
wallance miranda	 may 15, 2013

a database design proposal for

table of contents� 2
executive summary� 3
create table statements� 5

persons table� 5
employees table� 6
passengers table� 7
aircrafts table� 8
seat_classes table� 9
aircraft_seats table� 10
countries table� 11
airports table� 12
routes table� 13
flight_statuses table� 14
flights table� 15
itineraries table� 16
passengers_on_flights table� 17

triggers� 18
valid_flight_seat_trigger� 18-19

stored procedures� 20
flight_duration� 20
layover_time� 21

views� 22
flights_arrivals� 22

reports� 23
passenger manifest for flight� 23

reports� 24
passengers with a TSA redress� 24
a single itinerary� 25

security� 26
flight_search role� 26
flight_book role� 27
passenger role� 28
ticket_agent role� 29

implementation notes� 30
known problems� 31
future enhancements� 32

table of contents

With over 144 million passengers a
year traveling between 372 worldwide
destinations, United Airlines needs a
database that with all the data for the
passengers. Security is especially critical
in this design. The data must be accessible
by the appropriate persons in the traveling
process, as well as customers. Due to federal
regulations, the data must be accurate
and consistent. Inconsistent data is
unacceptable.

The design focuses on the tables that
are necessary to book flights. This data
includes: passengers, passenger itineraries,
employees, flights, and aircraft seating. The
design assumes that United does not have
any airline partners, in which they share
flights.

An overview of the database will be
presented, followed by the details of how
each of the database tables will be created.
Each table will be followed with a table
of sample data. Ideal database user roles
will be suggested and their purposes will
be explained. To assist in the mission of
data integrity, a trigger will be shown and
explained. To see how meaningful data can
be retrieved, sample reports will be shown.
More details about the implementation are
provided towards the end of the proposal.
Like any design or product, improvements
and new features are needed, so they will be
explained.

This design was targeted for and tested
on PostgreSQL 9.2.4, which was released on
April 4th 2013.

executive summary

entity relationship diagram

CREATE TABLE IF NOT EXISTS persons (
	 person_id			 SERIAL		 NOT NULL UNIQUE,
	 first_name		 	 VARCHAR(50)	 NOT NULL,
	 middle_name	 	 VARCHAR(50)	 NOT NULL,
	 last_name		 	 VARCHAR(50)	 NOT NULL,
	 date_of_birth	 	 DATE		 	 NOT NULL,
	 gender	 	 	 CHAR(1)	 	 NOT NULL,
	 email	 	 	 VARCHAR(256)	 NOT NULL,
	 phone_primary	 	 CHAR(15)	 NOT NULL,
	 CONSTRAINT valid_gender	 CHECK (gender = 'M' OR gender = 'F'),
	 PRIMARY KEY (person_id)
);

create table statements

persons table

person_id first_name middle_name last_name date_of_birth gender email phone_primary

1 Juliet Maria Banks 1992-02-10 F juliet@gmail.com 808-222-4255
2 Alexander William Arnold 1956-06-09 M alexander@yahoo.com 212-689-9722
3 Deborah Josephine Clark 1990-08-30 F deborah@me.com 845-436-7954
4 Jeffrey Domin Garces 1975-05-18 M jeffrey@icloud.com 310-514-9791
5 Eileen Anderson 1994-12-15 F eileen@hotmail.com 424-689-7547
6 Rosalie Nancy Morgan 1997-01-23 F rosalie@gmail.com 808-239-4133
7 Sean Jacob Domingo 1955-03-13 M sean@icloud.com 970-569-1583
8 Susan Freeman 1983-10-31 F susan@yahoo.com 630-712-6948

9 Bryan Colvin Davis 2005-06-16 M bryan@gmail.com 717-378-1987

functional dependencies

sample data

person_id d first_name, middle_name, last_name, date_of_birth, gender, email, phone_primary

Since employees may also be passengers (and not working as a pilot or flight attendant) and passengers may also be
employees, their basic information (i.e. name and phone number) is separated into this table.

create table statements

CREATE TABLE IF NOT EXISTS employees (
	 person_id			 INTEGER		 NOT NULL,
	 hire_date		 	 DATE		 NOT NULL DEFAULT CURRENT_TIMESTAMP,
	 hourly_wage_usd	 	 	 MONEY	 	 NOT NULL,
	 PRIMARY KEY (person_id),
	 FOREIGN KEY (person_id) 	REFERENCES persons(person_id)
);

employees table

person_id hire_date hourly_wage_usd

4 1995-02-21 25.32
2 1972-06-14 34.25
8 1991-04-18 30.15
3 2013-01-31 28.44
7 1992-11-13 26.75

