
Music DNA

ContactAbout MeMusicHome

A Music Lineage Database
Design

Colin Martin

Table Of Contents
Executive Summary...3

Entity Relationship Diagram..4

Tables..5-18

Views...19-22

Queries/Reports..23-27

Stored Procedures...28-31

Triggers...32-34

Security...35-36

Implementation Notes, Known Problems, Future Enhancements...........37-38

Executive Summary
The music industry is extremely vast. There are many artists that create incredible songs that can
inspire a lot of other musicians in their work. Whether it be through the usage of sampling, or a
simple cover, a lot of songs are tied together due to the inspirations of musical masterpieces from
the past. Some songs do fail to give proper credit though, and legal trouble can spark.

This database encapsulates this entire idea, demonstrating how songs and artists are connected to
each other through various samples, techniques, inspirations, and so on. As you continue through
my work, you will see an ER diagram visualizing this concept, followed by a breakdown of all of the
tables and its contents. After that, you will see the views, queries, stored procedures, triggers, and
roles that I implemented into the SQL.

The purpose of this database is to demonstrate a cohesive design, with the inclusion of a fun and
interesting topic. The way music travels is a lot more extensive than you may initially realize, and this
database will help paint that picture.

ER Diagram

Tables

People

The People table stores every person that is in this
included in this database, including their origin and
date of birth. Note that some last names are null as
some artists only go by a one word name.

Functional Dependencies:
pid ⟶ [firstName, lastName, DOB, countryFrom,
homeCity]

RecordLabels

The RecordLabel table stores every record label that a
person (artist/producer) may be signed to, including
where they are located, how long they have been
around, and how many platinum records they have tied
to their name.

Functional Dependencies:
labelID ⟶ [labelName, cityLocated, yearsActive,
platinumRecordAmount]

Artists

The Artists table connects to People and stores every
person that is an artist, including their main-associated
genre, how many albums they have made, how long
they have been an active artist, their discography
rating, their record label (if any), and any associated
nickname they may have.

Functional Dependencies:
artistID ⟶ [genreAssociation, numberOfAlbums,
yearsActive, discogRating, labelID, nickname]

Producers

The Producers table connects to People and stores
every person that is a producers, including their main-
associated genre, how many songs they produced, how
long they have been producing (if also an artist, this
yearsActive value can be different), and their potential
record label

Functional Dependencies:
prodID ⟶ [genreAssociation, numberOfProducedSongs,
yearsActive, labelID]

Albums

The Albums table stores the album that a song belongs
to, including the artist that made it, the main genre of it,
its rating (1 to 10), the year it came out, and how long it
runs.

Functional Dependencies:
albumID ⟶ [artistID, title, genre, rating, yearReleased,
runtime]

Songs

The Songs table stores every song that an artist made,
including its main genre, the key it is in, its tempo (BPM),
the year it came out, and the album that it belongs to.

Functional Dependencies:
songID ⟶ [artistID, title, genre, key, BPM, yearReleased,
albumID]

Samples

The Samples table stores every song that samples
another song, including its type of sample, the
description of the sample, and whether or not the
sample has proper approval.

Functional Dependencies:
sampleID ⟶ [originalSongID, sampledSongID, type,
sampleDesc, licensed]

Techniques

The Techniques table stores different way that a
sample can be used, along with the description of
those methods

Functional Dependencies:
techniqueID ⟶ [method, description]

SampleTechniques

The SampleTechniques table connects Samples and
Techniques and stores the different sampling
techniques used in each sampled song, including
where in the song those techniques are used.

Functional Dependencies:
sampleID, techniqueID ⟶ [whereInSong]

LegalDisputes

The LegalDisputes table stores each song that had
been involved in legal trouble, including the plaintiff,
the defendant, the description of the dispute, its
outcome, and the date it occurred.

Functional Dependencies:
disputeID ⟶ [songID, plaintiffArtistID,
defendantArtistID, description, outcome,
dateOfDispute]

ChartPositions

The ChartPositions table connects to the Songs
table and stores each song that made it onto a well
known chart, including the highest rank it achieved,
and the date of that achievement.

