
Red Fox Art Gallery
Relational Database Design

Sydney George

Table of Contents
Executive Summary ………………………………3
ER Diagram ………………………………………….4
Table Statements

People 5
Zipcodes 6
Visitors 7
Products 8
Bookstore 9
Artists 10
Curators 11
Exhibitions 12
Events 13
Artworks 14
Paintings 15
Sculptures 16
Sales 17

Views ………………………………….. 18-19
Reports ……………………………….. 20-22
Stored Procedures ………………… 23-24
Triggers …………………………..…… 25-26
Security …………………………..….. 27
Problems/Enhancements ………. 28

** Implementation Notes throughout

2

Executive Summary

• The Red Fox Art Gallery is steadily growing its collection of artwork and
presence in the community through frequent events. Keeping track of the
artwork, sales, as well as the plethora of exhibitions and events is important
in order to sustain the success of this beloved gallery!

• Hence, the purpose of the Red Fox Art Gallery database is to provide a way to
keep all of this information organized.

• This presentation will begin with an ER diagram to outline a database design
that will fulfill all the needs of the art gallery. Following this are the create
statements for those tables and sample outputs for what the database would
look like. Additionally, views, reports, stored procedures, and triggers that the
art gallery may find useful, and security for how each user role may use the
database.

3

E/R Diagram

4

People Table
The People table contains an id for each
person as well as their first and last name.
This table is a place for common information
between Artists, Curators, and Visitors.

CREATE TABLE People (
 pid char(4) not null unique,
 first_name text not null,
 last_name text not null,
 primary key(pid)
);

5

Functional Dependencies
pid → first_name, last_name

Zipcodes Table

The Zipcodes table contains the city and state
corresponding to each unique zipcode.

CREATE TABLE Zipcodes (
 zipcode int not null unique,
 city text not null,
 state_abv text not null,
 primary key(zipcode)
);

6

Functional Dependencies
zipcode → city, state_abv

Visitors Table
The Visitors table contains information that only
pertains to visitors such as membership level,
address, and zipcode. This information is needed to
send visitors mail, appropriate flyers or event
invitations, ship purchases to, etc.

CREATE TABLE Visitors (
 visitor_id char(4) not null references People(pid),
 membership_level text,
 street_address text,
 zipcode int references Zipcodes(zipcode),
 primary key(visitor_id)
);

7

Functional Dependencies
Visitor_id → membership_level, street_address, zipcode

Products Table

The Products table contains information about the products offered in the art gallery
bookstore, such as the name, description, and price. Who doesn’t want to take a souvenir
home from their art gallery trip?

CREATE TABLE Products (
 prod_id char(4) not null unique,
 name text not null,
 description text,
 price_usd decimal(4,2) not null,
 primary key(prod_id)
);

8

Functional Dependencies
prod_id → name, description, price_usd

Bookstore Table
The Bookstore table contains records of all the sales made in the art gallery bookstore. Each purchase
has an order number, a customer id, and the quantity and product that they bought.

CREATE TABLE Bookstore (
 order_number int not null unique,
 customer_id char(4) not null references Visitors(visitor_id),
 prod_id char(4) not null references Products(prod_id),
 quantity int not null,
 primary key(order_number)
);

9

Functional Dependencies
Order_number → customer_id, prod_id,
 quantity

Artists Table
The Artists table contains
specific information
relevant to artists, such as
home city, date of birth, the
artist’s favorite style to work
in, and their years as an
artist.

CREATE TABLE Artists (
 artist_id char(4) not null references People(pid),
 homecity text not null,
 date_of_birth date not null,
 favorite_style text,
 years_in_craft int,
 primary key(artist_id)
);

10

Functional Dependencies
Artist_id→ homecity, date_of_birth,
 favorite_style,
 years_in_craft

Curators Table

The Curators table contains specific information
relevant to curators. This is years of experience,
the commission percent they earn, and the date
they were hired. These are the most important
fields to track because they will be useful in
following reports.

