
CounterStikeRyan Munger

Table of Contents

2

Executive Summary
This document provides an overview of the database schema designed for a CounterStrike2 (CS2)
item marketplace. The database captures the relationships between various entities within the CS
ecosystem, including operations, cases, capsules, stickers, majors, matches, weapons, skin items,
users, and market transactions. This schema aims to facilitate efficient storage and retrieval of data
related to CS items, their attributes, and their trading history. This document contains the respective
create statements and documentation for each table as well as useful reports (queries), view
definitions, stored procedures, triggers, and security features.

3

Objectives

The primary objectives of this database are to:

● Organize CS Item Data: Systematically structure data related to CS items (skins, stickers, etc.) and their characteristics.
● Track Items: Record the origin and history of items, including the cases or capsules they were obtained from.
● Manage Market Transactions: Store data on item sales, including buyer, seller, price, and timestamps.
● Store User Information: Maintain data on Steam users, including their inventories and trading activity.
● Support Major Tournament Data: Store information about CS Major tournaments, matches, and related skin items.
● Enable Complex Queries: Facilitate complex queries for data analysis, reporting, and application development.
● Ensure Data Integrity: Enforce data consistency and accuracy through constraints, data types, and relationships.

Entity Relationship Diagram

4

Operations Table

Purpose: Stores information on seasonal operations (in-game events).

Create Statement:

Functional Dependencies: OperationID → OperationName, DateReleased

5

Cases Table

Purpose: Stores information on CS cases (contain items and are opened by users).

Create Statement:

Functional Dependencies: CaseID → CaseName, OperationID

6

Capsules Table

Purpose: Stores information on CS capsules (contain stickers and are opened by users).

Create Statement:

Functional Dependencies: CapsuleID → CapsuleName, OperationID

7

Stickers Table
Purpose: Stores information about CS stickers (obtained from capsules and can be
applied to weapon skins).

Create Statement:

Functional Dependencies: StickerID → StickerName, Rarity, Film, CapsuleID

8

Majors Table
Purpose: Stores information about CS major tournaments.

Create Statement:

9

Functional Dependencies:
MajorID → MajorName, Location,

StartDate, EndDate

Matches Table

Purpose: Stores information about matches within a major. Items obtained during a

match become souvenirs associated with it.

Create Statement:

AwayTeam, MatchDate, HomeScore, AwayScore

10

Functional Dependencies:
MatchID → MajorID, HomeTeam,

Weapons Table
Purpose: Stores information on the weapons that skins can be obtained for.

Create Statement:

11

Functional Dependencies:
ItemID → WeaponName,

WeaponType, PriceInGame,

FireRate, ArmorPen,

AccRange, MagCapacity,

ReserveAmmo, RunSpeed,

ReloadSd

SkinItems Table
Purpose: Stores information about skins for weapons.

Create Statement:

Functional Dependencies: SkinItemID → CaseID, ItemID, ItemName, Wear, Float,
Pattern, IsSouvenir, MatchID, IsStatTrak, Kills, IsNamed, GivenName

12

Example SkinItems

13

SkinItemStickers Table
Purpose: Stores information about stickers applied to skin items.

Create Statement:

 Functional Dependencies: StickerID, SkinItemID → Slot, ScrapeWear

14

SteamUsers Table
Purpose: Stores information about users that can collect items.

Create Statement:

15

Functional Dependencies:
SteamID → UserName, CSHrsPlayed,

CSLastPlayed, CSFirstPlayed, BalanceUSD

Inventories Table
Purpose: Stores information about what items belong to which users.

Create Statement:

Functional Dependencies: SteamID, SkinItemID → AcquiredAt

16

Friendships Table
Purpose: Stores information about user friendships (undirected).

Create Statement:

Functional Dependencies: FriendA, FriendB → DateFriended

17

Buyers Table

Purpose: Stores information on users buying items.

Create Statement:

Functional Dependencies: BuyerID → TotalSpentUSD

18

Sellers Table
Purpose: Stores information on users selling items.

Create Statement:

Functional Dependencies: SellerID → TotalEarnedUSD

19

MarketTransactions Table
Purpose: Stores information

on item sale transactions.

20

Functional Dependencies:
TransID → ItemID, BuyerID,

SellerID, PriceUSD, ListedAt,

SoldAt

View Report:
Popular Skins

Purpose: This view finds the most popular skins being

bought and sold on the market.