functional dependencies

sample data

person_id d hire_date, hourly_wage_usd

create table statements

CREATE TABLE IF NOT EXISTS passengers (
	 person_id					 INTEGER		 NOT NULL,
	 tsa_redress_num	 	 	 CHAR(13)	 	 NOT NULL UNIQUE DEFAULT '',
	 known_traveler_num	 	 	 CHAR(25)	 	 NOT NULL UNIQUE DEFAULT '',
	 needs_special_assistance		 BOOLEAN	 	 NOT NULL DEFAULT FALSE,
	 PRIMARY KEY (person_id),
	 FOREIGN KEY (person_id)	 	 REFERENCES persons(person_id)
);

passengers table

person_id tsa_redress_num known_traveler_num needs_special_assistance

1 false
2 HX592047501US true
3 HE97965481233 false
4 JK497368125US false
5 777700757 true
6 347934681289 false
7 false
8 false
9 true

functional dependencies

sample data

person_id d tsa_redress_num, known_traveler_num, needs_special_assistance

create table statements

CREATE TABLE IF NOT EXISTS aircrafts (
	 aircraft_id	 	 SERIAL	 	 NOT NULL,
	 manufacturer	 	 VARCHAR(25)	 NOT NULL,
	 model	 	 	 VARCHAR(15)	 NOT NULL,
	 PRIMARY KEY (aircraft_id)
);

aircrafts table

aircraft_id manufacturer model

1 Boeing 767-300ER
2 Airbus A330
3 Bombardier CRJ700
4 Embraer ERJ145

functional dependencies

sample data

aircraft_id d manufacturer, model

The list of the possible aircraft models used for a particular route.

create table statements

CREATE TABLE IF NOT EXISTS seat_classes (
	 class_id	 	 SERIAL	 	 NOT NULL,
	 name		 	 VARCHAR(25)	 NOT NULL,
	 PRIMARY KEY (class_id)
);

seat_classes table

class_id name

1 Economy
2 Economy Plus
3 First Class
4 Business Class

functional dependencies

sample data

class_id d name

The list of the possible seat classes for a particular aircraft's seat number.

create table statements

CREATE TABLE IF NOT EXISTS aircraft_seats (
	 aircraft_id	 	 	 INTEGER	 	 NOT NULL,
	 seat_num	 	 	 	 VARCHAR(3)	 NOT NULL,
	 class_id	 	 	 	 INTEGER	 	 NOT NULL,
	 PRIMARY KEY (aircraft_id, seat_num),
	 FOREIGN KEY (aircraft_id)	 REFERENCES aircrafts(aircraft_id),
	 FOREIGN KEY (class_id)	 	 REFERENCES seat_classes(class_id)
);

aircraft_seats table

aircraft_id seat_num class_id

1 1A 3
1 1B 3
1 1C 3
1 1D 3
1 14A 2
1 14B 2
1 14C 2
1 14D 2
1 20A 1

aircraft_id seat_num class_id

2 18A 2
2 18B 2
2 18C 2
2 18D 2
2 22A 1
2 22B 1
2 22C 1
2 22D 1
2 31A 1

aircraft_id seat_num class_id

2 10A 2
1 10B 2
1 10C 2
1 10D 2
1 11A 2
1 11B 2
1 11C 2
1 11D 2
1 28A 1

aircraft_id seat_num class_id

1 30A 1
1 30B 1
1 30C 1
1 30D 1
1 31A 1
1 31B 1
1 31C 1
1 31D 1
1 32A 1

functional dependencies

sample data

aircraft_id, seat_num d class_id

The list of seat numbers for a particular model of an aircraft.

create table statements

CREATE TABLE IF NOT EXISTS countries (
	 country_code	 	 CHAR(2)	 	 NOT NULL UNIQUE,
	 name		 	 	 VARCHAR(40)	 NOT NULL,
	 PRIMARY KEY(country_code)
);

countries table

country_code name

US United States
UK United Kingdom
CA Canada
CN China
AT Austria
CL Chile
CR Costa Rica
DE Germany
FJ Fiji
ES Spain
GH Ghana
GR Greece
MX Mexico

functional dependencies

sample data

country_code d name

Contains the list of countries where an airport may be located.

create table statements

CREATE TABLE IF NOT EXISTS airports (
	 iata_code		 CHAR(3)	 	 NOT NULL UNIQUE,
	 airport_name	 	 VARCHAR(40)	 NOT NULL,
	 country_code	 	 CHAR(2)	 	 NOT NULL,
	 PRIMARY KEY (iata_code),
	 FOREIGN KEY(country_code) REFERENCES countries(country_code)
);

airports table

iata_code airport_name country_code

JFK John F. Kennedy International Airport US
EWR Newark International Airport US
HNL Honolulu International Airport US
DEN Denver International Airport US
LAX Los Angeles International Airport US
ORD O’Hare International Airport US
LHR London Heathrow Airport UK

functional dependencies

sample data

iata_code d airport_name, country_code

Contains the list of airports the airline flies to and from. The primary key, iata_code, is a unique 3-letter abbreviation
for an airport that is assigned by the International Air Transport Association (IATA). Since, the code is unique, it serves
as the primary key, rather than creating and using an automatically incremented integer column.

