 bad words 2012-10-1522:58:12
p111222333 2012-10-16 14:45:43 bad words [null]

(ClothesDetails

This view contains all data regarding clothes items.

CREATE OR REPLACE VIEW ClothesDetails as (
select c.clothesID, i.itemName, c.clothesType, i.priceCoins, i.isMemberItem
from Clothes c inner join Items i on c.clothesID = i.itemID

Court Jester Hat Head true

- 204 Astro Barrier T-Shirt body 200 true

)3

5588 Fruitcake hand [null] false
112 Light Blue color 20 false
5189 Cool Mittens hand true

"\

W\

2%
(P

ClothesDetails - Example query

‘ This query returns a table of non-member clothing items.

select *
from ClothesDetails

where not isMemberItem;

5588 Fruitcake hand [null] false
112 Light Blue color 20 false

TurpitureDetails

This view contains all data regarding furniture items.

| CREATE OR REPLACE VIEW FurnitureDetails as (
' select f.furnitureID, i.itemName, f.furnitureType, i.priceCoins, i.isMemberItem
from Furniture f inner join Items i on f.furnitureID = 1i.itemID

)3

106 Mona Lisa wall 3000 true

893 Banana Couch floor [null] false

617 Salon Chair pet 400 true

W\

‘,ﬂ‘. ‘ ‘ A
: @ S 8on X
o .

FurpitureDetails - Example guery
‘ This query returns a table of all floor type furniture items.
select =*

from furnitureDetails
where furnitureType ilike 'floor';

893 Banana Couch floor [null] false

N AP
’

-
P

‘Valio‘Players .

This view contains all players with full access to the game, meaning their account is verified and

they are not currently banned.

CREATE OR REPLACE VIEW ValidPlayers as (
select p.playerID, p.username, p.userPassword, p.email, p.joinDate, p.isMember
from Players as p
where p.isVerified and p.playerID not in (select playerID
%% from Bans
: where endDate is null or endDate > now())

)3
p123456789 databasegod $1SdJYqHW8VS67wkAGcNwq1XhTZ00.. labouseur@email.com 2025-01-01 12:30:43 true

p777777777 birdy14193 $18q6fFk39wSvNcYy3v0/ihY/mGN.jVf21 bird@birdy.com 2010-08-08 14:12:48 true
p002000001 happyguy $1SIQuH6yIXS$jL8CumooyOakud9PAkhaAl sunshine@yahoo.com 2010-02-12 06:31:09 true

. N P

=~ ~ : . . ~

N AP

-
P

‘ValioPlayers - ‘Example query

This query returns the EarnedStamps of currently valid accounts.

<
s @
»

select =
from EarnedStamps
where playerID in (select playerID

from ValidPlayers);

p002000001 15 2013-03-12 14:16:25
p123456789 439 2025-01-05 00:04:54
p777777777 466 2015-08-08 15:29:38

N AP

‘Report1

This query returns the number of players who joined in 2010.

%
select count(playerID) as "Number of players"
from Players

where date_part('year', joinDate) = 2010;

‘Report 2

This query returns data on items that are currently available to players in the game, and the

room in which they can be found. If they are found in a catalog, it returns the room the catalog is

in.

select i.itemName, coalesce(rl.roomName, r2.roomName) as roomName, 1i.priceCoins, i.isMemberItem
from Items i inner join ItemAvailability ia on i.itemID = ia.itemID

left outer join Rooms rl1 on ia.roomID = ril.roomID

left outer join Catalogs c on ia.catalogID = c.catalogID

left outer join Rooms r2 on c.roomID = r2.roomID
here ia.endDate is null or ia.endDate > now()

order by itemName ASC;

- Blue Puffle Pet Shop 400 false
- Light Blue Gift Shop 20 false

Report 3
This query returns the total number of clothing and furniture items a player owns.

| select playerID, sum(numClothes) as "Clothes owned", sum(numFurn) as "Furniture owned"
from (

select playerID, 1 as numClothes, ® as numFurn

from ClothesInventory

union

select playerID, © as numClothes, qtyOwned as numFurn

from FurniturelInventory
p777777777 1
p000000000

1)
group by playerID;

p123456789
p111222333

Storeo

‘Procedures

minigame‘Leaderboard

This procedure returns a ranking of highscores among all players

in a given minigame, along with the username of the player.

CREATE OR REPLACE FUNCTION minigamelLeaderboard (minigameID int)
returns table (username text, score int) as $$
begin
return query
select p.username, h.score
from Highscores h inner join Players p on h.playerID = p.playerID
where h.gameID = 04
order by score DESC;
end;
$$
language plpgsql;

N » .
. @
L/ \J
(P

: Aé X

minigame‘Leaderboaro - ‘Example outputs

select * select =
from minigamelLeaderboard(04); from minigameleaderboard(01);

happyguy
penguin 160
birdy14193 110

2300
databasegod 2100

This procedure shows all currently equipped clothing items and

what type they are for a given player.

