
Club Penguin -
Relational Database

Sophia Masone
CMPT 308
May 2025

Table of Contents

Executive Summary --- 3

Entity-Relationship Diagram -- 4

Tables -- 5

Views --- 24

Reports -- 31

Stored Procedures --- 35

Triggers -- 42

Security -- 47

Known Problems & Future Enhancements -- 52

Executive Summary
Club Penguin is children’s online game that I grew up playing. Though it shut down in

2017, I still think about it now and then, and how I would design things were I in charge.

Throughout this document, I will go over my interpretation of a database for this game.

My objective was to design a database that would include all data necessary to keep track

of in managing an online game. As such, the database keeps track of things like players,

locations, in-game items and their acquisition, and more. It also allows moderators to

monitor user reports and prior bans. Besides player data and certain IDs, the sample data

I use is all real data from the original game.

Entity-Relationship
Diagram

Note: Underlined items are
non-nullable

Tables

Players
This table keeps track of all accounts

made in the game.

Functional dependencies: playerID →

username, userPassword, email,

joinDate, isVerified, isMember

Parties
This table keeps track of all events

that occur in-game.

Functional dependencies: partyID →

partyName, startDate, endDate

Rooms
This table keeps track of all locations

in-game.

Functional dependencies: roomID →

roomName, maxCapacity

Catalogs
This table keeps track of all catalogs

and their locations. Since some

catalogs are found in a specific room,

it references roomID to point to

where.

Functional dependencies: catalogID

→ catalogName, roomID

Items
This table keeps track of all in-game

items. priceCoins is nullable, since

some items are free.

Functional dependencies: itemID →

itemName, priceCoins,

isMemberItem

ItemAvailability
This table keeps track of when and

where items are available in-game.

Items can be available in multiple places

/ over multiple windows of time, can be

permanently available, and can be

available in either a catalog or a room.

Functional dependencies: itemID,

startDate → endDate, catalogID,

roomID

Clothes
This table is a subtype of Items. It

contains data regarding things the

player can have their avatar wear.

Functional dependencies: clothesID →

clothesType

ClothesInventory
This table maps which players own

which clothing items, and if they are

wearing them.

Functional dependencies: playerID,

clothesID → isEquipped

Furniture
This table is a subtype of Items. It

contains data regarding things the

player can place in their igloo (a player’s

house).

Functional dependencies: furnitureID

→ furnitureType

FurnitureInventory
This table maps which players own which furniture items, how many they own, and how

many they have placed.

Functional dependencies: playerID, furnitureID → qtyOwned, numPlaced

Puffles
This table is a subtype of Items. Puffles

are in-game pets. This table keeps track

of the different types of puffles.

Functional dependencies: puffleID →

favoriteToy, speed

PetPuffles
This table holds data about puffles that have been adopted and belong to players. A player

can have many puffles, including multiple of the same type.

Functional dependencies: petID → playerID, puffleID, puffleName, adoptDate

Minigames
This table keeps track of all minigames

within the game, and where they can be

found.

Functional dependencies: gameID →

gameName, roomID

Highscores
This table keeps track of players’ personal highscores in minigames.

Functional dependencies: playerID, gameID → score, dateScored

Stamps
This table keeps track of data regarding stamps, which are Club Penguin’s form of

achievements. Some stamps are associated with certain minigames.

Functional dependencies: stampID → stampName, category, description, difficulty, gameID

EarnedStamps
This table keeps track of which stamps players have earned.

Functional dependencies: stampID, playerID → dateEarned

Reports
This table keeps track of the in-game report feature, in which players can report other players

for breaking the rules, so that a moderator can review the reported player.

Functional dependencies: complainantID, reportedID, dateFiled → reportReason

Bans
This table keeps track of players who have been banned, and the date their ban will end. Players

can also be banned permanently.

Functional dependencies: playerID, banDate → banReason, endDate

Views

ClothesDetails
This view contains all data regarding clothes items.

ClothesDetails - Example query
This query returns a table of non-member clothing items.

FurnitureDetails
This view contains all data regarding furniture items.