create table statements

CREATE TABLE IF NOT EXISTS routes (
	 route_id	 	 	 	 SERIAL	 	 NOT NULL UNIQUE,
	 flight_num		 	 	 SMALLINT	 	 NOT NULL CHECK (flight_num > 0),
	 origin_airport		 	 CHAR(3)	 	 NOT NULL,
	 destination_airport		 CHAR(3)	 	 NOT NULL,
	 aircraft_id	 	 	 INTEGER	 	 NOT NULL,
	 distance_miles		 	 SMALLINT	 	 NOT NULL CHECK (distance_miles > 0),
	 CONSTRAINT diff_orig_dest_airport CHECK(origin_airport != destination_airport),
	 PRIMARY KEY (route_id),
	 FOREIGN KEY (origin_airport)	 	 REFERENCES airports(iata_code),
	 FOREIGN KEY (destination_airport) 	REFERENCES airports(iata_code)
);

routes table

route_id flight_num origin_airport destination_airport aircraft_id distance_miles

1 15 EWR HNL 1 4962
2 14 HNL EWR 1 4962
3 110 EWR LHR 2 3466
4 535 JFK LAX 1 2475
5 1293 LAX JFK 1 2475
6 1025 HNL LAX 1 2556
7 1742 LAX ORD 2 1745
8 377 ORD EWR 3 719
9 1671 DEN LAX 4 862
10 383 HNL DEN 2 3365

functional dependencies

sample data
route_id d flight_num, origin_airport, destination_airport, aircraft_id, distance_miles

This table contains a complete list of routes that the airline flies. A route is defined as a path with an origin airport
and a destination airport. An auto-incremented primary key is needed because airline flight numbers are not unique.
They are sometimes reused for different origin and/or destination airports.

create table statements

CREATE TABLE IF NOT EXISTS route_statuses (
	 status_id		 	 SERIAL	 	 NOT NULL UNIQUE,
	 name		 	 	 VARCHAR(30)	 NOT NULL,
	 PRIMARY KEY (status_id)
);

flight_statuses table

status_id name

1 On Time
2 Delayed
3 Arrived
4 Scheduled

functional dependencies

sample data

Contains the list of possible statuses for scheduled flights.

status_id d name

create table statements

CREATE TABLE IF NOT EXISTS flights (
	 route_id	 	 	 INTEGER	 	 	 	 NOT NULL,
	 depart_timestamp	 TIMESTAMP WITH TIME ZONE	NOT NULL,
	 arrive_timestamp	 TIMESTAMP WITH TIME ZONE	NOT NULL,
	 base_price_usd		 MONEY	 	 	 	 NOT NULL CHECK (base_price_usd > 0.0::text::money),
	 status_id		 	 INTEGER	 	 	 	 NOT NULL,
	 PRIMARY KEY (route_id, depart_timestamp),
	 FOREIGN KEY (route_id)	 	 REFERENCES routes(route_id),
	 FOREIGN KEY (status_id)	 	 REFERENCES route_statuses(status_id)
);

flights table

route_id depart_timestamp arrive_timestamp base_price_usd status_id

1 2013-05-18 13:18:00-04 2013-05-18 23:23:00-04 525.36 4
1 2014-05-18 13:18:00-04 2013-05-18 23:23:00-04 525.36 4
2 2014-05-28 02:35:00-04 2013-05-28 11:40:00-04 851.49 1
6 2013-07-17 12:05:00-04 2013-07-17 17:36:00-04 970.67 4
10 2013-07-30 04:00:00-04 2013-07-30 10:53:00-04 756.94 1
5 2013-07-17 19:25:00-04 2013-07-18 01:15:00-04 491.29 4
6 2013-11-10 11:05:00-04 2013-07-17 17:36:00-04 689.24 4
7 2013-08-01 14:04:00-04 2013-08-01 18:00:00-04 567.71 4
3 2013-08-26 09:00:00-04 2013-07-30 03:53:00-04 1,124.65 4
10 2013-08-15 04:00:00-04 2013-08-15 10:53:00-04 925.95 4
8 2013-07-29 07:00:00-04 2013-07-29 09:05:00-04 289.73 4

functional dependencies

sample data
route_id, depart_timestamp d arrive_timestamp, base_price_usd, status_id

