Q

Marist Banner -/
Tracker

Patrick Tyler
CMPT 308
May 2024

Executive Summary

’ This is a system engineered for Marist students
to track their sections throughout the
registration process. Students are annoyed with
ﬁ uncertainty during registration. This system aims
to provide them with live and accurate
information and programmatically notifying
students on changes to sections they plan on
registering for. This system takes all class data for
a term at multiple points in the registration
process updating its existing data accordingly.

Meetings
PK, FK |char(10) courseNumber
PK, FK |char(4) subjectCode
PK, FK |char(4) sectionNumber
PK, FK |text term
PK TIME startTime
PK |dayOfWeek |day
INTERVAL | duration
Professors
PK |text email
text firstName
text lastName
Messages
PK |SERIAL (int) id
FK |int studentld

text message

Entity-Relationship Diag

laricet Ranner T (
\rist Banner Trac

ram

Sections
PK, FK |char(10)|courseNumber
PK, FK |char(4) |subjectCode Courses
PK |char(4) |number 7_1—0— PK |[char(10) number
PK |text term PK, FK |char(4) subjectCode
int enrollment text bannerld
int maximumEnroliment text name
text bannerld
FK text primaryProfessor
PreferredEnrollments
PK, FK |char(10) courseNumber
PK, FK |char(4) subjectCode
Students PK, FK |char(4) sectionNumber
PK [SERIAL(nt) [id 4'_LQ< PIVEIK text tomm
text firstName PK, FK |int studentld

Subjects
PK |char(4) code
text name
FK |[char(2) schoolCode
|Schools
PK [char(2) code
text name

* X %
*IL

UNIVERSITY

umv::nsrrv —l
SINCE 1930

000

CREATE TABLE Professors (
-- sort of bad practice to use emaill because it might change but it
-- makes the data entry easier
emall text PRIMARY KEY,
firstName text,
lastName text

)5

e Strongentity to represent Marist Professors
e Emailis chosen as primary key even though it is generally
discouraged because the Marist Banner website only

exposes email as identifying professor information

Functional Dependency: email -> firstName, lastName

Professors - Sample Data

Amanda.Damiano@marist.edu
Heather.Hallenbeck@marist.edu
Muzi.Liu@marist.edu
Carol.Friedman@marist.edu
Tony.Carrizales@marist.edu
Mohammadali.KoorankBeheshti@marist.edu
Patricio.Morales@marist.edu
Paul.Ciminello@marist.edu
Donald.Schwartz@marist.edu
SangKeun.Yoo@marist.edu
DooRi.Chung@marist.edu
Brian.Cronin2@marist.edu
Aimee.Vargas@marist.edu
Patrick.Boylan@marist.edu
David.Tanguay@marist.edu
Kelly.Murrayl@marist.edu
Corey.Fenstemacher@marist.edu

Marilyn.Lyons@marist.edu
Francis.Kelly@marist.edu
Malinda.Behrens@marist.edu
(438 rows)

Amanda
Heather
Muzi
Carol
Tony
Mohammadali
Patricio
Paul
Donald
Sang Keun
DooR1
Brian
Aimee
Patrick
DEVAK
Kelly
Corey

Marilyn
Francis
Malinda

Damiano
Hallenbeck

Liu

Friedman
Carrizales
Koorank Beheshti
Morales
Ciminello
Schwartz

Yoo

Chung

Cronin
Vargas-Rodriguez
Boylan

Tanguay

Murray
Fenstemacher

Lyons
Kelly
Behrens

CREATE TABLE Schools (
code char(2) PRIMARY KEY,
name text

)5

e Strongentity to represent Marist Schools

Functional Dependency: code -> name

School of Management
Registrar

School Communication Arts
School of Liberal Arts
School of Science Sc 00 S -— Sam e Data
Arts and Letters

Comm Media Arts

School Computer Sci/ Math
School Behavioral/Social Sci
Management Studies

MA Ed. Psychology

MS Athletic Training

Science

Professional Programs

Global and Profess Programs
MS Global Fashion Merch
Mental Health Counseling
MBA

Physicians Assistant Studies
MA Communication

MSCS Computer Science

Art and Art Histo

Humanities

MS Education ’