CREATE OR REPLACE FUNCTION checkPlayerOutfit (pid char(10))
returns table (clothesType text, clothesName text) as $$
begin
return query
select c.clothesType, c.itemName
from clothesInventory inv inner join ClothesDetails ¢ on inv.clothesID = c.clothesID
where pid = inv.playerID and inv.isEquipped;
- end;
$$
language plpgsql;

3 ~, .
¥ g : : I A ; : e @ >
AR TR é g Lt 41 . ; (P
4 on L Rl . T T A . . 0 . . g

checkPlayerOutfit - Example outputs

select * select *
from checkPlayerOutfit('p777777777"'); from checkPlayerOutfit('p123456789');

Court Jester Hat
Astro Barrier T-Shirt

Fruitcake

uniQueTypetouipped

This procedure checks new items/updates in ClothesInventory that isEquipped, to see if the
player is already wearing another item of that type. If so, the old one is set to no longer be

isEquipped. This ensures players are only ever wearing one head item, body item, etc.

CREATE OR REPLACE FUNCTION uniqueTypeEquipped ()
returns TRIGGER as $$
begin
if new.isEquipped then
UPDATE ClothesInventory 1inv
set isEquipped = FALSE
from Clothes c
where inv.clothesID = c.clothesID
and inv.clothesID != new.clothesID
and inv.playerID = new.playerID
and c.clothesType ilike (select clothesType from Clothes where clothesID = new.clothesID)
and inv.isEquipped;
end if;
return new;

language plpgsql;

*Usage as a trigger shown on p.43-44

N AP
’

. K
\J
. X

hashPassword
This procedure encrypts userPasswords added to the Players table.

CREATE OR REPLACE FUNCTION hashPassword ()
returns TRIGGER as $$
begin
new.userPassword = crypt(new.userPassword, gen_salt('md5'));
return new;
end;
$S
language plpgsql;

%%%’

*Usage as a trigger shown on p.44-45

Triggers @

<
s @
»

uniQueTypetouipped
After anitemis added or updated in Clotheslnventory, this trigger runs to make sure

clothing items are not overlapping.

CREATE OR REPLACE TRIGGER uniqueTypeEquipped
after INSERT OR UPDATE of 1isEquipped

on ClothesInventory
for each row
execute procedure uniqueTypeEquipped();

3 » .
e @ S
.“..‘

uniQueTypetouipped - Example

(Note that 5588 and 5189 are both hand items)

INSERT INTO ClothesInventory (playerlD, clothesID, isEquipped)
VALUES ('p777777777', 5189, TRUE) ;

Before insert: After insert;

477 true

PR —

477 true
204 true

- p123456789 204 true
477 false

- p123456789 477 false
112 true

- p000000000 112 true
¥ : -] . s ’

5588 false A
5189 true %

B L N B HNTIIN : e @ S9N
. B gk R SR Y : ¢ : 3t 4\ 03
hae T 2 . M . 8 g

_
AR

bashPassword

<
s @
»

Whenever a userPassword is added/updated in Players, this trigger runs to automatically

encrypt and store only the encryption.

CREATE OR REPLACE TRIGGER hashPassword
before INSERT OR UPDATE on Players

for each row

execute procedure hashPassword(userPassword);

hashPassword - Example

'INSERT INTO Players (playerID, username, userPassword, email, joinDate, isVerified, isMember)

VALUES ('p123456789', 'databasegod', 'alpaca', 'labouseur@email.com', '01.01.2025 12:30:43', TRUE, TRUE) ,
('poOOOEEEER', 'penguin', 'abcdefg', 'penguin@email.com', '10.04.2005 00:00:00', FALSE, FALSE) ,
('p777777T777', 'birdy14193', ‘'yaylyay', 'birdebirdy.com', '08.08.2010 14:12:48', TRUE, TRUE) ,
('p111222333', 'EVILPENGUIN', '12345', 'someone@gmail.com', '05.27.2008 22:09:52', TRUE, FALSE) ,
('p002000OOL', 'happyguy', 'password’, 'sunshine@yahoo.com', '02.12.2010 06:31:09', TRUE, TRUE) ;

p123456789 databasegod ~ $158ulMJcz0Stqt4Ae8vApezNLclgXhdé. labouseur@email.com 2025-01-01 12:30:43
p000000000 penguin $18sHyZX7hqS40N/OBxH.IBYi1T6u1ToB1 penguin@email.com 2005-10-04 00:00:00
p777777777 birdy14193 $18yUd98w/ESqLcJOpMUgzN.dHWCO.YZb/ bird@birdy.com 2010-08-08 14:12:48
p111222333 EVILPENGUIN = $1SgRIatDOASZhD5N7tZGhfC7sgBrcezf0 someone@gmail.com 2008-05-27 22:09:52
p002000001 happyguy $1SFMMXAFRJUSdZa.ZYNhdYPnJOg1XFrcX/ sunshine@yahoo.com 2010-02-12 06:31:09

T L T o : o : ” @
. ? £ . A . : >
2 AT - § . ¥ Rl " . s

‘User ‘Roles - Adomin

This role is for the user given total administrative control over the database.