CREATE TABLE Curators (
 curator_id char(4) not null references People(pid),
 years_experience text,
 commision_pct decimal(3,2) not null,
 date_hired date not null,
 primary key(curator_id)
);

11

Functional Dependencies
curator_id→ years_experience,
 commission_pct,
 date_hired

Exhibitions Table
Exhibitions are the different groups of paintings put together by curators throughout the gallery. This table
contains an exhibition id, name, the curator who put the artworks together, an optional theme description, and a
start/end dates for the exhibition duration.

CREATE TABLE Exhibitions (
 exhibition_id char(4) not null unique,
 exhibition_name text not null,
 curator_id char(4) not null references Curators(curator_id),
 display_start_date date not null,
 display_end_date date not null,
 theme text,
 primary key(exhibition_id)
);

12

Functional Dependencies
exhibition_id→ exhibition_name,
 curator_id,
 display_start_date,
 display_end_date,
 theme

Events Table
The Events table contains
information for the events the
art gallery hosts. Events only
last one day, often as a way of
showcasing off an exhibition.
Events have a unqiue id, name,
description, a date, and an
exhibition that the event is held
for.

CREATE TABLE Events (
 event_id char(4) not null unique,
 name text not null,
 description text,
 event_date date not null,
 featured_exhibition char(4) not null references Exhibitions(exhibition_id),
 primary key(event_id)
);

13

Functional Dependencies
event_id → name, description,

event_date,
featured_exhibition

Artwork Table
The Artwork table contains the id, title, and
description for each piece of artwork in the
gallery. It also includes the artist, when they
made the piece, whether it is for sale (if so,
the starting price), and the exhibition it was
placed in.

CREATE TABLE Artwork (
 art_id char(4) not null unique,
 artist_id char(4) not null references Artists(artist_id),
 title text not null,
 description text,
 creation_year int not null,
 for_sale boolean not null,
 starting_price_usd decimal(7,2),
 exhibition char(4) references Exhibitions(exhibition_id),
 primary key(art_id)
);

14

Functional Dependencies
art_id→ artist_id, title, description, creation_year,
 for_sale, starting_price_usd,
 exhibition

Paintings Table

The Paintings table contains specific details for
artworks that are paintings, such as the canvas
type and medium used. These details only apply
to paintings, hence why they are included here
and not the Artwork table.

CREATE TABLE Paintings (
 painting_id char(4) not null references Artwork(art_id),
 canvas_type text not null,
 medium text not null,
 primary key(painting_id)
);

15

Functional Dependencies
painting_id → canvas_type, medium

Sculptures Table
The Sculptures table contains specific details for artworks
that are sculptures, such as the material and weight in
pounds. Material must be known, but it is possible to not
have the weight in pounds recorded

CREATE TABLE Sculptures (
 sculpture_id char(4) not null references Artwork(art_id),
 material text not null,
 weight_lbs int,
 primary key(sculpture_id)
);

16

Functional Dependencies
sculpture_id → material, weight_lbs

Sales Table
The Sales table contains information for artwork sales.
Each sale has a unique sale number, and records the
art that was sold, which curator sold it, the buyer, and
the final price the painting was purchased for. Many
paintings go under biding wars, so it is important to
keep track of this separate from the starting price.

CREATE TABLE Sales (
 sale_number int not null unique,
 art_sold_id char(4) not null references Artwork(art_id) unique,
 curator_id char(4) not null references Curators(curator_id),
 buyer_id char(4) not null references Visitors(visitor_id),
 selling_price_usd decimal(7,2) not null,
 primary key(sale_number)
);

17

Functional Dependencies
sale_number → art_sold_id, curator_id, buyer_Id,

selling_price_usd

Views

18

Some helpful views include combining people and curators with a join, as well as combining the artwork and sales table.
The information is these tables go hand in hand, meaning a user may often want to reference data from both tables at once,
so creating a view will simplify upcoming queries.