MPA

MA Psychology “
MA School Psychology

MS Technology Management

MA in Teaching

Dr. Physical Therapy

Professional Accountancy

Behavioral/Social Science
(32 rows)

00

CREATE TABLE Subjects (
code char(4) PRIMARY KEY,
name text,
schoolCode char(2) REFERENCES Schools(code)

);

e Weak entity to represent Marist Subjects

Functional Dependency: code -> name, schoolCode

Subjects - Sample Data

Accounting

Admissions Intern
Advertising

Africa

Agriculture-LdM

American Studies
Anthropology
Anthropology-International
Arabic

Architecture - LDM

Art

Art History - LDM

Art Studio - LDM
Art-International
Civilization of Netherlands
Communication
Communications - LDM
Communications-International
Computer Science

Computer Science Info Sys
Computing Technology

Sociology
Sociology-International
Spanish

(172 rows)

&
[t
g

CREATE TABLE Courses (
number char(10),
subjectCode char(4) REFERENCES Subjects(code),

bannerId text UNIQUE,-- Never trust others

Weak entity to
represent Marist (i WELAT

P PRIMARY KEY(number, subjectCode)
Courses

bannerld is not chosen as the primary key, yet has a UNIQUE constraint... this is
because if Banner is no longer used or for some reason became inconsistent it would
be a much harder migration if it was used for as a PK everywhere. It is still kept as it
could be useful for various procedures to have this identifier while we know it is

consistent. ,
Functional Dependency:

number, subjectCode -> bannerld, name

Professor - Sample Data

subjectcode | bannerid

PRIN OF ACCT I

ACCT PRIN OF ACCT II
ACCT PRIN OF ACCT I
ACCT PRIN ACCTING IT
ACCT FINANCIAL ACCTNG
ACCT MANAGERTAL ACCTNG
ACCT INTERM ACCTING I
ACCT INTERM ACCTING IT
ACCT ACCT THEORY PRAC
ACCT COST ACCTING
ACCT INFO FOR DECISION
ACCT FRAUD EXAMINATION
ACCT INTERNATIONAL ACCT
ACCT FIN STATMNT ANALYS
ACCT ACCTING SYSTEMS
AcCT ACCOUNT INTERN
ACCT SP TOP ACCOUNTING
o AcCT SP TOP ACCOUNTING
Marlst boaStS over ACCT ACCOUNTING INTERN
ACCT ACCOUNT INTERN
6000 cou r-Ses| AccT ACCTING INTERN
. ACCT ACCOUNT INTERN

ACCT ACCOUNT INTERN
ACCT ACCOUNT INTERN

ISPA RENEWABLE ENERGIES - SPAIN
| ISPA ST:ISPAN
(6044 rows)

(many not available
every term)

00

CREATE TABLE Sections (
courseNumber char(10),
subjectCode char(4),
number char(4),
-- term must be a season followed by 4 numbers

: -- note season year is an atomic term for this use case
Weak entlty tO. term text CHECK (term ~ '~(Winter|Spring|Summer|Fall) \d{4}$'),
represent Marist enrollment int CHECK (enrollment >= 0),
g maximumEnrollment int CHECK (enrollment >= 0),
SeCt|OnS bannerId text UNIQUE, -- Never trust others

-- only storing doing email for simplicity of adding data
primaryProfessor text REFERENCES Professors(email),
Banner|d haS the FOREIGN KEY (courseNumber, subjectCode) REFERENCES Courses(number, subjectCode),
5 PRIMARY KEY(courseNumber, subjectCode, number, term)
Same reasoning

as with courses

Term could arguably be brought out to another table especially if
other attributes such as whether it is historical or not is needed

Functional Dependency:
courseNumber, subjectCode, number, term-> enrollment,
maximumEnrollment, bannerld, primaryProfessor

Sections - Sample Data (1st scrape)

coursenumber | subjectcode bannerid primaryprofessor
176016 Carolyn.Matheus@marist.edu
176013 Carolyn.Matheus@marist.edu
175185

174926

175422

175050

175508 Samantha.Sayegh@marist.edu
174866 Amanda.Bergold@marist.edu
174419 Amanda.Bergold@marist.edu
176277 Samantha.Sayegh@marist.edu
175720 Sarah.DelLuccal@marist.edu
174091

