
Submarine Fleet

Readiness
Relational Database Design

Owen Thomas

Table of Contents

Executive Summary………………………………....1

Key Terms…………………………………………………………….2

ER Diagram…………………………………………..3

Tables………………………………………………....4

People………………………………………………………….5

Rank…………………………………………………………….6

Officers……………………………………………………….7

Enlisted……………………………………………………...8

Departments……………………………………………...9

Qualifications…………………………………………….10

SubmarineClass………………………………………...11

Submarines………………………………………………..12

Assignments……………………………………………...13

PersonnelQualifications…………………………….14

2

Views…………………………………………………………………..15-18

Reports……………………………………………………………….19-21

Stored Procedures……………………………………………..22-24

Triggers……………………………………………………………..25-27

Security…………………………………………………………….....28

Known Problems……………………………………………………29

Future Enhancements………………………………………….30

Executive Summary

 The Submarine Fleet Readiness Relational Database is designed to assist Navy leadership in
maintaining an accurate, organized representation of submarine personnel, qualifications,
and operational status throughout the fleet. Ensuring that the submarine crews are properly
manned is the key to maintaining a positive defense posture and achieving nuclear
deterrence ultimately providing the United States national security.

 The purpose of this database is to streamline the process of achieving this information
enabling naval leadership to make meaningful, accurate and effective decisions when dealing
with the rigorous tasks of keeping Submarines properly manned.

 This presentation will begin with an ER Diagram that illustrates the relational database design
forming the backbone of fleet management. Following this, is a walkthrough of each table in
the ER Diagram along with the create statement and sample data that demonstrates how the
database operates. In addition, we will go over the views, reports, stored procedures, and
triggers that are included to automate common tasks, mitigate errors and provide useful
insight. Lastly, the security and access control measures are detailed to show how different
roles interact with the database.

1

Key Terms

 Hull Number – a unique identifier assigned to each Submarine like a license

plate number

 Class – a category grouping Submarines with the same design, specifications

and features

 Officers – Commissioned member with leadership roles (minimum Bachelor

Degree)

 Enlisted – non-commissioned member who performs technical operations

 Qualification – certification showing a person is trained for a specific duty

 Overhaul – major maintenance period to upgrade or repair the Submarine

2

ER Diagram

3

Tables

4

People Table
Functional Dependencies: pid → firstName, lastName, DOB, homeCity

 The People table contains a unique ID for each Sailor along with
their first name, last name, date of birth (DOB), and home city.
This table stores common information for the two subtypes
Officers and Enlisted. This table identifies individuals across the
database and links to other tables such as Officers, Enlisted and
Assignments.

CREATE TABLE People (

 pid int not null,

 firstName text not null,

 lastName text not null,

 DOB date not null check (DOB <= '2007-04-01'),

 homeCity text,

 primary key (pid)

);

Check constraint to check age if

Sailor is of age to serve

5

Rank Table
Functional Dependencies: rankId → rankName, paygrade, isEnlisted

 The Ranks table defines the ranks that are standard Navy

wide. This includes both Officer and Enlisted ranks, paygrade

and a Boolean flag that indicates if the rank is part of the

enlisted community or not. This table supports the Officers
and Enlisted table giving the ability to enforce a rank

structure.

CREATE TABLE Ranks (

 rankId int not null,

 rankName text not null,

 payGrade text not null,

 isEnlisted boolean,

 primary key (rankId)

);

6

Officers Table
Functional Dependencies: pid → rankId, commissionDate

 The Officers table contains data for commissioned personnel. Officers are

subtype to People. Each Officer must be listed in the People table prior to

being inserted into the Officers table, enforcing referential integrity. The pid

column serves as the primary key in this table, uniquely identifying each
Officer. Each Officer is linked to a rank from the Ranks table. This table also

records the date they were commissioned.

CREATE TABLE Officers (

 pid int not null references People(pid),

 rankId int not null references Ranks(rankId),

 commissionDate date not null check (commissionDate <= '2025-04-01'),

 primary key (pid)

);
Check constrain to ensure

commission date is in the

past
7

Enlisted Table
Functional Dependencies: pid → rankId, enlistedDate, rate

 The Enlisted table contains information on the Enlisted personnel. Similar to
Officers, it is a subtype of People and each enlisted member must be first listed in
the People table. The pid column serves as the primary key in this table, uniquely
identifying each Enlisted member. Each enlisted member is linked to a rank from
the Ranks table. A key difference in this table from Officers table is the rate
column. Enlisted members are assigned a rate when they enlist in the United
States Navy. You can think of rate as the sailor’s job title.