CREATE VIEW PeopleCurators
as
select *
from Curators c inner join People p on c.curator_id = p.pid;

CREATE VIEW ArtworkSales
as
select *
from Artwork a inner join Sales s on a.art_id = s.art_sold_id;

Views Continued

19

CREATE VIEW SculptureArtwork
as
select *
from Artwork a inner join Sculptures s on a.art_id = s.sculpture_id;

These views combine the artwork table with the painting and sculpture tables. This allows for a view of all the possible details for
either paintings or sculptures in one place. While these will not be used in the following stored procedures or triggers, they serve
as helpful tool for getting the full details of artworks easily and quickly.

CREATE VIEW PaintingArtwork
as
select *
from Artwork a inner join Paintings p on a.art_id = p.painting_id;

Report 1:

20

This report show the curators who have made the most money by outputting a new field called
commission_usd. It also outputs relevant fields such as the name of the curator and fields that may help
explain this commission amount like years of experience.

select first_name, last_name, years_experience,
 art_sold_id, (commision_pct *
 selling_price_usd) as commission_usd
from PeopleCurators pc inner join Sales s on pc.curator_id = s.curator_id
order by commission_usd DESC;

Report 2:

21

This report shows by how much over the starting price artworks sold for. Artworks are often bid on, so
selling for more than anticipated is common. This report also outputs the artist, buyer, and curator that
were involved with that artwork, which may lend to various insights. For example, does one buyer regularly
buy over asking and by how much? Similarly, is there a popular artist whose paintings go over the starting
price consistently?

select art_id, title, artist_id, buyer_id, curator_id,
 (selling_price_usd - starting_price_usd)
as oversold_amt
from ArtworkSales
where starting_price_usd < selling_price_usd
order by oversold_amt DESC;

Report 3:

22

This report shows which bookstore product sells the
most and how much. A lot of profit of the gallery comes
from bookstore sales (as more visitors buy from the
bookstore than pieces of artwork), so it’s important to
know which product we need to keep in stock a plenty!

select p.name, sum(b.quantity) as units_sold
from Bookstore b inner join Products p on b.prod_id =
p.prod_id
group by p.prod_id
order by sum(b.quantity) DESC
LIMIT 1;

Stored Procedure 1:

23

This procedure gets all of the artworks for a
certain artist. The artist can be specified by
their first and last name or by their id. The
purpose is to facilitate easy use of look up
within the database.

create or replace function getArtworks_byId_orName(char(4), text, text, REFCURSOR) returns refcursor
as
$$
declare
 wanted_artist_id char(4) := $1;
 first_name_lookup text := $2;
 last_name_lookup text := $3;
 resultset REFCURSOR := $4;
begin
 if (wanted_artist_id IS NOT NULL) then
 open resultset for
 select *
 from Artwork
 where artist_id = wanted_artist_id;
else
 open resultset for
 select *
 from People p inner join Artwork a on p.pid = a.artist_id
 where p.first_name = first_name_lookup
 and p.last_name = last_name_lookup;
 end if;
 return resultset;
end;
$$
language plpgsql;

Testing

select getArtworks_byId_orName(NULL, ‘
 Cecily', 'Brown', 'results');
Fetch all from results;

Stored Procedure 2:

24

This procedure returns all of the artworks
being featured in an event using the event
id. Events feature an exhibition, and
exhibitions can have many artworks, so this
is helpful to view all of the artworks quickly
and easily.

create or replace function getArtworks_inEvent(char(4),
REFCURSOR) returns refcursor as
$$
declare
 event_id_lookup char(4) := $1;
 resultset REFCURSOR := $2;
begin
 open resultset for
 select a.art_id, a.title, a.description
 from Events e inner join Exhibitions x on
e.featured_exhibition = x.exhibition_id
 inner join

Artwork a on a.exhibition = x.exhibition_id
 where e.event_id = event_id_lookup;
 return resultset;
end;
$$
language plpgsql;

Testing

select getArtworks_inEvent('e010', 'resultset');
Fetch all from resultset;