The list of all scheduled flights. A flight is defined as a route with a departure date and time. There cannot be a flight
with the same route that departs on the same date and time. The base price (in USD) is the minimum cost for a single
passenger traveling on the route. This price can vary depending on the time of year (i.e. February vs. Christmas Eve).

create table statements

CREATE TABLE IF NOT EXISTS itineraries (
	 itinerary_id	 	 	 CHAR(6)	 NOT NULL UNIQUE,
	 per_person_price_usd	 MONEY	 NOT NULL CHECK (per_person_price_usd > 0.0::text::money),
	 PRIMARY KEY (itinerary_id)
);

itineraries table

itinerary_id per_person_price_usd

BM87C0 1347.57
DZB665 350.89
MGEWFT 1187.12
WXPL21 689.67
AX9R3E 975.41

P4XBRR 734.72
KL2CA5 513.14

functional dependencies

sample data

itinerary_id d per_person_price_usd

The table containing the list of passenger itineraries. Many passengers can have the same itinerary. Many passengers
can have many itineraries. Once an itinerary, (which may contain more than one flight), has been booked, the per
person cost for the itinerary (not the flight) will be stored. This cost would be determined by the interfacing application,
after taxes and fees have been included. When the total cost needs to be calculated, the cost can be multiplied by the
number of passengers with the same itinerary number.

create table statements

CREATE TABLE IF NOT EXISTS passengers_on_flights (
	 itinerary_id	 	 INTEGER	 	 	 	 NOT NULL,
	 route_id	 	 	 INTEGER	 	 	 	 NOT NULL,
	 depart_timestamp	 TIMESTAMP WITH TIME ZONE	NOT NULL,
	 person_id			 INTEGER				 NOT NULL,
	 seat_num	 	 	 CHAR(3)	 	 	 	 NOT NULL,
	 PRIMARY KEY (itinerary_id, route_id, depart_timestamp, person_id),
	 FOREIGN KEY (person_id) REFERENCES passengers(person_id)
);

passengers_on_flights table

itinerary_id route_id depart_timestamp person_id seat_num

BM87C0 1 2013-05-18 13:18:00-04 1 1A
BM87C0 1 2013-05-18 13:18:00-04 2 1B
BM87C0 1 2013-05-18 13:18:00-04 3 1C
P4XBRR 2 2014-05-28 02:35:00-04 1 2A
P4XBRR 5 2013-07-17 19:25:00-04 1 2A
AX9R3E 3 2013-08-26 09:00:00-04 7 31B
AX9R3E 3 2013-08-26 09:00:00-04 8 11A
KL2CA5 10 2013-08-15 04:00:00-04 4 11B
KL2CA5 10 2013-08-15 04:00:00-04 5 11C
KL2CA5 10 2013-08-15 04:00:00-04 6 11D
KL2CA5 10 2013-08-15 04:00:00-04 1 10D

functional dependencies

sample data

itinerary_id, route_id, depart_timestamp, person_id d seat_num

Contains information about which flight a passenger is on, their itinerary number, and the seat number that he or she
is assigned. Since seat_num is not normalized and has no constraints, a trigger has been defined to address this issue
as it is important that one seat not be assigned to multiple passengers on a scheduled flight.

CREATE OR REPLACE FUNCTION valid_flight_seat_trigger()
RETURNS trigger AS $$
DECLARE
	 seat_count INTEGER := 0;
	 seat_avail INTEGER := 0;
BEGIN
	 -- Is seat number specified?
	 IF NEW.seat_num IS NULL THEN
	 	 RAISE EXCEPTION 'Invalid seat_num given';
	 END IF;

	 -- Is seat number valid for the aircraft flying this route?
	 SELECT COUNT(s.seat_num)
	 INTO seat_count
	 FROM routes r
	 INNER JOIN aircrafts a
	 	 ON r.aircraft_id = a.aircraft_id
	 INNER JOIN aircraft_seats s
	 	 ON a.aircraft_id = s.aircraft_id
	 WHERE r.route_id = NEW.route_id
	 AND s.seat_num = NEW.seat_num;

	 IF (seat_count = 1) THEN
		
	 	 -- Is seat number for the flight available?
	 	 SELECT COUNT(seat_num)
	 	 INTO seat_avail
	 	 FROM passengers_on_flights
	 	 WHERE route_id = NEW.route_id
	 	 AND depart_timestamp = NEW.depart_timestamp
	 	 AND seat_num = NEW.seat_num;
	 	 IF (seat_avail != 0) THEN
	 	 	 RAISE EXCEPTION 'Seat for this flight is occupied.';
	 	 END IF;	
	 ELSE
	 	 RAISE EXCEPTION 'Invalid seat number for this aircraft.';
	 END IF;

triggers

valid_flight_seat_trigger

(continues...)