175106

176366

174092 Edward.Thomas.McLoughlin@marist.edu
175251 Frank.Merenda@marist.edu
174093 Frank.Merenda@marist.edu
174979 Vanessa.Lynn@marist.edu
174980 Vanessa.Lynn@marist.edu
175600

176900 Steven.Minard@marist.edu
175275 Edward.Thomas.McLoughlin@marist.edu
175276 William.Sayegh@marist.edu
176897 Samantha.Sayegh@marist.edu
175688 Samantha.Sayegh@marist.edu

CMPT
CONV
CONV
CONV
CONV
CRJU
CRJU
CRJU
CRJU
CRJU
CRJU
CRIU
CRJU
CRIU
CRJU
CRJU
CRJU
CRJU
CRJU
CRJU
CRJU
CRJU
CRJU
CRJU

o — —— — o—|——— — — {— — T—— — — — {——| — —— | o—

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

ECON
ECON
ECON

(=]

174221 Kole.Camaj@marist.edu
177160 Gary.Jacobi@marist.edu
174224 Kole.Camaj@marist.edu

[

(2259 rows)

900

CREATE TABLE Students (
id SERIAL PRIMARY KEY,

e Strongentity to represent :
Marist students firstName text

)5

Functional Dependency: id -> firstName

Students - Sample Data

id | firstname
e e

1 | Patrick

2 | Datisy

3 | Alan Jr

4 | Jimmy
(4 rows)

o0 ¢

CREATE TABLE PreferredEnrollments (
courseNumber char(10),
subjectCode char(4),
sectionNumber char(4),
term text,

studentId int REFERENCES Students(id),
FOREIGN KEY (courseNumber, subjectCode, sectionNumber, term)

REFERENCES Sections(courseNumber, subjectCode, number, term) ON DELETE
CASCADE,

PRIMARY KEY(courseNumber, subjectCode, sectionNumber, term, studentId)

)5

e Weak entity to represent Marist students’ preferred
enrollments

Functional Dependency: every field is part of pk

Preferred Enrollments - Sample Data

coursenumber | subjectcode

1]
1
1
1]
1
2
2
2
2
3
3
3
3

(13 rows)

00

CREATE TABLE Messages (
id SERIAL PRIMARY KEY,
studentId int REFERENCES Students(id),
message text

)5

e Strongentity to represent Marist students’ messages

e Notreliant on anything such as sections or meetings to make
messages more flexible and resilient to deletions

Functional Dependency: id -> studentld, message

Messages - Sample Data
(Generated as several scraped points were added)

| studentid message

The following items changed for a meeting of MDIA
111 in your enrolled: start-time day duration

The following items changed for a meeting of MDIA
111 in your enrolled: start-time duration

CMPT 475N 113 only has 0 seats left!

CMPT 476N 721 only has 0 seats left!

The following items changed for a meeting of PHED

111 in your enrolled: day

The following items changed for a meeting of PHED
111 in your enrolled: day

The following items changed for a meeting of FREN
111 in your enrolled: day

The following items changed for a meeting of FREN
111 in your enrolled: day

COM 324L 200 only has 0 seats left!

ART 101L 113 only has 0 seats left!

CMPT 422N 111 only has 6 seats left!

PHED 132N 111 only has 3 seats left!

CREATE TABLE Meetings (
courseNumber char(4),
subjectCode char(4),
sectionNumber char(4),
term text,
startTime TIME,
day dayOfWeek,
duration INTERVAL,
FOREIGN KEY (courseNumber, subjectCode, sectionNumber, term)
REFERENCES Sections(courseNumber, subjectCode, number, term) ON DELETE CASCADE,
PRIMARY KEY(courseNumber, subjectCode, sectionNumber, term, startTime, day)

e Weak entity to represent Marist sections’ meetings

Functional Dependency:
courseNumber, subjectCode, sectionNumber, term, startTime, day -> duration