FurnitureDetails - Example query
This query returns a table of all floor type furniture items.

ValidPlayers
This view contains all players with full access to the game, meaning their account is verified and

they are not currently banned.

ValidPlayers - Example query
This query returns the EarnedStamps of currently valid accounts.

Reports

Report 1
This query returns the number of players who joined in 2010.

Report 2
This query returns data on items that are currently available to players in the game, and the

room in which they can be found. If they are found in a catalog, it returns the room the catalog is

in.

Report 3
This query returns the total number of clothing and furniture items a player owns.

Stored
Procedures

minigameLeaderboard
This procedure returns a ranking of highscores among all players

in a given minigame, along with the username of the player.

minigameLeaderboard - Example outputs

checkPlayerOutfit
This procedure shows all currently equipped clothing items and

what type they are for a given player.

checkPlayerOutfit - Example outputs

uniqueTypeEquipped
This procedure checks new items/updates in ClothesInventory that isEquipped, to see if the

player is already wearing another item of that type. If so, the old one is set to no longer be

isEquipped. This ensures players are only ever wearing one head item, body item, etc.

*Usage as a trigger shown on p.43-44

hashPassword
This procedure encrypts userPasswords added to the Players table.

*Usage as a trigger shown on p.44-45

Triggers

uniqueTypeEquipped
After an item is added or updated in ClothesInventory, this trigger runs to make sure

clothing items are not overlapping.

uniqueTypeEquipped - Example
(Note that 5588 and 5189 are both hand items)

Before insert: After insert:

hashPassword
Whenever a userPassword is added/updated in Players, this trigger runs to automatically

encrypt and store only the encryption.

hashPassword - Example

Security

User Roles - Admin

This role is for the user given total administrative control over the database.

User Roles - Game management
These are roles for individuals involved in management of the game and the features within it.

gameDeveloper - As someone who will be

coding in new items, parties, etc., they are able

to select, insert, and update in tables related to

game features, but cannot view or edit any

player data.

gameWriter - Similar to

gameDeveloper, except

gameWriters can only select.

User Roles - Player management
These are roles for individuals involved in management of players and their associated data.

playerManager - Able to select, insert, and update

player into tables that keep track of individual

player information. In a full implementation, this

would be taken care of by the system itself, but it’s

still helpful to have a role for someone who

ensures accuracy of this data.

moderator - As someone tasked with

managing player behavior /

enforcement of rules, moderators can

select player data and reports, and can

select, insert, and update bans.

User Roles - Revoke
What if moderators abuse the information they find in the Players table?

Their access can easily be taken away:

Known Problems/Future Enhancements
★ Currently, there is nothing to prevent timestamps from being set in the future, or

acquisition timestamps from being set as after the player’s join date. In the future, this

could be solved with check constraints and triggers. (Some timestamps, particularly end

dates, should be able to be set in the future)

★ The current model does not allow for minigames or catalogs to change rooms, which is

something that happened a few times in the later years of Club Penguin. This could be

solved using an associative entity to map features to their locations.

★ There is nothing preventing non-members from acquiring or equipping/placing

member-only items. It’s important to note that players can still own member-only items

from past memberships. The acquisition/equipment issue could be solved with a trigger.

Known Problems/Future Enhancements, cont.
★ It could be useful to have a “Moderators” table as a subtype of Players, which would allow Bans to

keep track of which moderator placed the ban. There should also be a way to keep track of if the ban

was executed by an automatic system.

★ It could also be useful to have a “ChatLogs” table for moderation purposes.

★ ItemAvailability could be updated to include parties as part of an item’s availability alongside

catalogs and rooms, since some items are party-exclusive.

★ Player’s adopted puffles can be walked, which will be shown on their avatar, but the current

checkPlayerOutfit procedure doesn’t show this. A future version might have a boolean “isWalking”

as a field of PetPuffles, which is then referenced in the checkPlayerOutfit procedure to be

incorporated into the returned table. isWalking would also need a trigger similar to

uniqueTypeEquipped to ensure only one puffle is being walked.

