Home Music About Me Contact P

Music DNA &

A Music Lineage Database
Design

Colin Martin




@

Table 0f Gontents

................................................................................................. 3
Entity Relationship Diagram...........uevvieeieeiiiieeecteeee e e e e e, 4
=1 0 =TSP 5-18
VWS ettt ettt e e e e ettt e e e e eeaat e e e e e e e e ba e e e e eetasa e eeeeaaaeeeeeaaaaaeeens 19-22
QUETIES/REPOIES. ..ttt e e e e e e e e e e e e e et ree e e e e eeeeeeaenssnnaaannees 23-27
S (ol g =To I ad o Tal<To U] =TT UUPUUR 28-31
LI F =T T PUUUPP Y 32-34
Y =Tl U | | Y25 PTRPPPR 35-306

Implementation Notes, Known Problems, Future Enhancements........... 37-38



Executive Summary

The music industry is extremely vast. There are many artists that create incredible songs that can
iInspire a lot of other musicians in their work. Whether it be through the usage of sampling, or a
simple cover, a lot of songs are tied together due to the inspirations of musical masterpieces from
the past. Some songs do fail to give proper credit though, and legal trouble can spark.

This database encapsulates this entire idea, demonstrating how songs and artists are connected to
each other through various samples, techniques, inspirations, and so on. As you continue through
my work, you will see an ER diagram visualizing this concept, followed by a breakdown of all of the
tables and its contents. After that, you will see the views, queries, stored procedures, triggers, and
roles that | implemented into the SQL.

The purpose of this database is to demonstrate a cohesive design, with the inclusion of a fun and

interesting topic. The way music travels is a lot more extensive than you may initially realize, and this
database will help paint that picture.



i 3
Diagram key
. Strong Entity
O Weak Entity

\, y

PK int [techniquelD
text |method
text |description
techniquelD

SampleTechniques

PK,FK | int |samplelD

PK,FK | jnt [techniquelD
text |wherelnSong
samplelD

PK int |samplelD

FK int originalSongID

FK int |sampleSongID
text |[type
text |sampleDesc

boolean |licensed

ER Diagram

PK int

FK int

FK int
text

coverlD

coveredSonglD
sourceSonglD

reason

songlD

songlD

Collaborations
—<| PKFK int |songlD
PK,FK | int |collaboratorlD = 3
\ | PK int |pid
text  |firstName
date |DOB
PK int albumiD
) text |countryFrom
FK int |artistiD o
: text |homeCity J
text [title
text |genre
i ) i artistiD piuj
int rating pid
int yearReleased
interval |runtime Artists
PK, FK int artistlD Producers
—1 text |genreAssociation PK,EK| int |prodID
tbuml int numberOfAlbums text |genreAssociation
int yearsActive int numberOfProducedSongs
int  |discogRating int |yearsActive
n_i o ' FK int  |labellD FK int |labellD
art
text nickname
(—|— PK int |songlD 1T LT N
FK int |artistiD = abellD—
) “labellD
text |title
text |genre
\_|— text |key
; int |BPM PK int |labellD
/—l— int yearReleased RIERES) text |labelName
L int |yearsActive
PK int | disputelD = = a
int platinumeecor mount
songlD mngln—é FK int |songlD = =
FK int |plaintiffartistio [ >~
A FK int |defendentArtistiD =>——
ChartPositi text |description
outcom
PKFK | int |songiD L5 2
dateOfDi
PK | text |chartName e |CSCCIBERMIE
int |chartPasition
PK date |chartDate







pid

firstName

lastName

DOB

countryFrom

homeCity
primary key(pid)
); —— end People

CREATE TABLE People (

int not null,

text not
text, —-
date not
text not
text not

null,
some artists are a singular name
null,
null,
null,

The People table stores every person that is in this
iIncluded in this database, including their origin and
date of birth. Note that some last names are null as
some artists only go by a one word name.

Functional Dependencies:

pid - [firstName, lastName, DOB, countryFrom,

homeCity]

3

O o < o0 o A W

10
11
|2
13
14
1t5
16
117
18
19
20
21
22

pid

[PK] integer s

"

o A WM

o O 0~ o

12
13
14
15
16
17
18
19
20
21
22

firsthame
text

Yung
Kanye
Lucky
Robin
Marvin
Player
The
Stevie
Coolio
Vanilla
Queen
David
Lenny
Childish
Steely
Kendrick
Jay
Pharell
Beach
Journey
Time