Meetings - Sample Data

coursenumber | subjectcode | sectionnumber | term starttime
101L :30: Tuesday
101L HE{0H Friday
101L HOOH Tuesday
101L :00: Thursday
102L :30: Tuesday
102L :30: Friday
105L HE[0H Tuesday
105L HE{0H Friday
201L :00: Tuesday
201L HOOH Friday
307L :30: Tuesday
307L HE{0H Thursday
393L HO[0H Tuesday
393L :00: Friday
101L :30: Tuesday
101L :30: Friday
105L HO[0H Tuesday
105L HO[0H Friday
192L HOOH Tuesday
192L :00: Thursday
101L :00: Tuesday
101L :00: Friday
104L HE{0H Tuesday
104L HE{0H Friday

201L :00: Monday |
201L HO[0H Thursday |
213L HOH Wednesday |
(2270 rows)

View - School to Course

o000

CREATE OR REPLACE VIEW schoolCourse AS

SELECT sc.code as schoolCode, sc.name as schoolName, su.code as subjectCode, su.name as
subjectName,

c.name as courseName, c.number as courseNumber

FROM Schools sc

INNER JOIN Subjects su ON sc.code = su.schoolCode
INNER JOIN Courses c ON su.code = c.subjectCode;

e Allows easy access for all data typically associated with a
course

schoolcode

(6044 rows)

School
School
School
School
School
School
School
School
School
School
School
School
School

School
School
School

View Output - School to Course

schoolname

Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management

Liberal Arts
Liberal Arts
Liberal Arts

ACCT
ACCT
ACCT
ACCT
ACCT
ACCT
ACCT
ACCT
ACCT
ACCT
ACCT
ACCT

ISPA
ISPA
ISPA

Accounting
Accounting
Accounting
Accounting
Accounting
Accounting
Accounting
Accounting
Accounting
Accounting
Accounting
Accounting
Accounting

|
+
|
|
|
|
|
I
|
I
|
|
|
|
|

Spanish-International |
Spanish-International |
Spanish-International |

coursename

PRIN OF ACCT I
PRIN OF ACCT II
PRIN OF ACCT I
PRIN ACCTING II
FINANCIAL ACCTNG
MANAGERIAL ACCTNG
INTERM ACCTING I
INTERM ACCTING II
ACCT THEORY PRAC
COST ACCTING

INFO FOR DECISION
FRAUD EXAMINATION
INTERNATIONAL ACCT

HIST OF MARXIST-LEN PHIL II
RENEWABLE ENERGIES - SPAIN

ST:ISPAN

coursenumber

View - Course to Meeting

000

CREATE OR REPLACE VIEW courseMeeting AS

SELECT c.name as courseName, m.courseNumber as courseNumber, m.subjectCode as subjectCode,
m.sectionNumber as sectionNumber, s.primaryProfessor as primaryProfessor, m.startTime as startTime,
m.day as day, m.duration as duration, m.term as term

FROM Courses ¢

INNER JOIN Sections s ON
c.number = s.courseNumber AND

c.subjectCode = s.subjectCode

INNER JOIN Meetings m ON
m.courseNumber = s.courseNumber AND
m.subjectCode = s.subjectCode AND
m.sectionNumber = s.number AND

m.term = s.term
ORDER BY m.term, m.courseNumber, m.subjectCode, m.sectionNumber, m.day

b

e Allows easy access for all data typically associated with a
meeting

View Output - Course to Meetin

coursename coursenumber | subjectcode | sectionnumber | primaryprofessor

+

100L
1e0L
1le0L
1le0L
1le0L
1le0L
le0L
1le0L
le0L
100L

FASHION CULTURE+COMMERCE duration

FASHION CULTURE+COMMERCE
FASHION CULTURE+COMMERCE
FASHION CULTURE+COMMERCE
FASHION CULTURE+COMMERCE
FASHION CULTURE+COMMERCE
FASHION CULTURE+COMMERCE
FASHION CULTURE+COMMERCE
FASHION IN CULTURE+COMMERCE
FASHION IN CULTURE+COMMERCE
FASHION IN CULTURE+COMMERCE
FASHION IN CULTURE+COMMERCE
ELEM ARAB I