CREATE TABLE Enlisted (

 pid int not null references People(pid),

 rankId int not null references Ranks(rankId),

 enlistedDate date not null check (enlistedDate <= '2025-04-01'),

 rate text not null,

 primary key (pid)

); Check constraint to ensure enlisted

date is prior to “current date”

8

Departments Table
Functional Dependencies: departmentId → departmentName, description

 The Departments table defines the major divisions with the Submarine similar

to departments in a business setting (Finance, HR). The departments on a

Submarine include Engineering, Weapons, Operations, Communications,

Medical and Supply. Each department is uniquely identified by departmentId,
which serves as the primary key. This table also includes the department

name, and a description of the department’s responsibilities.

CREATE TABLE Departments (

 departmentId int not null,

 departmentName text not null,

 description text,

 primary key (departmentId)

);

9

Qualification Table
Functional Dependencies: qualId → qualName, qualDescription, departmentId

 The Qualifications Table lists the various certifications that Sailors can

achieve. Each qualification is uniquely identified by qualId serving as the

primary key. The table also contains the qualification name, a description,

and the qualification the department belongs to. This ensures referential
integrity with the Departments table by ensuring every qualification is linked

to a valid department. Each qualification is linked to a Sailor via the

PersonnelQualifications table which tracks each Sailor’s individual

qualifications.
CREATE TABLE Qualifications (
 qualId int not null,
 qualName text not null,
 qualDescription text,
 departmentId int not null references
Departments(departmentId),
 primary key (qualId)
);

10

SubmarineClass Table
Functional Dependencies: subClassId → subClassName, boatType, propulsionType, crewCapacity, commissionYear

 The SubmarineClass table defines the different classes of Submarines in the

fleet. Each record captures the class name, boat type, propulsion type, crew

capacity and the year the class was commissioned. Each class is uniquely

identified by subClassId serving as the primary key. This table links back
through the classId foreign key in Submarines Table.

CREATE TABLE SubmarineClass (
 subClassId int not null,
 subClassName text not null,
 boatType text not null,
 propulsionType text not null,
 crewCapacity int not null check (crewCapacity > 0),
 commissionYear int check (commissionYear <= 2025),
 primary key (subClassId)

);

Check constraint to ensure crew capacity is

greater than zero 11

Submarines Table
Functional Dependencies: subId → hullNumber, classId, homeport, status, commissionDate, lastOverhaul

 The Submarine table stores detailed information about each Submarine in the

fleet. Each Submarine is uniquely identified by the subId column. The table

includes the hull number, homeport, operational status (Operational,

Maintenance, Overhaul, Training), commission date and last overhaul date. An
overhaul is a rigorous maintenance period where critical maintenance is

performed to prolong life of Submarine and add upgrades that cannot be done

in a standard maintenance period. Each Submarine is liked to its class through

the classId foreign key, referencing the SubmarineClass table.

CREATE TABLE Submarines (

 subId int not null,

 hullNumber text not null unique,

 classId int not null references SubmarineClass(subClassId),

 homeport text not null,

 status text not null check (status IN ('Operational', 'Maintenance', 'Training', 'Overhaul', 'Deployed')),

 commissionDate date not null check (commissionDate <= '2025-04-01'),

 lastOverhaul date check (lastOverhaul is null OR lastOverhaul <= '2025-04-01'),

 primary key (subId)

);

Check constraints of controlling status of Submarine, commission

date is prior to “current date”, and that the last overhaul is prior to

the “current date” 12

Assignments Table
Functional Dependencies: assignmentId → pid, subId, departmentId, startDate, endDate, fitForDuty

 The Assignments table tracks which personnel are assigned to which

Submarine. Each assignment is uniquely identified by assignmentId as the

primary key. The table links personnel, submarines and departments through

foreign keys, enforcing referential integrity. In addition, it records the start
and end date of each individual's assignment and whether the Sailor is fit for

duty or not.