Alan

"

peopie

lastname
text

Gravy
West
Chops
Thicke

Gaye

Temptations

Wonder

Ice

Bowie
Kravitz
Gambino
Dan
Lamar
Rock
Williams

House

Check

Labouseur

&

dob
date

1996-03-19
1977-06-08
2006-12-19
1977-03-10
1939-04-02
1977-05-06
1961-03-21
1950-05-13
1963-08-01
1967-10-31
1970-06-27
1947-01-08
1964-05-26
1983-09-25
1971-02-06
1987-06-17
1985-03-31
1973-04-05
2004-06-24
1973-12-31
1994-12-02
1968-01-23

&

countryfrom
text

United States
United States
United States
United States
United States
United States
United States
United States
United States
United States
England

England

United States
United States
United States
United States
United States
United States
United States
United States
United States

United States

>

&
Ny
@
C
/
homecity ;
text
Rochester
Atlanta

New York City

Los Angeles
Washington D.C.

Los Angeles

Detroit

Saginaw

Monessen

Dallas

London

Brixton

New York City
Edwards Air Force Base
Annandale-on-Hudson
Compton

Watts

Virginia Beach
Baltimore

San Francisco
Poughkeepsie

Albany



-- RecordLabel --

CREATE TABLE RecordLabels (
labelID
LlabelName
citylLocated
yearsActive
platinumRecordAmount

primary key(labellD)

); —— end RecordLabel

int not null,

text not null,

text not null,

ink,

int check(platinumRecordAmount >= 0),

The RecordLabel table stores every record label that a
person (artist/producer) may be signed to, including
where they are located, how long they have been
around, and how many platinum records they have tied

to their name.

Functional Dependencies:
labellD - [labelName, cityLocated, yearsActive,
platinumRecordAmount]

labelid

RecordLabels

[PK] integer 4
T 100
7 101
3 102
4 103
= 104
6 105
7 106
8 107
9 108
10 109
11 110
12 1117
13 2
14 113

labelname
text

Republic Records
GOOD Music
Interscope Records
Motown

RSO Records

SBK Records
Parlophone

Virgin Records
RCA Records
pglang

Top Dog Entertainment
SubPop Records
Columbia Records

Warner Records

Ve

citylocated
text

New York City
Chicago
Santa Monica
Detroit
London

New York City
London

Los Angeles
New York City
Los Angeles
Carson

Seattle

Washington D.C.

Los Angeles

. Yyearsactive

. platinumrecordamount ,

integer integer

30 600
21 21
36 1000
67 b3
10 22
9 10
129 45
53 77
124 400
5 3
21 51
39 5
38 331
66 389



Artists

-— Artists --
CREATE TABLE Artists (
artistID int not null references People(pid),
genreAssociation text,
numberOfAlbums -l nt ’ artistid genreassociation numberofalbums , yearsactive discograting labelid nickname .
yea f"SACt'-I ve 'I nt [PK] integer 4 text integer integer integer 4 integer text -
i 1 1 Hip-Ho 7 9 7 100  Mr. Buttersworth
discogRating int check(discogRating between 1 and 10), 2 5 HiE_HOE i P . i | Vay
labelID int references RecordLabels(labelID), 3 3 Brass Pop 7 19 9 [ull]  The Chops
ﬂ—iCkname text 4 4 R&B 8 24 6 102  Thicke
> k : ’ 5 5 Soul 25 27 9 103  The Prince of Soul
pr-] mary EY(artWStID) 6 6 Rock 5 35 8 104  The Guys that Made Baby Come Back
); o E‘ﬂd Artists 7 7  Soul 43 65 8 103  The Emperors of Soul
8 8 RE&B 23 64 10 103
. 9 9  Hip-Hop 8 35 7 112
The Artists table connects to People and stores every 10 10 HpHop ; 5 s s
o . . . o o . 11 11  Rock 15 54 9 106 The Kings of Arena Rock
person that is an artist, including their main-associated 12 12 | Rock 2 st 8| 106 | Ziggy Stardus
13 13 Funk 11 35 8 107
genre, how many albums they have made, how long - vy o= \ 5 e R e
they have been an active artist, their discography ' T8 | Rock ’ N ol LS e,
16 16  Hip-Hop 7 20 10 109 K-Dot
rating, their record label (if any), and any associated . [ : : 6] mo
18 18  Hip-Hop 2 32 7 107 Skateboard P
nickname they may have. 19 19 indie : 20 o
20 20 Rock 15 51 9 112
21 21  ACappella 3 30 10 [null]  Marists BEST A Cappella Group

Functional Dependencies:
artistiD - [genreAssociation, numberOfAlbums,
yearsActive, discogRating, labellD, nickname]