ELEM ARAB I

FUND-ART+DESIGN
FUND-ART+DESIGN
FUND-ART+DESIGN
FUND-ART+DESIGN
FUND-ART+DESIGN
FUND-ART+DESIGN
FUND-ART+DESIGN
FUND-ART+DESIGN
FUND-ART+DESIGN
FUND-ART+DESIGN

| 111 Sonia.Roy@marist.edu

| 111 Sonia.Roy@marist.edu

| 112 Ana.Ortega-Johnson@marist.edu

| 112 Ana.Ortega-Johnson@marist.edu :28: Thursday

| 113 Ana.Ortega-Johnson@marist.edu <302 Monday

|| sy Ana.Ortega-Johnson@marist.edu <302 Wednesday

| 114 Stephanie.Conover@marist.edu HOIOH Monday

| 114 Stephanie.Conover@marist.edu HOlH Wednesday

| 115 Sonia.Roy@marist.edu :30: Tuesday
|N115 Sonia.Roy@marist.edu :30: Friday

100L | 116 Anthony.Millero@marist.edu :00: Monday

100L | 116 Anthony.Millero@marist.edu :00: Thursday

101L | 111 Al.Abdelrahman@marist.edu 100 Tuesday

101L | 111 Al.Abdelrahman@marist.edu :00: Thursday

101L | 111 Fletcher.Boote@marist.edu :30: Monday

101L | 111 Fletcher.Boote@marist.edu

101L | 112 Fletcher.Boote@marist.edu

101L | 112 Fletcher.Boote@marist.edu

101L | 113 Elisa.Lendvay@marist.edu

101L (| dhits) Elisa.Lendvay@marist.edu

101L | 114 Laura.Hammond-Toonkel@marist.edu

101L | 114 Laura.Hammond-Toonkel@marist.edu Monday

101L | Julia.Barnes@marist.edu Wednesday

101L | Steven.Petruccio@marist.edu BlAE Monday

. Thursday

INFO SYST PROJ 720L Brian.Gormanly@marist.edu :00: Tuesday

INFO SYS POLICY 730L Dennis.Rush@marist.edu :30: Thursday

INFO SYS POLICY 730L Dennis.Rush@marist.edu

(2270 rows) HOOH Wednesday

Tuesday

Thursday

Wednesday
Monday
Thursday
Monday
Thursday

+

Report 1

e Get all meeting information for meetings where the
course’s primary professor starts with ‘Al

e Many marist students enjoy taking classes taught by ‘Al’
prefixed professor first names

o0

SELECT p.firstName, cm.courseName,

cm.sectionNumber, cm.day, cm.startTime,
cm.duration

FROM courseMeeting cm

INNER JOIN Professors p ON p.email =
cm.primaryProfessor

WHERE p.firstName ILIKE 'Al%';

Report 1 output

firstname starttime

Allaeddin | ELEM ARAB I
Allaeddin | ELEM ARAB I Wednesday

Alquan PUBLIC PRESENTAT. Monday
Alquan PUBLIC PRESENTAT. Thursday
Alexander | TECHNOLOGY FOR 21st CENTURY | Tuesday
Alexander | TECHNOLOGY FOR 21st CENTURY | Friday
Allaeddin | INTERMEDIATE ARABIC I | Monday

Allaeddin | INTERMEDIATE ARABIC I | Wednesday
Alyssa SPORTS IN SOCIETY | Tuesday

Report 2

e Getidentifying section information for all CMPT courses
which have meetings but not at 8:00 or on Friday

e Many marist students have contempt for 8:00am’s and
Friday classes
LN N

SELECT c.name as courseName, s.number as sectionNumber
FROM Courses c
INNER JOIN Sections s ON
c.number = s.courseNumber AND
c.subjectCode = s.subjectCode
WHERE
c.subjectCode="'CMPT' AND
(c.number, c.subjectCode, s.term, s.number) NOT IN (
SELECT m.courseNumber, m.subjectCode, m.term, m.sectionNumber
FROM Meetings m
WHERE
startTime = '08:00:00' OR
day = 'Friday’
)
-- must have some meetings
AND (c.number, c.subjectCode, s.term, s.number) IN (
SELECT m.courseNumber, m.subjectCode, m.term, m.sectionNumber FROM Meetings m

)

Report 2 output

coursename sectionnumber
TECHNOLOGY FOR 21st CENTURY
TECHNOLOGY FOR 21st CENTURY
MS EXCEL