In PostgreSQL, the main logic for triggers
is contained in a stored procedure that is
specified by the code: RETURNS trigger.
The procedure must then be specified in the
CREATE TRIGGER statement. The trigger will
be called every time an UPDATE or INSERT
command is executed on the passenger_on_
flights table. Then, the valid_flight_seat_
trigger procedure will be executed. There
are two validation steps before the data in
the tables can be modified. First, the trigger
needs to determine if the seat number exists
on the aircraft that is flying this route. Then,
it must determine if the seat is occupied by
another passenger. If there is a conflict, an
error occurs and the changes will not be
comitted.

triggers

valid_flight_seat_trigger (continued)
	 IF (TG_OP = 'INSERT') THEN
	 	 INSERT INTO passengers_on_flights (itinerary_id, route_id, depart_timestamp, person_id, seat_num)
	 	 VALUES (NEW.itinerary_id, NEW.route_id, NEW.depart_timestamp, NEW.person_id, NEW.seat_num);
	 	 RAISE NOTICE 'Passenger was assigned to flight and seat successfully.';

	 ELSIF (TG_OP = 'UPDATE') THEN
	 	 UPDATE passengers_on_flights
	 	 SET (itinerary_id, route_id, depart_timestamp, person_id, seat_num)
	 	 = (NEW.itinerary_id, NEW.route_id, NEW.depart_timestamp, NEW.person_id, NEW.seat_num)
	 	 WHERE itinerary_id = OLD.itinerary_id
	 	 AND route_id = OLD.route_id
	 	 AND depart_timestamp = OLD.depart_timestamp
	 	 AND person_id = OLD.person_id;
	 	 RAISE NOTICE 'Passenger seat assignment and/or flight updated successfully.';
	 END IF;
	
RETURN NULL;
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER valid_flight_seat_trigger
	 BEFORE INSERT OR UPDATE ON passengers_on_flights
	 FOR EACH ROW
	 WHEN (pg_trigger_depth() = 0)
	 EXECUTE PROCEDURE valid_flight_seat_trigger();

Technical Note: pg_trigger_depth() is a
PostgreSQL system information function
that provides the current nesting level of the
trigger. This is needed to prevent the INSERT
INTO and UPDATE commands inside the
trigger procedure from recursively activating
the trigger, thus causing an infinite loop.

stored procedures

flight_duration

CREATE OR REPLACE FUNCTION flight_duration(route_pk INTEGER, depart_ts_pk TIMESTAMP WITH TIME ZONE)
RETURNS TIME AS $$
DECLARE
	 duration TIME WITHOUT TIME ZONE;
BEGIN
	 SELECT (arrive_timestamp::TIMESTAMP WITH TIME ZONE - depart_timestamp::TIMESTAMP WITH TIME ZONE)
	 INTO duration
	 FROM flights
	 WHERE route_id = route_pk
	 AND depart_timestamp = depart_ts_pk;
RETURN duration AS duration;
END;
$$ LANGUAGE plpgsql;

The duration of a flight is information that will need to be calculated frequently as it is useful to have on a passenger
itinerary. The stored procedure allows the database to calculate the duration without forcing the interfacing application
to calculate the value. At the same time, if the interfacing application wants to calculate the duration instead of
the database, then depart_timestamp and arrive_timestamp can be selected from the flights table. The duration is
calculated by subtracting the departure time stamp from the arrival time stamp.

stored procedures

layover_time

CREATE OR REPLACE FUNCTION layover_time(route_1 INTEGER, depart_ts_1 TIMESTAMPTZ, route_2 INTEGER,
depart_ts_2 TIMESTAMPTZ)
RETURNS TIME AS $$
DECLARE
	 arrive_time_1 TIMESTAMP WITH TIME ZONE;
	 depart_time_2 TIMESTAMP WITH TIME ZONE;
	
BEGIN
	 SELECT arrive_timestamp
	 INTO arrive_time_1
	 FROM flights
	 WHERE route_id = route_1
	 AND depart_timestamp = depart_ts_1;
	
	 SELECT depart_timestamp
	 INTO depart_time_2
	 FROM flights
	 WHERE route_id = route_2
	 AND depart_timestamp = depart_ts_2;
RETURN (depart_time_2 - arrive_time_1);
END;
$$ LANGUAGE plpgsql;

Calculates the layover time between two flights. The layover time is when a passenger is not aboard an active flight and
must wait for the next flight in his or her itinerary. The required parameters are the route_id and depart_timestamp
for the first and second flight. The TIMESTAMPTZ is a synonym for the TIME STAMP WITH TIME ZONE data type.
The arrival time for the first flight is subtracted from the departure time of the second flight.