== Producers =--
CREATE TABLE Producers (

prodID int not null references People(pid),
genreAssociation text,

numberOfProducedSongs 1int not null,

yearsActive g 7 4"

labelID int references RecordLabels(labellD),

primary key(prodID)
); —— end Producers

The Producers table connects to People and stores
every person that is a producers, including their main-
associated genre, how many songs they produced, how
long they have been producing (if also an artist, this
yearsActive value can be different), and their potential
record label

Functional Dependencies:
prodID - [genreAssociation, numberOfProducedSongs,
yearsActive, labellD]

—

O O N oo o e WM

prodid

c o A N

13
14
16
18
22

Proaucers

. genreassociation
[PK] integer / /

text
Hip-Hop
R&B

Soul

R&B

Funk
Hip-Hop
Hip-Hop
Hip-Hop
Alpaca-Rock

numberofproducedsongs

integer
600
125
50
200
193
50
30
661
19

yearsactive
integer

. labelid
integer

29 101
31 102
27 103
64 103
36 107
| F 108
21 109
33 107
20 102



cc//
Sy
N
nl h C’
-- Albums --
CREATE TABLE Albums(
albumID int not null albumid . artistid , title genre . rating yearreleased runtime
3 . L |- / /7 : F I 7 . /
. . . ) [PK] integer integer text text integer integer interval
artistID int not null references Artists(artistID),
. 1 200 1  Cheryl (Single) Hip-Hop 9 2017  00:02:49
title text not null,
/) 201 2  Graduati Hip-H 9 2007 00:54:29
genre text not null, raduation L
rating int check(rating between 1 and 10), 3 202 Sl i Brass Pop 8 2015 | 90587
yearReleased int not null, 4 203 4 Blurred Lines R&B 7 2013  01:02:00
runtime interval not null, 5 204 5 Live at the London Palladium  Soul 8 1977 01:18:00
pr-ima ry key(a—['buml[:)} 6 205 6 Player (Self Titled) Soft Rock 8 1977 | 00:39:56
) : - end Albums 7 206 7  The Temptations Sing Smok...  Soul 8 1964 00:33:49
8 207 8 Songs in the Key of Life R&B 10 1976  01:45:00
9 208 9 Gangstas Paradise Hip-Hop 8 1964 017:04:00
10 209 10  To The Extreme Hip-Ho 6 1990  00:57:53
The Albums table stores the album that a song belongs EHioP
. . . . . . 11 210 11 Hot Space Rock 9 1982 00:48:18
to, including the artist that made it, the main genre of it, , 1 3 | g Uk Rock . 1998 | 011500
its rating (1 to 10), the year it came out, and how long it 13 212 14 Kaua Res : 2014 00:28:07
14 213 15 The Royal Scam Jazz Fusion 9 1976 00:41:17
runs. . . .
15 214 16  good kid, m.A.A.d city Hip-Hop 10 2012  01:32:00
16 215 19  Teen Dream Indie Rock 9 2010 00:48:46
. ® e 17 216 20  Frontiers Rock 9 1983  00:43:47
Functional Dependencies:
18 217 21  Offce Hours A Cappella 10 2024 00:10:19

alboumlID - [artistID, title, genre, rating, yearReleased,
runtime]



@
a /
-— Songs -—- songs
CREATE TABLE Songs (
songID int not null,
artistID int not null references Artists (arti StID) 3 songid artistid title . genre . key . bpm yearreleased , albumid
. [PK] integer integer text 7 text text / integer s integer integer
title text not null, _ |
1 300 1 Cheryl Hip-Hop C Minor 76 2017 200
genre text nOt nu-L-LJ 2 301 2  Champion Hip-Hop F Sharp Major 102 2007 201
key text not null, 3 302 3 My Girl Brass Funk  C Major 105 2015 202
BPM —Il'"lt hot nu'l_'L ChECk(BPM > 0) , 4 303 4 Blurred Lines R&B G Major 120 2013 203
. 5 304 5 G Giveit U Soul D Maj 123 1977 204
yearReleased int not null, bbb o 2t
b . 'F 1b b 6 305 6 Baby Come Back Soft Rock F Minor 156 1977 205
a umID —Int rererences A UmS(a UmID) ) 7 306 7 My Girl Soul C Major 105 1964 206
primary key(songID) 8 307 8 Pastime Paradise Soul C Minor 79 1976 207
); —— end Songs 9 308 9 Gangstas Paradise Hip-Hop A Flat Major 80 1995 208
10 309 10 IceIce Baby Hip-Hop D Minor 116 1990 209
11 310 11 Under Pressure Rock D Major 114 1981 210
1 12 311 13 Thinki fy Funk Rock A Maj 167 1998 211
The Songs table stores every song that an artist made, =i unk foe ==
13 312 14 Sober R&B C Major 98 2014 212
including its main genre, the key it is in, its tempo (BPM), 14 $13 15 Kid Charlemagne Jazz Fusion G Mot o7 976 213
o o 15 314 16  Money Trees Hip-Hop G Major 72 2012 214
the year it came out, and the album that it belongs to. . s 5 | Shver Soul e — 55 0| 215
17 316 20 Seperate Ways (Worlds Apart)  Rock C Major 131 1983 216
18 317 21  Seperate Ways (Worlds Apart) A Cappella B flat Major 131 2024 217