21

View Report:
Top Market Users

Purpose: This view shows the top market buyers and sellers.

22

View Report: Common SkinItem Sticker Combos

Purpose: This view shows the user the most common sticker and item skin

combinations!

23

View Report:
Average StatTrak Kills By Weapon Type

Purpose: This view details the average amount of StatTrak™ kills for each

weapon, regardless of skin.

24

View Report: Daily Transactions

Purpose: This view shows us how strong the item market

is each day in the last 30 days.

25

View Report: Top Weapons for Skins

Purpose: This view shows how many skins are available for each weapon.

26

View Report: Average Case Item Values

Purpose: This view shows the average value of items from each case.

27

View Report: Operation Metrics

Purpose: This view shows the performance metrics

for each operation. Metrics include transactions per

day, unique skins, market volume, and cases released.

28

Stored Procedure:
Get_User_Items

Purpose: Provided the id of a user, return all of the items in that

user’s inventory.

29

Stored Procedure:
Case_Opening_Stats

Purpose: Provided the name of a case, this function determines

how often certain drops are obtained.

30

Stored Procedure:
Souvenir_Items_By_Major

Purpose: Provided a major name, this function finds all souvenir

items dropped during it, their owners, their values, and more!

31

Stored Procedure:
Get Market Transactions

Purpose: Provided an item name and wear, this function

finds all of the market listings and sales of the item.

32

Trigger: Prevent Duplicate Friendships

Purpose: This function is triggered every time there is an insertion into the

friendships table. Since the friendship system is undirected, we do not need a

FriendB → FriendA entry if there is already a FriendA → FriendB entry.

33

Trigger: Confirm Seller Ownership

Purpose: This function is triggered when a

seller lists an item and ensures that the item is

actually in the seller’s inventory.

34

Trigger:
 Transfer
 Item
 Ownership

Purpose: This function is triggered when a

transaction is inserted or updated. It

transfers the ownership of an item from the

seller’s inventory to the buyer’s inventory on

transaction completion.

35

←Before | After→

Trigger:
 Transfer
 Funds

36

←Before | After→ Purpose: This function runs when a

transaction is inserted or updated and

ensures that the buyer has enough

balance to purchase the item. It then

transfers the funds properly as well as

updates buyer totalSpent and seller

totalEarned!

Security

Details
The security of this database has admin users,
an application service user, and an analyst user.

The admin has full access to the entire database
and schema.

The application service account can read and
write data, but not alter the schema.

The analysts can only read data and utilize
stored procedures.

Connections are limited for security. 37

Groups:
 Admins
 Application
 Analysts

Implementation Notes
Friendships are undirected.

Operations are in-game events that contain cases, capsules, etc. Not all cases

and capsules need to be part of an operation.

38

Items obtained from a case during a major match will become a souvenir item.

There is a steam fee whenever an item is sold. Items can be named by players. Items can be StatTrak™,

meaning that the kills achieved with the weapon are counted. Items have varying levels of wear on them,

indicating damage to the item. The float is simply a more precise description of this wear as opposed to the

wear name. The same skin for the same item may also come in several patterns.

Stickers can be scraped off of items to varying degrees. A sticker’s ‘Film’ refers to its finish, for example, a

metallic foil. Stickers can be applied to items at preset locations, known as slots. Some items have more slots

than others.

Known Problems
This database has a small set of known flaws:

The ‘Location’ field of the Majors table can be further broken down for
normalization purposes.

The MarketTransactions Table will not scale well to a busy market system.

User inventories cannot hold stickers, so it is unclear how users could obtain
them or apply them to their items.

39

The SkinItemStickers table does not prevent the same item from having over 4 stickers applied
to it. It is also possible to apply multiple stickers in the same slot. Both of these scenarios are
erroneous. Triggers would fix these issues.

The trigger that handles funds is not very safe. If the balance update to the seller succeeds, but
the insertion into MarketTransactions fails, the seller keeps the money, and the transaction isn't
recorded. There is also no records kept.

Future Enhancements

There are several features in the real CounterStrike item & market

system that could be added to this database implementation.

40

Some sticker capsules are associated with majors similar to souvenir skins. This functionality could be

added with a foreign key to the majors table.

A user’s inventory can contain more than just weapon skins. It can also hold stickers, capsules, cases, case

keys, name tags, sprays, music kits, etc!

Item trades between users can be implemented.

Users can place ‘buy orders’ to buy a specific quantity of a specific item at a specific price.

CounterStike