views

flights_arrivals

CREATE VIEW flights_arrivals AS
	 SELECT f.depart_timestamp,
	 f.arrive_timestamp,
	 r.flight_num,
	 r.origin_airport,
	 r.destination_airport
	 FROM flights f
	 INNER JOIN routes r
	 	 ON f.route_id = r.route_id
	 INNER JOIN airports a
	 	 ON r.origin_airport = a.iata_code
	 AND r.destination_airport = a.iata_code;

SELECT *
FROM flights_arrivals
WHERE destination_airport = 'EWR'
ORDER BY arrive_timestamp DESC
LIMIT 20;

Access to flight status information is absolutely necessary. This view could be used by airport systems that display
information about flights. It could also be used by third parties, such as FlightAware—a flight tracking and status
website.

In the above example, arrival information can be narrowed down to show only those flights arriving at the airport the
information screen is located. In addition, the list can be sorted in descending order, with the latest arrivals at the top
of the result set. Since only so many rows can be displayed on the screen at once, the results can be reduced to the
latest 20 flights.

use example

reports

passenger manifest for a scheduled flight

SELECT pers.first_name,
 pers.middle_name,
 pers.last_name,
 pers.gender,
 pf.seat_num
FROM passengers_on_flights pf
INNER JOIN passengers pass
	 ON pf.person_id = pass.person_id
INNER JOIN persons pers
	 ON pass.person_id = pers.person_id
WHERE route_id = '----'
 AND depart_timestamp = '---'
ORDER BY pers.last_name ASC;

SELECT pers.first_name,
 pers.middle_name,
 pers.last_name,
 pers.gender,
 pf.seat_num
FROM passengers_on_flights pf
INNER JOIN passengers pass
	 ON pf.person_id = pass.person_id
INNER JOIN persons pers
	 ON pass.person_id = pers.person_id
WHERE route_id = '6'
 AND depart_timestamp = '2013-07-17 12:05:00-04'
ORDER BY pers.last_name ASC;

This report is useful for gate agents and flight attendants to be able print a physical copy of the list of passengers on
the flight. Airlines are required to have a manifest on board the flight. Should a problem or unfortunate event occur,
the crew will be able to identify and account for all on board passengers.

use example

reports

passengers with a TSA redress number

SELECT pers.first_name,
 pers.middle_name,
 pers.last_name,
 pers.date_of_birth,
 pers.gender,
 pers.phone_primary,
 pass.tsa_redress_num
FROM passengers pass
INNER JOIN persons pers
	 ON pass.person_id = pers.person_id
WHERE tsa_redress_num != '';

This report allows the airline to retrieve all individuals who are have a TSA redress number. It may be necessary for
the airline to provide a list of these people for TSA security officers . Also, it should able to quickly identify these
individuals for security reasons, should the airline be involved in a federal investigation.

reports

a single itinerary

SELECT pers.first_name,
 pers.middle_name,
 pers.last_name,
 f.depart_timestamp,
 f.arrive_timestamp,
 r.origin_airport,
 r.destination_airport,
 r.distance_miles,
 a.manufacturer,
 a.model,
 flight_duration(f.route_id, f.depart_timestamp)
FROM passengers_on_flights pf
INNER JOIN passengers pass
	 ON pf.person_id = pass.person_id
INNER JOIN persons pers
	 ON pass.person_id = pers.person_id
INNER JOIN flights f
	 ON pf.route_id = f.route_id
 AND pf.depart_timestamp = f.depart_timestamp
INNER JOIN routes r
	 ON f.route_id = r.route_id
INNER JOIN aircrafts a
	 ON r.aircraft_id = a.aircraft_id
WHERE pf.itinerary_id = 'BM87C0';

For functions related to searching for a flight, that is an individual who is a potential
passenger of a flight, the application should interact with the database with the flight_
search user. This user has read-only functionality on the appropriate tables. When, the
user decides to book a flight, the application will then use the flight_book user (next page).

security

For functions related to searching for a flight, that is an individual who is a potential
passenger of a flight, the application should interact with the database with the flight_
search user. This user has read-only functionality on the appropriate tables. When, the
user decides to book a flight, the application will then use the flight_book user (next page).

flight_search role

REVOKE ALL PRIVILEGES ON employees FROM flight_search;
REVOKE ALL PRIVILEGES ON persons FROM flight_search;
REVOKE ALL PRIVILEGES ON passengers FROM flight_search;
REVOKE ALL PRIVILEGES ON itineraries FROM flight_search;
REVOKE ALL PRIVILEGES ON flights FROM flight_search;
REVOKE ALL PRIVILEGES ON route_statuses FROM flight_search;
REVOKE ALL PRIVILEGES ON routes FROM flight_search;
REVOKE ALL PRIVILEGES ON passengers_on_flights FROM flight_search;
REVOKE ALL PRIVILEGES ON countries FROM flight_search;
REVOKE ALL PRIVILEGES ON airports FROM flight_search;
REVOKE ALL PRIVILEGES ON aircrafts FROM flight_search;
REVOKE ALL PRIVILEGES ON aircraft_seats FROM flight_search;
REVOKE ALL PRIVILEGES ON seat_classes FROM flight_search;