Functional Dependencies:
songlID - [artistID, title, genre, key, BPM, yearReleased,
aloumlD]



-- Samples --
CREATE TABLE Samples (
samplelD int not null,

originalSongID -1int not null references Songs(songID),
sampledSongID int not null references Songs(songID),

samp LeDesc text,

licensed boolean not null,
primary key(sampleID),
check (originalSongID != sampledSonglD)

l: == end Samples

type text not null check (type in ('Sample', 'Interpolation', 'Remix',

'"Mashup',

'Sound-Alike')),

The Samples table stores every song that samples
another song, including its type of sample, the
description of the sample, and whether or not the
sample has proper approval.

Functional Dependencies:
samplelD - [originalSong|D, sampledSonglID, type,
sampleDesc, licensed]

sampleid .
[PK] integer /

400
401
402
403
404
405
406

originalsongid

integer

"l

305
313
307
310
311
315
304

sampledsongid

integer

"

300
301
308
309
312
314
303

ng , f:gpledesc ,
Sample Melodic sample from chorus

Interpolation Interpolates instrumental groove

Sample Sample of main instrumental and chorus
Sample Sample of bassline and piano

Sample Sample of guitar riff and chord progression
Sample Vocal and instrumental flipped into beat
Sound-Alike Song sounds a little to similar to another one

licensed
boolean

&

true
true
true
false
true
true

false



-- Techniques --
CREATE TABLE Techniques (

techniquelD int not null,
method text not null,
description text,

primary key(techniquelD)
)y —— end Techniques

The Techniques table stores different way that a
sample can be used, along with the description of
those methods

Functional Dependencies:
techniquelD - [method, description]

o o A W N

techniqueid |
[PK] integer /

200
501
502
503
504
505

(&
method . description .
text text /
Chopping Slicing and rearranging segments of the original audio
Looping Repeating a section of audio as a rhythmic or melodic loop

Pitch Shifting
Time Stretching
EQ Filtering

Interpolation

Changing the pitch of the original audio sample
Altering the speed of the sample without affecting pitch
Isolating or enhancing frequencies in the original sample

Replaying or recreating a sample rather than directly samplin...



-- Samp leTechniques
CREATE TABLE SampleTechniques (

sampleID int not null references Samples(samplelD),
techniquelD int not null references Techniques(techniquelD),
whereInSong text,

primary key(sampleID, techniquelD)

); —— end SampleTechniques

The SampleTechniques table connects Samples and
Techniques and stores the different sampling
techniques used in each sampled song, including
where in the song those techniques are used.

Functional Dependencies:
samplelD, techniquelD - [wherelnSong]

O 00 N oo o =2 W N=

—
s =

SampleTechniques

sampleid
[PK] integer

"

400
400
401
402
402
403
403
404
404
405
405

techniqueid |
[PK] integer /

500
501
505
501
504
501
502
500
504
503
500

whereinsong
text

Used in the hook

Looped during the intro and chorus
Replayed groove in main beat

Looped as the songs base melody

EQ filtered to emphasize synth line
Looped bassline in entire instrument...
Pitch shifted slightly for tempo match
Chopped guitar riff in bridge

Filtered mid frequencies of original
Time-stretched intro vocals

Chopped instrumental to create hook



C
Sy
£
/
-- LegalDisputes --
CREATE TABLE LegalDisputes (
disputelID int not null,
songID int not null references Songs(songID),
plaintiffArtistID int not null references Artists(artistID),
defendantArtistID int not null references Artists(artistID),
description text,
outcome text check(outcome 1in ('settled', 'won', 'lost', 'dismissed', 'ongoing', 'undisclosed')),
dateOfDispute date not null,
primary key(disputeID)
- end LegalDisputes
disputeid . songid _ plaintiffartistid defendantartistid description . outcome dateofdispute
[PK] integer 4 integer integer 4 integer 7 text text 7 date ’
1 600 303 5 4  Feel and sound of Blurred Lines was deemed too similar to Marvins song settled 2015-03-10
2 601 309 11 10 lce Ice Baby copied bassline from Under Pressure by Queen and David Bo... settled 1991-01-01

The LegalDisputes table stores each song that had
been involved in legal trouble, including the plaintiff,
the defendant, the description of the dispute, its
outcome, and the date it occurred.