Trigger 1:

25

A simple but important trigger is one
that returns a descriptive error when
no first or last name is given while
trying to insert a new person into the
People table. Using a trigger such as
this is often more helpful than the
default SQL error output.

create or replace function check_pname()
returns trigger as
$$
begin
 if (NEW.first_name IS NULL) then
 raise exception 'You must enter a first name';
 end if;
 if (NEW.last_name IS NULL) then
 raise exception 'You must enter a last name';
 end if;
 return new;
end
$$
language plpgsql;

create trigger check_pname
before insert or update on People
for each row
execute procedure check_pname();

Testing

insert into People
values ('p010', 'Dylan', NULL);

Trigger 2:

26

The Red Fox Art Gallery wants to make
sure every visitor has the opportunity to
take a souvenir of their visit home! So,
they implemented a max quantity of 5 to
any purchases made in the bookstore.
Any time a quantity over the 5 limit is
entered into the database it is cancelled
(deleted).

create or replace function quantity_limit()
returns trigger as
$$
begin
 if (NEW.quantity > 5) then
 delete from Bookstore where quantity =
NEW.quantity;
 end if;
 return new;
end;
$$ language plpgsql;

create trigger quantity_limit
after insert on Bookstore
for each row
execute procedure quantity_limit();

Testing

insert into Bookstore
values (1004, 'p001', 'pr02', 6);

select *
from Bookstore;

Security

27

Manager: The manager has access to as much of the
database as they need. Their responsibilities include
keeping track of artists, visitors, and such, so they have
complete access for inserting and updating.

Admin: The admin has all permissions and complete
access to the database. This person would either be
the owner of the art gallery, or a person reasonable for
the database.

Associate: These employees work in the Bookstore
and have the least amount of access to the
database. They can create and manage sales.

Curators: The curators have access to all the art related tables
that are relevant to their job responsibilities.

create role Admin;
grant all on
all tables
in schema public
to Admin;

create role Manager;
grant select, insert, update
on all tables
in schema public
to Manager;

create role Curator;
grant select, insert, update
on Artwork, Sculptures, Paintings, Exhibitions, Events, Sales
to Curator;

create role Associate;
grant select, insert
on Bookstore
to Associate;

Known Problems/Future Enhancements

• Known problem: On the first stored procedure, there could potentially be
problems if the name of the artist that is being searched for has the same
name as a visitor. As in the people table, this is not differentiated.

• Future enhancements include:
• Adding more fields if desired. This may include a credit card number or payment

method.
• Using joins to add more depth to queries and select people’s or artist’s names instead of

ids
• Advanced triggers that would be helpful in this database are:

• Not being able to sell an artwork that is already sold, changing the for sale status to sold
when a sale is created

• Expanding for growth is also possible. For example, if the art gallery wants to
start keeping track of the location of the artworks not just in terms of the
exhibitions, but the locations of the exhibitions within the halls of the art
gallery building.

28

	Slide 1: Red Fox Art Gallery
	Slide 2: Table of Contents
	Slide 3: Executive Summary
	Slide 4: E/R Diagram
	Slide 5: People Table
	Slide 6: Zipcodes Table
	Slide 7: Visitors Table
	Slide 8: Products Table
	Slide 9: Bookstore Table
	Slide 10: Artists Table
	Slide 11: Curators Table
	Slide 12: Exhibitions Table
	Slide 13: Events Table
	Slide 14: Artwork Table
	Slide 15: Paintings Table
	Slide 16: Sculptures Table
	Slide 17: Sales Table
	Slide 18: Views
	Slide 19: Views Continued
	Slide 20: Report 1:
	Slide 21: Report 2:
	Slide 22: Report 3:
	Slide 23: Stored Procedure 1:
	Slide 24: Stored Procedure 2:
	Slide 25: Trigger 1:
	Slide 26: Trigger 2:
	Slide 27: Security
	Slide 28: Known Problems/Future Enhancements