MS EXCEL

INTRO TO PROGRAMMING

INTRO TO PROGRAMMING

INTRO TO PROGRAMMING

INTRO TO PROGRAMMING
SOFTWARE DEVELOPMENT II
SOFTWARE DEVELOPMENT II
SOFTWARE DEVELOPMENT II
SOFTWARE DEVELOPMENT II
TECNOLOGY , ETHICS,+SOCIETY
TECNOLOGY , ETHICS,+SOCIETY
DATA COMMUNICATIONS

DATA COMMUNICATIONS

DATA COMMUNICATIONS

DATA COMMUNICATIONS
INTERNETWORKING
INTERNETWORKING

DATABASE MANAGEMENT
DATABASE MANAGEMENT
DATABASE MANAGEMENT
DATABASE MANAGEMENT
ARCH-HARDWARE+SYSTEMS SOFTWARE
SYSTEM DESIGN

LANGUAGE STUDY

ARTIFICAL INTELLIGENCE

GAME DESIGN+PROG I

INTRO TO CYBERSECURITY -
COMPUTER FORENSICS —
COMPUTER ORG &j;amp; ARCH —
COMPUTER ORG &amp; ARCH -

ALGORITHM ANALYSIS+DESIGN
FORMAL LANGUAGES+COMPUTABILITY
CS PROJECT

CS PROJECT

CS PROJECT

(38 rows)

-

Report 3

e Get course information on preferred enrollment sections
of student with first name ‘Alan Jr’

e Marist students need all Course information to submit
prereq and capacity override forms and discuss courses
with advisors

Yy *probably

SELECT sc.schoolCode, sc.schoolName, sc.subjectCode, sc.subjectName, sc.courseName better SUIted as
FROM schoolCourse sc a procedure
INNER JOIN Sections se ON - c
sc.courseNumber = se.courseNumber AND Wlth InpUt as
sc.subjectCode = se.subjectCode Student bUt
INNER JOIN PreferredEnrollments p ON ..
sc.courseNumber = p.courseNumber AND because it is for

se.number = p.sectionNumber AND
sc.subjectCode = p.subjectCode AND Alan thhe

se.term = p.term system has this
INNER JOIN Students st ON st.id = p.studentId

WHERE st.firstName = 'Alan Jr' hardcoded

b

Report 3 output

schoolcode | schoolname | subjectcode | subjectname coursename
o oo o

| School of Liberal Arts | English | INTRO TO THEATRE

| School of Management | Business | LABOR RELATIONS

| School of Science | Physical Education | BOXING

| School Communication Arts | COM | Communication | RESEARCH+CONSUMER INSIGHT

(4 rows)

Report 4

Get the count of all sections by school name

Registrar may find this breakdown interesting to see

SELECT schoolName, Count(*) as sectionCount

FROM schoolCourse
GROUP BY schoolName;

schoolname

Mental Health Counseling
Global and Profess Programs
Humanities

School Computer Sci/ Math
MA Psychology

Professional Accountancy

MS Education

Dr. Physical Therapy

MS Global Fashion Merch
School Behavioral/Social Sci
School Communication Arts
MSCS Computer Science

MA Ed. Psychology

School of Science

Comm Media Arts

MA School Psychology

School of Management
Registrar

MS Technology Management

MA Communication

MA in Teaching

Physicians Assistant Studies
Art and Art History

MPA

MBA

Science

School of Liberal Arts
Professional Programs
(28 row)

CREATE OR REPLACE FUNCTION upsert_sections_in_term(
term_text text,
banner_ids text[],
course_numbers text[],
enrollments int[],
maximum_enrollments int[],
subject_codes text[],
numbers text[],
primary_professor_emails text[]
)
RETURNS void AS $$
DECLARE
hints
BEGIN
-- delete sections
DELETE FROM Sections as s
WHERE
s.term like term_text AND
s.BannerId NOT IN (SELECT unnest(banner_ids));