Functional Dependencies:

disputelD - [songID, plaintiffArtistiD,
defendantArtistlD, description, outcome,
dateOfDispute]




-- ChartPositions —--

CREATE TABLE ChartPositions (
songID int not null references Songs(songID),

text not null,

peakPosition int not null, -- note that a position of 1 means the best

chartDate date not null,

primary key(songID, chartName, chartDate)

chartName

); —— end ChartPositions

The ChartPositions table connects to the Songs
table and stores each song that made it onto a well
known chart, including the highest rank it achieved,
and the date of that achievement.

Functional Dependencies:
songlID, chartName, chartDate - [peakPosition]

ChartPositions

7= IR = < B = B ¥ B - S 'S I % R

= === =]|=|]|=|=|]=
0 ~N oo AR W N = O

songid

[PK] integer ’

wd

300

301

302

303

304

305

306

307

308

309

310

311

812

313

314

315

316

317

charthame
[PK] text

ol

Billboard Hot 100
Billboard Hot 100

Jazz Digital Songs
Billboard Hot 100
Billboard R&B
Billboard Hot 100
Billboard Hot 100
Billboard Soul
Billboard Hot 100
Billboard Hot 100

UK Singles Chart

Adult Alternative Songs
R&B/Hip-Hop Digital Songs
Billboard 200
Billboard Hot 100
Billboard Rock Songs
Billboard Hot 100

A Cappella Weekly

peakposition

integer

/7

78
18
13

chartdate
[PK] date

4
2017-06-01
2007-09-10
2015-03-18
2013-07-15
1977-06-10
1978-01-02
1965-01-08
1976-12-01
1995-10-15
1990-11-03
1981-12-15
1998-07-05
2014-11-12
1976-09-20
2012-11-05
2010-04-02
1983-04-10
2024-03-01



sourceSongID
reason
primary key(coverID),

); —— end Covers

== [Lovars ==
CREATE TABLE Covers (
coverID int not null,
coveredSongID int not null references Songs(songID),

int not null references Songs(songID),
text,

check(coveredSongID != sourceSongID)

The Covers table stores each song that covered
another one, including the reason for that cover.

Functional Dependencies:
coverlD- [coveredSongID, sourceSongID, reason]

C(\
coverid . coveredsongid , sourcesongid , reason .
[PK] integer / integer ’ integer /" text /
700 302 306 Live brass reinterpretation
701 317 316 The arrangement was too damn good



== Lollaborations ==
CREATE TABLE Collaborations (
songID int not null references Songs(songID),
collaboratorID -int not null references People(pid),
role text check(role in ('feature', 'producer', 'co-writer')),
primary key(songID, collaboratorID, role)
); —— end Collaborations

The Collaborations table connects People and Songs
and stores each song that had a collaboration
between a main artist and another person, including
the role of the collaborator.

Functional Dependencies:
songlD, collaboratorlD, role- [empty set]

St gh e

Collaborations

songid collaboratorid

»

[PK] integer / [PK] integer
303
310
313
314

»

18
12
22
17

role

[PK] text /

producer
feature
producer

feature






0\\
CREATE VIEW SonglLineage AS
SELECT s.songID, s.title AS songTitle, 'Sample' AS relationType, src.title AS relatedSongTitle
FROM Samples samp INNER JOIN Songs s ON samp.sampledSongID = s.songlID
INNER JOIN Songs src ON samp.originalSongID = src.songlD
UNION
SELECT c.coveredSongID, s.title AS songTitle, 'Cover' AS relationType, src.title AS relatedSongTitle
FROM Covers c INNER JOIN Songs s ON c.coveredSongID = s.songID
INNER JOIN Songs src ON c.sourceSongID = src.songID:
songid 8 songtitle 8 relationtype 8 relatedsongtitle 8
integer text text text
. . . 1 300 Cheryl Sample Baby Come Back
Displays the relationship between songs and
. . . 2 303 Blurred Lines Sample Got to Give it Up
represents their overall lineage in terms of where
. &) 312 Sober Sample Thinking of You
samples / covers came from. It gives us the songID | |
. 4 3017 Champion Sample Kid Charlemagne
for the sample/cover, the titles for both songs,anda . e I —— E— bastime Paradice
signifier of whether or not the relation is a sample or . 302 My Girl Cover My Girl
cover. 7 317 Seperate Ways (Worlds Apart)  Cover Seperate Ways (Worlds Apart)
8 309 Ice Ice Baby Sample Under Pressure
9 314 Money Trees Sample Silver Soul