CREATE TABLE Assignments (
 assignmentId int not null,
 pid int not null references People(pid),
 subId int not null references Submarines(subId),
 departmentId int not null references Departments(departmentId),
 startDate date not null,
 endDate date,
 fitForDuty boolean,
 primary key (assignmentId)
);

13

PersonnelQualifications Table
Functional Dependencies: pid, qualId → dateQualified, qualExpirationDate, isProficient

 The PersonnelQualifications table tracks which qualifications each Sailor

holds. It uses a composite primary key of pid and qualId to ensure each

qualification is unique per person. The table links back to both People and

Qualifications through foreign keys. In addition it records when the
qualification was completed, its expiration date and whether the Sailor is

currently proficient. Qualifications are taken very seriously in the Navy. These

qualifications allow you to stand watches where you are operating equipment

with thousands of pounds of hydraulic pressure, a nuclear reactor or nuclear

missiles. These qualifications have proficiency dates that ensure the watch
stander is staying proficient with the given watch.

CREATE TABLE PersonnelQualifications (
 pid int not null references People(pid),
 qualId int not null references Qualifications(qualId),
 dateQualified date not null check (dateQualified <= '2025-04-01'),
 qualExpirationDate date not null check (qualExpirationDate > dateQualified),
 isProficient boolean,
 primary key (pid, qualId)
);

Check constraint of date qualified

prior to “current date” and that

the qualification expiration date is

greater than the date the
qualification was achieved 14

Views

15

View - enlistedRoster

This view displays the roster of all enlisted personnel, combining their basic personnel details
with their rank, rate and hull number they are assigned to. It joins the People, Enlisted,
Ranks, Assignments and Submarines table. I found this view to be useful when getting an
understanding of the fleet’s status.

CREATE VIEW enlistedRoster as

Select p.pid, p.firstName, p.lastName, r.rankName, e.rate, s.hullNumber

from People p inner join Enlisted e on p.pid = e.pid

 inner join Ranks r on e.rankId = r.rankId

 left outer join Assignments a on p.pid = a.pid

 left outer join Submarines s on a.subId = s.subId;

Select *

 from enlistedRoster;

16

View – OperationalSubs

 This view provides a list of all Submarines that are currently operational. It

displays the subId, hull number, homeport and the date of last overhaul.

There is requirements that our military has that requires a certain amount of

Submarines to be out to sea at all times. This is useful when planning an
integrated schedule involving all Submarines.

 CREATE VIEW operationalSubs as

Select subId, hullNumber, homeport, lastOverhaul

from Submarines

where status = 'Operational';

Select *

 from operationalSubs;

17

View - qualNumbers

 This view gives a qualification report that shows how may personnel are

qualified for each qualification across the fleet. It shows the qualification ID,

name, total number of personnel qualified each watch and the associated

department the qual belongs to. Without qualified Sailors a Submarine cannot
be manned resulting in a non-operational status. You can see how Navy

leadership would want to track this.

CREATE VIEW qualNumbers as
Select q.qualId, q.qualName, count(pq.pid) as qualifiedPersonnelSum, d.departmentName
from Qualifications q left outer join PersonnelQualifications pq on q.qualId = pq.qualId
 inner join Departments d on q.departmentId = d.departmentId
 group by q.qualId, d.departmentName;

18

Reports

19

Report – Crew Total

 This report shows each Submarine’s hull number along with the total number

of personal assigned. It uses a left outer join between Submarines and

Assignments. The report filters for active assignments as there is sample data

of crew members with lapsed assignment dates. This can help leadership
identified undermanned crews who need support or overmanned crews who

can afford to share the wealth.

Select s.hullNumber, count(a.pid) as crewTotal
from Submarines s left outer join Assignments a on s.subId = a.subId
and (a.endDate is null or a.endDate > '2025-04-01')
group by s.subId, s.hullNumber
order by s.hullNumber;

20

Report – Overdue Overhaul Report

 This report identifies Submarines that are overdue for an overhaul. It checks

for Submarines where the last overhaul date is either missing or is older than

April 1, 2020. I touch on the issue of hardcoding dates in the known problems

portion of the presentation. As discussed earlier, overhauls can prolog the life
of a Submarine and is an important factor in maintaining fleet readiness.