FOR i IN 1..array_length(banner_ids, 1) LOOP
INSERT INTO Sections

(bannerId, courseNumber, subjectCode, number, enrollment, maximumEnrollment, term,

primaryProfessor)
VALUES (
banner_ids[1i],
course_numbers|[i],
subject_codes[1],
numbers[i],
enrollments[i],
maximum_enrollments[i],
term_text,
primary_professor_emails[i])
-- Would mean that either ref errors from coures composite key or
-- the section already exists which in that case should update
ON CONFLICT (bannerId) DO UPDATE
SET courseNumber = course_numbers[i]
subjectCode = subject_codes[i]
number = numbers[i],
enrollment = enrollments[i],
maximumEnrollment = maximum_enrollments[i],
term = term_text,
primaryProfessor = primary_professor_emails[i];
-- Would fail again on ref errors which is wanted
END LOOP;
END;
$$ LANGUAGE plpgsql

Procedure - Upsert Sections

e Given all the updated sections for a
given term harmonize it with the
current sections

If the section is not in the updated

section delete it else update it with
the new values

https://github.com/Pjt727/CMPT308/bl

ob/main/finalProject/upsertSections.sql

https://github.com/Pjt727/CMPT308/blob/main/finalProject/upsertSections.sql
https://github.com/Pjt727/CMPT308/blob/main/finalProject/upsertSections.sql

Procedure Example Call - Upsert Sections

Xy

DO $$
DECLARE

term text := 'Fall 2024';

banner_ids text[] := ARRAY['175611','175612','175613', ...];
course_numbers text[] := ARRAY['401L','401L','401L', ...];
enrollments int[] := ARRAY[0,0,0, ...];

maximum_enrollments int[] := ARRAY[0,0,0, ...];
subject_codes text[] := ARRAY['HONR', 'HONR','HONR', ...1];
numbers text[] := ARRAY['143','144','145', ...];

primary_professor_emails text[] := ARRAY[NULL,NULL,NULL, ...];

BEGIN
PERFORM upsert_sections_in_term(

term,
banner_1ids,
course_numbers,
enrollments,
maximum_enrollments,
subject_codes,
numbers,
primary_professor_emails

The output is the side effect this
procedure has on the Sections table
by updating all sections in that term

It is also important for the triggers
that this procedure calls the correct
create, update, delete SQL action
instead of just deleting all and then
remaking

CREATE OR REPLACE FUNCTION upsert_meetings_in_section(
course_number text,
subject_code text,
section_number text,
term_text text,
start_times TIME[],
days dayOfWeek[],
durations INTERVAL[]
)]
RETURNS void AS $$
DECLARE
i int;
do_create_index boolean;
dont_update boolean;
meeting_count INTEGER;
created_indices int[];
-- work around to update a single record bc you can not limit on an update
start_time_to_update TIME;

day_to_update dayOfWeek;
debugging RECORD;
BEGIN

SELECT COUNT(*) INTO meeting_count FROM Meetings m
WHERE
m.courseNumber = course_number AND
m.subjectCode = subject_code AND
m.sectionNumber = section_number AND
m.term = term_text

END LOOP;
END IF;
END;
$$ LANGUAGE plpgsql;

Procedure - Upsert Meetings

e Given all the updated meetings for a
given section harmonize it with the
current meeting

e Make the least amount of changes
(e.i. If one meeting’s day changes
interpret that as the only update and
do not update any other meeting)

FULL SCRIPT NOT SHOWN, SEE:
https://github.com/Pjt727/CMPT308/bl

ob/main/finalProject/upsertSections.sql

https://github.com/Pjt727/CMPT308/blob/main/finalProject/upsertSections.sql
https://github.com/Pjt727/CMPT308/blob/main/finalProject/upsertSections.sql

Procedure Example Call - Upsert Meetings

e Several calls to the upsert meeting procedure in

between each showing the all meetings for that
section e The output (on the next pas

demonstrates how the
o0 e meetings change...

furthermore the messages
SELECT upsert_meetings_in_section('201L', 'ITAL', '111', 'Fall 2024',

ARRAY['14:00:00','14:00:00']: : TIME[], ARRAY['Tuesday', 'Monday']::dayOfWeek[], table demonstrates the
ARRAY['75m','75m"']::INTERVAL[]); o

SELECT * FROM Meetings WHERE courseNumber='201L' AND subjectCode='ITAL'; correct SQL action (delete’

SELECT upsert_meetings_in_section('201L', 'ITAL', '111', 'Fall 2024, update, create) is made
ARRAY[]::TIME[], ARRAY[]::dayOfWeek[], ARRAY[]::INTERVAL[]);