GRANT SELECT ON flights FROM flight_search;
GRANT SELECT ON route_statuses FROM flight_search;
GRANT SELECT ON routes FROM flight_search;
GRANT SELECT ON passengers_on_flights FROM flight_search;
GRANT SELECT ON countries FROM flight_search;
GRANT SELECT ON airports FROM flight_search;
GRANT SELECT ON aircrafts FROM flight_search;
GRANT SELECT ON aircraft_seats FROM flight_search;
GRANT SELECT ON seat_classes FROM flight_search;

security

Once an individual decides to complete the purchase of his or her itinerary, the application
should use the flight_book user that allows the potential passenger to book a flight and be
classified as a passenger. When the user decides to book a flight, then he or she should be
granted permission to insert new rows of data into the appropriate tables.

flight_book role

REVOKE ALL PRIVILEGES ON employees FROM flight_book;
REVOKE ALL PRIVILEGES ON persons FROM flight_book;
REVOKE ALL PRIVILEGES ON passengers FROM flight_book;
REVOKE ALL PRIVILEGES ON itineraries FROM flight_book;
REVOKE ALL PRIVILEGES ON flights FROM flight_book;
REVOKE ALL PRIVILEGES ON route_statuses FROM flight_book;
REVOKE ALL PRIVILEGES ON routes FROM flight_book;
REVOKE ALL PRIVILEGES ON passengers_on_flights FROM flight_book;
REVOKE ALL PRIVILEGES ON countries FROM flight_book;
REVOKE ALL PRIVILEGES ON airports FROM flight_book;
REVOKE ALL PRIVILEGES ON aircrafts FROM flight_book;
REVOKE ALL PRIVILEGES ON aircraft_seats FROM flight_book;
REVOKE ALL PRIVILEGES ON seat_classes FROM flight_book;

GRANT INSERT, SELECT ON persons FROM flight_book;
GRANT INSERT, SELECT ON passengers FROM flight_book;
GRANT SELECT ON flights FROM flight_book;
GRANT SELECT ON route_statuses FROM flight_book;
GRANT SELECT ON routes FROM flight_book;
GRANT INSERT, SELECT ON passengers_on_flights FROM flight_book;
GRANT INSERT, SELECT ON itineraries FROM flight_book;
GRANT SELECT ON countries FROM flight_book;
GRANT SELECT ON airports FROM flight_book;
GRANT SELECT ON aircrafts FROM flight_book;
GRANT SELECT ON aircraft_seats FROM flight_book;
GRANT SELECT ON seat_classes FROM flight_book;

security

 A passenger is a person (employee or non-employee) with a valid itinerary. After the
individual becomes a passenger, the application should use this user role. This user also
permits returning/loyal passengers with user accounts (not part of this database design) to
edit information that may change over time. For example, name, phone number and email.
For the tables in this design, the passenger should be allowed to only update rows of data,
not insert new rows.

passenger role

REVOKE ALL PRIVILEGES ON employees FROM passenger;
REVOKE ALL PRIVILEGES ON persons FROM passenger;
REVOKE ALL PRIVILEGES ON passengers FROM passenger;
REVOKE ALL PRIVILEGES ON itineraries FROM passenger;
REVOKE ALL PRIVILEGES ON flights FROM passenger;
REVOKE ALL PRIVILEGES ON route_statuses FROM passenger;
REVOKE ALL PRIVILEGES ON routes FROM passenger;
REVOKE ALL PRIVILEGES ON passengers_on_flights FROM passenger;
REVOKE ALL PRIVILEGES ON countries FROM passenger;
REVOKE ALL PRIVILEGES ON airports FROM passenger;
REVOKE ALL PRIVILEGES ON aircrafts FROM passenger;
REVOKE ALL PRIVILEGES ON aircraft_seats FROM passenger;
REVOKE ALL PRIVILEGES ON seat_classes FROM passenger;