 Select hullNumber, lastOverhaul

 from Submarines

 where lastOverhaul is null or lastOverhaul < '2020-04-01’

 order by lastOverhaul;

21

Stored Procedures

22

Stored Procedure – CrewAssignments

 This procedure
returns a list of
personnel currently
assigned to a specific
submarine, based on
the provided hull
number. It outputs
details like the name
of the sailor and their
assignment dates.
This is a quick way of
viewing a full crew
roster for a given
Submarine.

CREATE OR REPLACE FUNCTION crewAssignments (TEXT, REFCURSOR) RETURNS REFCURSOR AS

$$

DECLARE

 p_hullNumber TEXT := $1;

 resultset REFCURSOR :=$2;

BEGIN

 OPEN resultset FOR

 Select p.pid, p.firstName, p.lastName, a.startDate, a.endDate

 from Assignments a inner join People p on a.pid = p.pid

 inner join Submarines s on a.subId = s.subId

 where s.hullNumber = p_hullNumber and (a.endDate is null or a.endDate > '2025-04-01')

 order by p.lastName;

 return resultset;

END;

$$

LANGUAGE PLPGSQL;

--Test #1

Select crewAssignments('SSBN-739', 'results');

Fetch all from results;

--Test #2

Select crewAssignments('SSN-794', 'results');

Fetch all from results;

23

Stored Procedure - readySpares

 This procedure

returns a list of

personnel who do

not have a current
assignment. This is

useful for

identifying

available Sailors

who can support a
Submarine that is

undermanned or

needs additional

support.

CREATE OR REPLACE FUNCTION readySpares(REFCURSOR) RETURNS REFCURSOR AS

$$
DECLARE

 resultset REFCURSOR := $1;

BEGIN
 OPEN resultset FOR

 Select p.pid, p.firstName, p.lastName

 from People p
 where p.pid not in (Select pid

 from Assignments

 where (endDate is null or endDate > '2025-04-01')
 and pid is not null

)

 order by p.lastName;
 return resultset;

END;

$$
LANGUAGE PLPGSQL;

--TEST #1

Select readySpares('results')

Fetch all from results;

24

Triggers

25

Trigger - duplicateAssignments

 This trigger prevents

personnel from being

assigned to more than one

Submarine at a time.
Before an insert/update,

the trigger checks if the

individual already has a

current assignment. If so it

prevents commit and
provides feedback via a

raise exception

CREATE OR REPLACE FUNCTION blockDuplicateAssignments()

RETURNS TRIGGER AS

$$

BEGIN

 IF EXISTS (

 Select a.assignmentId

 from Assignments a

 where a.pid = NEW.pid and (a.endDate is null or a.endDate > '2025-04-01')

 and a.assignmentId != NEW.assignmentId

)

 THEN

 RAISE EXCEPTION 'You cannot assign personnel to more than one Submarine at a time';

 END IF;

 RETURN NEW;

END;

$$

LANGUAGE PLPGSQL;

CREATE TRIGGER duplicateAssignments

BEFORE INSERT OR UPDATE ON Assignments

FOR EACH ROW

EXECUTE PROCEDURE blockDuplicateAssignments();

--Test of Trigger trying to assign pid 1 to subId 1 then 5 when they already have an assignment

INSERT INTO ASSIGNMENTS (assignmentId, pid, subId, departmentId, startDate, endDate, fitForDuty)

VALUES

(30, 1, 1, 1, '2025-07-23', null, true),

(31, 1, 5, 1, '2025-07-23', null, true);
26

Trigger – strategicAssignment

 This trigger prevents a

personnel from being

assigned to a Submarine

that is not operational.
Prior to an

insert/update, the

trigger checks the

operational status of the

Submarine. If the
assigned Submarine is

not operational, the

trigger provides feedback

via a raise exception.