N
CREATE VIEW TopRatedAlbums AS
SELECT a.title AS albumTitle, p.firstName, p.lastName, ar.nickname, a.rating, a.runtime
FROM Albums a INNER JOIN Artists ar ON a.artistID = ar.artistID
INNER JOIN People p ON p.pid = ar.artistID
WHERE a.rating >= 9;
Displays all of the albums that are ?;23"‘“"‘* B I::ttname 5 Eﬁname - reizlt(name - ir:::;i g Ttme g
COnSidered “top rated’” SpeCiﬂcauy d 9 or T Cheryl (Single) Yung Gravy Mr. Buttersworth 9 00:02:49
higher- T'\is al.SO 8iVeS usS eaCh artiSt 2 Graduation Kanye West Yeezy 9  00:54:29
Fes pO nSi Ole for the great album, their 3 Songs in the Key of Life  Stevie Wonder 10 01:45:00
pOtentia. niCkname, the SpeCiﬁC album rating 4 Hot Space Queen The Kings of Arena Rock 9 00:48:18
and the ru ntl me. 5 The Royal Scam Steely Dan Dan 9 00:41:7
6 good kid, m.A.A.d city Kendrick Lamar K-Dot 10 01:32:00
7 Teen Dream Beach House 9 00:48:46
8 Frontiers Journey 9 00:43:47
9 Offce Hours Time Check Marists BEST A Cappella Group 10 00:10:19



NumberOneHits

CREATE VIEW NumberOneHits AS
SELECT s.title AS songTitle, p.firstName,

p.lastName, c.chartName, c.chartDate
FROM ChartPositions ¢ INNER JOIN Songs s ON c.songlID =

s.songlD

INNER JOIN Artists a ON s.artistID = a.artistID
INNER JOIN People p on a.artistID = p.pid
WHERE c.peakPosition = 1;
songtitle 8 firstname
. . text text
Displays all of the songs that achieved a
1 Bl dLi Robi
beloved number one. It also shows the HHTEE e i
. . 2 Got to Give it U Marvi
artists, the respective chart and date of cLOPEnER .
. 3 Baby Come Back Player
achievement.
4 My Girl The
5 Gangstas Paradise Coolio
6 Ice Ice Baby Vanilla
7 Seperate Ways (Worlds Apart)  Time

lasthname
text

Thicke

Gaye

Temptations

lce

Check

chartname
text

Billboard Hot 100

Billboard R&B

Billboard Hot 100
Billboard Hot 100
Billboard Hot 100
Billboard Hot 100

A Cappella Weekly

chartdate
date

o
2013-07-15
1977-06-10
1978-01-02
1965-01-08
1995-10-15
1990-11-03

2024-03-01



Queries /




o All Sampled Songs In a Difierent Key

SELECT s.sampleID, samp.title AS sampledSongTitle, samp.key AS sampledKey,
orig.title AS originalSongTitle, orig.key AS originalKey
FROM Samples s INNER JOIN Songs samp on s.sampledSongID = samp.songlD
INNER JOIN Songs orig on s.originalSongID = orig.songlID
WHERE samp.key != orig.key;

fsampleid 8 sampledsongtitle 8 sampledkey 8 originalsongtitle 8 originalkey 8
integer text text text text
This query returns every sampled song that 1 400  Cheryl C Minor Baby Come Back  F Minor
were made in a different key than the song 2 401 Champion F Sharp Major  Kid Charlemagne C Maijor
it comes from. Each song Is listed with its 3 402 Gangstas Paradise A Flat Major Pastime Paradise ~ C Minor
respective key so that the difference is 4 403  Ice Ice Baby D Minor Under Pressure D Major
ap parent. 5 404 Sober C Major Thinking of You A Major
6 405 Money Trees G Major Silver Soul D Major
7 406  Blurred Lines G Major Got to Give it Up D Major



All Songs Produced By Alan

SELECT s.title AS songTitle, p.firstName, p.lastName, s.genre, s.yearReleased
FROM Collaborations c¢ INNER JOIN Songs s on c.songID = s.songID

INNER JOIN Artists a on s.artistID = a.artistID

INNER JOIN People p on a.artistID = p.pid

WHERE c.collaboratorID = 22 AND c.role = 'producer';
songtitle 4 firstname 4 lastname 4 genre 4 yearreleased 8
text text text text integer
1 Kid Charlemagne Steely Dan Jazz Fusion 1976

This query returns every song that the one and only Alan Labouseur produced. It also returns the name of the
artist for that song, the genre of the song, and the year the song came out.