GRANT SELECT, UPDATE ON persons FROM passenger;
GRANT SELECT, UPDATE ON passengers FROM passenger;
GRANT SELECT, UPDATE ON itineraries FROM passenger;
GRANT SELECT ON flights FROM passenger;
GRANT SELECT ON route_statuses FROM passenger;
GRANT SELECT ON routes FROM passenger;
GRANT SELECT ON passengers_on_flights FROM passenger;
GRANT SELECT ON countries FROM passenger;
GRANT SELECT ON airports FROM passenger;
GRANT SELECT ON aircrafts FROM passenger;
GRANT SELECT ON aircraft_seats FROM passenger;
GRANT SELECT ON seat_classes FROM passenger;

security

This user role is for applications that allow employees to check in customers when they
arrive. Ticket agents should be allowed to update customer data, such as name, traveler
numbers and seat assignments. In addition, they should be able to book flights for customers
in the event of delayed, canceled or missed flights. They have access to all tables except for
the employees table.

ticket_agent role

REVOKE ALL PRIVILEGES ON employees FROM ticket_agent;
REVOKE ALL PRIVILEGES ON persons FROM ticket_agent;
REVOKE ALL PRIVILEGES ON passengers FROM ticket_agent;
REVOKE ALL PRIVILEGES ON itineraries FROM ticket_agent;
REVOKE ALL PRIVILEGES ON flights FROM ticket_agent;
REVOKE ALL PRIVILEGES ON route_statuses FROM ticket_agent;
REVOKE ALL PRIVILEGES ON routes FROM ticket_agent;
REVOKE ALL PRIVILEGES ON passengers_on_flights FROM ticket_agent;
REVOKE ALL PRIVILEGES ON countries FROM ticket_agent;
REVOKE ALL PRIVILEGES ON airports FROM ticket_agent;
REVOKE ALL PRIVILEGES ON aircrafts FROM ticket_agent;
REVOKE ALL PRIVILEGES ON aircraft_seats FROM ticket_agent;
REVOKE ALL PRIVILEGES ON seat_classes FROM ticket_agent;

GRANT UPDATE, INSERT, SELECT ON persons FROM ticket_agent;
GRANT UPDATE, INSERT, SELECT ON passengers FROM ticket_agent;
GRANT UPDATE, INSERT, SELECT ON itineraries FROM ticket_agent;
GRANT SELECT ON flights FROM ticket_agent;
GRANT SELECT ON route_statuses FROM ticket_agent;
GRANT SELECT ON routes FROM ticket_agent;
GRANT UPDATE, INSERT, SELECT ON passengers_on_flights FROM ticket_agent;
GRANT SELECT ON countries FROM ticket_agent;
GRANT SELECT ON airports FROM ticket_agent;
GRANT SELECT ON aircrafts FROM ticket_agent;
GRANT SELECT ON aircraft_seats FROM ticket_agent;
GRANT SELECT ON seat_classes FROM ticket_agent;

implementation notes

•	The interfacing software is expected to dynamically calculate
–– Appropriate connecting flights (i.e. two flights that do not overlap in time)

•	Time zones
–– In the case of an INSERT: The server is expected to convert timestamps to the
server's time zone.
–– The server stores time zones in UTC (Universal Coordinated Time), also known as
GMT (Greenwich Mean Time).

•	Airlines always change prices of flights according to demand/popularity, availability,
date, time, etc.

–– The interfacing application is expected to calculate pricing that incorporates the
mentioned factors. The database simply stores the base (or minimum) price of a
single flight.

•	TSA (Transportation Security Administration)
–– The Secure Flight Passenger Data Definitions document (version 1.0) provides
guidelines on the different pieces of data to help companies in the airlines industry
design their systems.
–– They recommend the length of the Redress Number be 13 characters
–– They recommend the length of the Known Traveler Number be 25 characters.
–– These numbers are assigned by the Department of Homeland Security (DHS)
–– Document link: http://www.tsa.gov/sites/default/files/assets/pdf/secure_flight_passenger_data_definitions.pdf

•	What happens when flights have been completed?
–– The data should be transfered to a historical flight records table

•	Generation of unique itinerary numbers is not implemented by the database
•	Create more user roles, as the airline industry has more roles
•	More views should be created and used to interface with applications, to protect the
underlying implementation and data.

known problems

future enhancements
The United Airlines logo is copyright © 2013 United Airlines, Inc.

•	Add support for
–– Groups of flights for a single itinerary. For example, itineraries that have multiple
destinations (or multiple sets of flights). Passengers should be allowed to book a
multiple destination itinerary. A passenger might want to fly from Los Angeles to
Denver on October 1st, then on October 9th, fly from Denver to New York. Then, on
October 18th, fly from New York back to Los Angeles. With the current database
design, this cannot be done by sorting all the flights according to departure time in
ascending order. The system cannot determine which individual flight (leg) belongs
to which group of flights.

–– Frequent flyer program (United MileagePlus®)

–– Special baggage (i.e. surfboards, live animals)

–– Codeshare flights (when two or more airlines share the same flight). This would
require another table with a list of airlines, their unique carrier code (United's code
is UA).