Functional Dependencies:
songID, chartName, chartDate ⟶ [peakPosition]

Covers

The Covers table stores each song that covered
another one, including the reason for that cover.

Functional Dependencies:
coverID⟶ [coveredSongID, sourceSongID, reason]

Collaborations

The Collaborations table connects People and Songs
and stores each song that had a collaboration
between a main artist and another person, including
the role of the collaborator.

Functional Dependencies:
songID, collaboratorID, role⟶ [empty set]

Views

SongLineage

Displays the relationship between songs and
represents their overall lineage in terms of where
samples / covers came from. It gives us the songID
for the sample/cover, the titles for both songs, and a
signifier of whether or not the relation is a sample or
cover.

TopRatedAlbums

Displays all of the albums that are
considered “top rated,” specifically a 9 or
higher. This also gives us each artist
responsible for the great album, their
potential nickname, the specific album rating
and the runtime.

NumberOneHits

Displays all of the songs that achieved a
beloved number one. It also shows the
artists, the respective chart and date of
achievement.

Queries /
Reports

All Sampled Songs In a Different Key

This query returns every sampled song that
were made in a different key than the song
it comes from. Each song is listed with its
respective key so that the difference is
apparent.

All Songs Produced By Alan

This query returns every song that the one and only Alan Labouseur produced. It also returns the name of the
artist for that song, the genre of the song, and the year the song came out.

All Top Charters by Discography

This query gets every song that
reached number one on a
respective chart, in order from
discography rating from highest
to lowest. It also returns the artist
nickname and the chart they
peaked.

Most Common Sample Techniques

This query counts us the most common
sampling techniques that were used on
the sampled songs, ordered from least
to most common.

Stored
Procedures

getProducerSongCount

This stored procedure represents a function that will allow us to input the id of a person in
the database and return the number of songs they produced.

getSampledByArtist

This stored procedure represents a
function where you can input an artistID
and have a table returned that will show
you the details of the newly sampled song
(the title, artist, and the original song of the
artist you choose to input).

getSongCollaborations

This stored procedure represents a
function where you can input a songID and
it will return the potential collaborator on it
and their role on the song.

Triggers

toManyTimesSampled
This trigger will automatically give you a
warning if a song is starting to be entered as
a sample too often.

This can be important mitigating legal
trouble potential, as the more a song gets
sampled, the less original it is. So the
warning may be necessary to make that
clear.

warnLowRatingArtist
This trigger will automatically raise a notice
when adding a song made by an artists with
a bad discography rating. Its purpose is to
essentially just warns you when adding a
song by an artist that is not considered to
be very good.

Unfortunately, according to this database,
Alan does not seem to have a successful
music career...

Security

Security
Agent: An artist’s agent is going to need access
to their client’s information, including their
music (songs and albums), and their success
(chart positions).

Admin: The administrator of this database is
going to need access to everything, along with
the ability to make any changes deemed
necessary.

MusicReviewer: A music reviewer is going to
need access to inserting and updating values
such as discogRating (artist) and rating
(album), so that they can properly insert the
values of their review scores.

Implementation
Notes,

Known Problems,
and Future

Enhancements

Implemenation Notes, Known Problems, Future
Enhancements

This database has the potential to hold a lot of information. There are many songs in this world,
with a lot of them serving as inspirations for other people. With that being said, since this is a
project, I had to limit what I implemented, as this only includes a handful of music.
Plenty of more tables can be added to this design, one of which being “bands.” I thought about
implementing that here, however I would have to added each individual member, and three bands
would take up the majority of the people table, so I decided not to do that here and is why I just
included one word groups as first names. This is a great thing to take care of in the future. This same
exact logic is why I did not implement an instrument (and thus a song instruments) table.
I did have a difficult time trying to fit artists on the SongLineage view, as the query got extremely
complex with many joins. This is certainly a great future enhancement to consider.
Overall, this implementation took a good amount of time, but served as incredible database design
practice. I put in a lot of effort to make this exactly how I wanted it, and I feel that it payed off, as I
really like the way this came out!