SELECT s.title as song, a.nickname, a.discogRating, c.chartName, c.peakPosition
FROM Songs s INNER JOIN Artists a on s.artistID = a.artistID

INNER JOIN chartPositions ¢ on s.songID = c.songlD
WHERE c.peakPosition = 1
ORDER BY a.discogRating DESC;
song a8 nickname
This query gets every song that i e
1 Seperate Ways (Worlds Apart) Marists BEST A Cappella Group

reached number one on a
respective chart, in order from
discography rating from highest
to lowest. It also returns the artist
nickname and the chart they
peaked.

Got to Give it Up The Prince of Soul

My Girl The Emperors of Soul
Baby Come Back
Gangstas Paradise

Blurred Lines Thicke

~N oo o g B oW N

Ice Ice Baby

The Guys that Made Baby Come Back

discograting
integer

All Top Gharters by Discography

chartname
&

10
9

g Oy~

text
A Cappella Week...
Billboard R&B

Billboard Hot 100
Billboard Hot 100
Billboard Hot 100
Billboard Hot 100
Billboard Hot 100

peakposition
integer



/
>
<\

—

‘ll::ll’ m .
| I\’I 1[ 'l:: .
'[l"!i; 'H'Irlﬂllrlﬂl‘llnlll iﬂllrlﬂllll' 'El’ '[IHI:: Iﬂllllﬂll“l'ﬂ::ﬁi E

SELECT t.method, COUNT(st.sampleID) as techniqueCount

FROM SampleTechniques st INNER JOIN Techniques t on st.techniquelID = t.techniquelD
GROUP BY t.method

ORDER BY techniqueCount ASC;

method a techniquecount a
text bigint
This query counts us the most common .
. . 1 Interpolation 1
sampling techniques that were used on
the sampled songs, ordered from least 2 Time Stretching 1
to most common.
3 Pitch Shifting T
4 EQ Filtering 2
o Looping 3
6 Chopping 3



dlored
Procedures




getProducersongGount

CREATE OR REPLACE FUNCTION getProducerSongCount(pid INT)
RETURNS INT AS

$$

DECLARE

count INT; SELECT getProducerSongCount(18);

BEGIN
SELECT COUNT(*) INTO count

FROM Collaborations E‘tprﬂducerSﬂngcﬂunt
WHERE collaboratorID = pid AND role = 'producer';

RETURN count; Integer
END;
1

$9
LANGUAGE plpgsql;

This stored procedure represents a function that will allow us to input the id of a person in
the database and return the number of songs they produced.



getSampledByArtist

CREATE OR REPLACE FUNCTION getSampledByArtist(artistPID INT)
RETURNS TABLE (
sampledSongTitle TEXT,
originalSongTitle TEXT,
samplingArtist TEXT
)
AS
$$
BEGIN
RETURN QUERY
SELECT
s2.title AS sampledSongTitle,
sl.title AS originalSongTitle,
p2.firstName || ' ' || COALESCE(p2.lastName, '') AS samplingArtist
FROM Songs s1 INNER JOIN Samples sp ON sl.songID = sp.originalSongID
INNER JOIN Songs s2 ON s2.songID = sp.sampledSongID
INNER JOIN Artists a2 ON a2.artistID = s2.artistID
INNER JOIN People p2 ON p2.pid = a2.artistID
WHERE sl.artistID = artistPID;
END;
$$
LANGUAGE plpgsql;

SELECT =
FROM getSampledByArtist(13);

sampledsongtitle 8 originalsongtitle 8 samplingartist 8
text text text
Sober Thinking of You Childish Gambino

This stored procedure represents a
function where you can input an artistiD
and have a table returned that will show
you the details of the newly sampled song
(the title, artist, and the original song of the
artist you choose to input).



CREATE OR REPLACE FUNCTION getSongCollaborations(song_id INT)
RETURNS TABLE (
collaborator TEXT,
role TEXT
)
AS
$S
BEGIN
RETURN QUERY
SELECT
p.firstName || ' ' || COALESCE(p.lastName, '') AS collaborator,
c.role
FROM Collaborations c
JOIN People p ON p.pid = c.collaboratorID
WHERE c.songID = song_id;
END;
$9
LANGUAGE plpgsql;

getSongCollaborations

SELECT *
FROM getSongCollaborations(314);

collaborator role
text ﬁ text ﬂ
1 Jay Rock feature

This stored procedure represents a
function where you can input a songID and
it will return the potential collaborator on it
and their role on the song.



Triggers



IIIIII
1|:'[]'|I‘M’I|iil|||1l!ll" I\IIWIFII'E!,:Ei;:Ei;iiil‘IWIFII'I]I'I"E!"III 0§\
a /

CREATE OR REPLACE FUNCTION tooManyTimesSampled()
RETURNS TRIGGER AS

$$ This trigger will automatically give you a
DECLARE : . . :

sampleCount INT; Warnlng |f a SOﬂg 1S Startlng tO be entered as
BEGIN

SELECT COUNT(*) INTO sampleCount a sample too often.