CREATE OR REPLACE FUNCTION blockNonOpAssignment()

RETURNS TRIGGER AS

$$

BEGIN

 IF EXISTS (

 Select s.subId

 from Submarines s

 where s.subId = NEW.subId and s.status not in ('Operational', 'Deployed')

)

 THEN

 RAISE EXCEPTION 'Cannot assign personnel to a submarine that is not Operational';

 END IF;

 RETURN NEW;

END;

$$

LANGUAGE PLPGSQL;

CREATE TRIGGER strategicAssignment

BEFORE INSERT OR UPDATE on Assignments

FOR EACH ROW

EXECUTE PROCEDURE blockNonOpAssignment();

--Test by trying to assign personnel to a non operational boat

--Test #1 - Trigger should alert

--Insert into People table first

INSERT INTO People (pid, firstName, lastName, DOB, homeCity)

VALUES

(55, 'Testy', 'McTester', '1989-01-01', 'Whoville');

INSERT INTO Officers (pid, rankId, commissionDate)

VALUES

(55, 4, '2015-01-01');

INSERT INTO Assignments (assignmentId, pid, subId, departmentId, startDate, endDate, fitForDuty)

VALUES

(55, 55, 3, 1, '2025-04-04', null, true);
27

Security & Access Control

 Control access of a Database is a extremely important aspect. This is

managed through grant and revoke statements. Below is an outline of the

roles and what privileges they are granted. Please see sql script for

statements.

 Commodore – Full access to all tables and permission to execute all stored

procedures. The Commodore oversees an entire Submarine Squadron.

 Admin Officer – Also granted full access to all tables and execution of stored

procedures. The Administration Officer reports to the Commodore and
handles manning in the Submarine force.

 Submarine CO, XO, COB – these members are limited to Select privileges only.

This is read-only access. They are not responsible for maintain these records

as that is the Admin Officers responsibility.

28

Known Problems

 Hardcoded Date issue – Throughout the script I have hard coded the current

date to 2025-04-01 instead of using current_date.

 The trigger that enforces age requirements for the military is also covered

under the check constrain in DOB. This is redundant unless the check

constraint is removed. Submarines are notorious for redundant systems in the

event of a failure…I enforced that idea here.

29

Future Enhancements

 Implement current_date so that the tracking of elements such as
proficiency/qualification is accurate and adaptable to real-time operations.

 Expand roles to allow other leaders subordinate to the existing roles be able to
interact with the database

 Develop a front end for the database with use feedback and error messages

 Improving constraints

 Create Indexes that can support a large data set

 Incorporate other vessels into database such as aircraft carriers, destroyers etc. to
capture a full view of Naval operations.

 Add the following tables: Watchstations, WatchPrereqs, PersonnelWatchstations to
improve the capability of leadership in making staffing decisions. These tables
would show all existing watches, the prerequisites for each watch and who is
qualified each watch.

30

	Default Section
	Slide 1: Submarine Fleet Readiness
	Slide 2: Table of Contents
	Slide 3: Executive Summary
	Slide 4: Key Terms
	Slide 5: ER Diagram
	Slide 6: Tables
	Slide 7: People Table Functional Dependencies: pid  firstName, lastName, DOB, homeCity
	Slide 8: Rank Table Functional Dependencies: rankId  rankName, paygrade, isEnlisted
	Slide 9: Officers Table Functional Dependencies: pid  rankId, commissionDate
	Slide 10: Enlisted Table Functional Dependencies: pid  rankId, enlistedDate, rate
	Slide 11: Departments Table Functional Dependencies: departmentId  departmentName, description
	Slide 12: Qualification Table Functional Dependencies: qualId  qualName, qualDescription, departmentId
	Slide 13: SubmarineClass Table Functional Dependencies: subClassId  subClassName, boatType, propulsionType, crewCapacity, commissionYear
	Slide 14: Submarines Table Functional Dependencies: subId  hullNumber, classId, homeport, status, commissionDate, lastOverhaul
	Slide 15: Assignments Table Functional Dependencies: assignmentId  pid, subId, departmentId, startDate, endDate, fitForDuty
	Slide 16: PersonnelQualifications Table Functional Dependencies: pid, qualId  dateQualified, qualExpirationDate, isProficient
	Slide 17: Views
	Slide 18: View - enlistedRoster
	Slide 19: View – OperationalSubs
	Slide 20: View - qualNumbers
	Slide 21: Reports
	Slide 22: Report – Crew Total
	Slide 23: Report – Overdue Overhaul Report
	Slide 24: Stored Procedures
	Slide 25: Stored Procedure – CrewAssignments
	Slide 26: Stored Procedure - readySpares
	Slide 27: Triggers
	Slide 28: Trigger - duplicateAssignments
	Slide 29: Trigger – strategicAssignment
	Slide 30: Security & Access Control
	Slide 31: Known Problems
	Slide 32: Future Enhancements