'CREATE ROLE admin;
- grant all on all tables in schema public to admin;

ﬁ% |

e - B - . 3 -
A 3 » . 24 »!
O LI . .,) Py o - ' Y

User Roles - Game management

These are roles for individuals involved in management of the game and the features within it.

gameDeveloper - As someone who will be

coding in new items, parties, etc., they are able gameWriter - Similar to

to select, insert, and update in tables related to gameDeveloper, except

game features, but cannot view or edit any gameWriters can only select.

player data.

- |CREATE ROLE gameDeveloper; CREATE ROLE gameWriter;

~ grant SELECT, INSERT, UPDATE on Parties to gameDeveloper; grant SELECT on Parties to gameWriter;

grant SELECT, INSERT, UPDATE on Rooms to gameDeveloper; grant SELECT on Rooms to gameWriter;

grant SELECT, INSERT, UPDATE on Catalogs to gameDeveloper; grant SELECT on Catalogs to gameWriter;

grant SELECT, INSERT, UPDATE on Items to gameDeveloper; grant SELECT on Items to gameWriter;

grant SELECT, INSERT, UPDATE on ItemAvailability to gameDeveloper; grant SELECT on ItemAvailability to gameWriter;

grant SELECT, INSERT, UPDATE on Clothes to gameDeveloper; grant SELECT on Clothes to gameWriter; : .
;’grant SELECT, INSERT, UPDATE on Furniture to gameDeveloper; grant SELECT on Furniture to gameWriter;
~v)” grant SELECT, INSERT, UPDATE on Puffles to gameDeveloper; grant SELECT on Puffles to gameWriter;

. Av_ grant SELECT, INSERT, UPDATE on Minigames to gameDeveloper; o grant SELECT on Minigames to gameWriter;
dgrant SELECT, INSERT, UPDATE on Stamps to gameDeveloper; s grant SELECT on Stamps to gameWriter;

User Roles - Player management

These are roles for individuals involved in management of players and their associated data.

playerManager - Able to select, insert, and update

player into tables that keep track of individual

player information. In a full implementation, this

would be taken care of by the system itself, but it’s

still helpful to have a role for someone who

ensures accuracy of this data.

CREATE ROLE playerManager;

grant
grant
grant
grant
grant
grant
grant
grant

SELECT,
SELECT,
SELECT,
SELECT,
SELECT,
SELECT,
SELECT,
SELECT,

INSERT,
INSERT,
INSERT,
INSERT,
INSERT,
INSERT,
INSERT,
INSERT,

UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE

on
on
on
on
on
on
on
on

Players to playerManager;
ClothesInventory to playerManager;
FurnitureInventory to playerManager;
PetPuffles to playerManager;
Highscores to playerManager;
EarnedStamps to playerManager;
Reports to playerManager;

Bans to playerManager;

moderator - As someone tasked with
managing player behavior /
enforcement of rules, moderators can
select player data and reports, and can

select, insert, and update bans.

CREATE ROLE moderator;

grant SELECT on Players to moderator;

grant SELECT on Reports to moderator;

grant SELECT, INSERT, UPDATE on Bans to moderator;

‘User Roles - Revoke

What if moderators abuse the information they find in the Players table?

Their access can easily be taken away:

revoke all on Players from moderator;

REVOKE

Query returned successfully in 46 msec.

Known Problems/Future Enbancements

% Currently, there is nothing to prevent timestamps from being set in the future, or
acquisition timestamps from being set as after the player’s join date. In the future, this
could be solved with check constraints and triggers. (Some timestamps, particularly end

dates, should be able to be set in the future)

% The current model does not allow for minigames or catalogs to change rooms, which is
something that happened a few times in the later years of Club Penguin. This could be

solved using an associative entity to map features to their locations.

% There is nothing preventing non-members from acquiring or equipping/placing
member-only items. It's important to note that players can still own member-only items

from past memberships. The acquisition/equipment issue could be solved with a trigger.

Twown Problems/Future Enhancements, cont.

% It could be useful to have a “Moderators” table as a subtype of Players, which would allow Bans to
keep track of which moderator placed the ban. There should also be a way to keep track of if the ban

was executed by an automatic system.
% It could also be useful to have a “ChatLogs” table for moderation purposes.

I[temAvailability could be updated to include parties as part of an item’s availability alongside

catalogs and rooms, since some items are party-exclusive.

% Player’s adopted puffles can be walked, which will be shown on their avatar, but the current
checkPlayerOutfit procedure doesn’t show this. A future version might have a boolean “isWalking”
as a field of PetPuffles, which is then referenced in the checkPlayerOutfit procedure to be
incorporated into the returned table. isWalking would also need a trigger similar to

uniqueTypeEquipped to ensure only one puffle is being walked.