FROM Samples
WHERE originalSongID = NEW.originalSonglD;

O This can be important mitigating legal
RAISE NOTICE 'Song ID % has now been sampled % times.', NEW.originalSongID, sampleCount + 1; trouble potentlal’ as the more a Song gets

END IF;
sampled, the less original it is. So the
RETURN NEW; .
END; warning may be necessary to make that
$$
LANGUAGE plpgsql; (:lEBEir.

CREATE TRIGGER trg_tooManyTimesSampled
BEFORE INSERT ON Samples

FOR EACH ROW

EXECUTE FUNCTION tooManyTimesSampled();

INSERT INTO Samples (samplelID, originalSongID, sampledSongID, type, sampleDesc, licensed)
VALUES (319, 305, 600, 'Sample', 'Use 1in verse melody', TRUE),
(320, 305, 601, 'Sample', 'Instrumental bridge', TRUE), NOTICE :
(321, 305, 602, 'Sample', 'Bassline sample', TRUE),

Data Output Messages Notifications

Song ID 305 has now been sampled 4 times.

NOTICE: Song ID 305 has now been sampled 5 times.

(322, 305, 603, 'Sample', 'Subtle drum loop reuse', TRUE);

~__



warnLowRatingArtist

CREATE OR REPLACE FUNCTION warnLowRatingArtist()
RETURNS TRIGGER AS
$$
DECLARE
rating INT,;
BEGIN
SELECT discogRating INTO rating
FROM Artists
WHERE artistID = NEW.artistID;

IF rating < 5 THEN

RAISE NOTICE 'Artist ID % has a discography rating below 5. Track: "%"', NEW.artistID, NEW.title;
END IF;
RETURN NEW,;
END;
$$

LANGUAGE plpgsql;

CREATE TRIGGER trg_warnLowRatingArtist
BEFORE INSERT ON Songs

FOR EACH ROW

EXECUTE FUNCTION warnLowRatingArtist();

This trigger will automatically raise a notice
when adding a song made by an artists with
a bad discography rating. Its purpose is to
essentially just warns you when adding a
song by an artist that is not considered to
be very good.

Unfortunately, according to this database,
Alan does not seem to have a successful
music career...

INSERT INTO Artists (artistID, genreAssociation, numberOfAlbums, yearsActive, discogRating, labelID, nickname)
VALUES (22, "Alpaca-Rock', 7§ 12, 4, 100, Hn

INSERT INTO Songs (songID, artistID, title, genre, key, BPM, vyearReleased, albumID)
VALUES (999, 22, '"Noise Symphony', 'Avant-Garde', 'F# Minor', 60, 2025, NULL) ;

Data Output Messages Notifications

NOTICE: Artist ID 22 has a discography rating below 5. Track:
INSERT © 1

"Noise Symphony"

Query returned successfully in 128 msec.







CREATE ROLE Agent;

GRANT SELECT

ON Artists, Songs, ChartPositions, Albums
TO Agent

CREATE ROLE Admin;

GRANT ALL

ON ALL TABLES IN SCHEMA PUBLIC
TO Admin;

CREATE ROLE Mus-icReviewer;
GRANT INSERT, UPDATE

ON Albums, Artists

TO MusicReviewer

Security

Agent: An artist’s agent is going to need access
to their client’s information, including their
music (songs and albums), and their success
(chart positions).

Admin: The administrator of this database is
going to need access to everything, along with
the ability to make any changes deemed
necessary.

MusicReviewer: A music reviewer is going to
need access to inserting and updating values
such as discogRating (artist) and rating
(album), so that they can properly insert the
values of their review scores.



Implementation
Notes,
Known Probiems,
and Future
Enhancements




@

Implemenation Notes, Known Problems, Future
Enhancements

This database has the potential to hold a lot of information. There are many songs in this world,
with a lot of them serving as inspirations for other people. With that being said, since this is a
project, | had to limit what | implemented, as this only includes a handful of music.

Plenty of more tables can be added to this design, one of which being “bands.” | thought about
Implementing that here, however | would have to added each individual member, and three bands
would take up the majority of the people table, so | decided not to do that here and is why | just
iIncluded one word groups as first names. This is a great thing to take care of in the future. This same
exact logic is why | did not implement an instrument (and thus a song instruments) table.

| did have a difficult time trying to fit artists on the SongLineage view, as the query got extremely
complex with many joins. This is certainly a great future enhancement to consider.

Overall, this implementation took a good amount of time, but served as incredible database design
practice. | put in a lot of effort to make this exactly how | wanted it, and | feel that it payed off, as |
really like the way this came out!