SELECT * FROM Meetings WHERE courseNumber='201L' AND subjectCode='ITAL';

SELECT upsert_meetings_in_section('201L', 'ITAL', '111', 'Fall 2024°',
ARRAY['14:00:00','14:00:00']::TIME[], ARRAY['Tuesday', 'Friday']::day0fWeek][],
ARRAY['75m',"'75m']::INTERVAL[]);

SELECT * FROM Meetings WHERE courseNumber='201L' AND subjectCode='ITAL';

SELECT upsert_meetings_in_section('201L', 'ITAL', '111', 'Fall 2024',
ARRAY['14:00:00']::TIME[], ARRAY['Thursday']::day0OfWeek[],

ARRAY['75m','75m"']::INTERVAL[]);
SELECT * FROM Meetings WHERE courseNumber='201L' AND subjectCode='ITAL';

Procedure Example Call Output - Upsert Meetings

o000

coursenumber | subjectcode | sectionnumber duration

I
+
I

Fall 2024 | 14:00:00 | Tuesday 01:15:00
Fall 2024 | 14:00:00 | Thursday | 01:15:00
(2 rows)

coursenumber | subjectcode | sectionnumber | term | starttime | day | duration
------------- T
(0 rows)

coursenumber | subjectcode | sectionnumber | starttime | day | duration
——————————— e e et
Fall 2024 | 14:00:00 | Tuesday | 01:15:00
Fall 2024 | 14:00:00 | Friday | 01:15:00
(2 rows)

coursenumber | subjectcode | sectionnumber | starttime | day | duration
————————————— T s ST T
| | Fall 2024 | 14:00:00 | Thursday | 01:15:00

000

[] []
CREATE OR REPLACE FUNCTION meeting_update() —
RETURNS TRIGGER AS $$
DECLARE

Notifies students through the message

. = ; " 4
s e AL table when a meeting has changed and

message message || NEW.subjectCode || ' ' || NEW.courseNumber || ' ' || NEW.sectionNumber;

message := message || ' in your enrolled: '
do_message := false; W at ﬁe S

IF OLD.startTime != NEW.startTime THEN
do_message := true;
message := message || 'start-time ';
END IF;

B¢ 15y 1o vy TN Below is sample output from when

do_message := true;
message := message || 'day ';

various meetings had changed after

IF OLD.duration != NEW.duration THEN
do_message := true;

message := message || 'duration '; |Oading Some Of the Sample data

END IF;

IF do_message THEN
RAISE NOTICE '%, %, %', NEW.courseNumber, NEW.subjectCode, NEW.sectionNumber;
SELECT ARRAY_AGG(p.studentID)
INTO students

Bttt https://github.com/Pjt727/CMPT308/blob

p.courseNumber = NEW.courseNumber AND

p-subjctCode = NEW subjoctCade MO /main/finalProject/meetingTriggers.sal

p.term = NEW.term;

IF array_length(students, 1) >= 1 THEN
FOREACH student in ARRAY students LOOP
INSERT INTO Messages (studentId, message)
VALUES(student, message);
END LOOP;
END IF;
END IF;

message

following 1 changed meeting i enrolled: start-time day duration
RETURN NEW; following i changed meeting i enrolled: start-time duration
;:DEANGUAGE il following 1 changed meeting i enrolled: day
following 1 changed meeting i enrolled: day
AFTER UPDATE ON Meetings following 1 changed meeting i enrolled: day

FOR EACH RO following i changed meeting i enrolled: day

CREATE TRIGGER meeting_update

EXECUTE FUNCTION meeting_update(); (6 rows)

https://github.com/Pjt727/CMPT308/blob/main/finalProject/meetingTriggers.sql
https://github.com/Pjt727/CMPT308/blob/main/finalProject/meetingTriggers.sql

LN N

CREATE OR REPLACE FUNCTION capacity_notice()
RETURNS TRIGGER AS $$
DECLARE
students int[];
student int;
message text;
do_message boolean;
BEGIN
-- do nothing if the enorllments are the same
IF OLD.enrollment = NEW.enrollment THEN
RETURN NEW;
END IF;
do_message := false;
-- if the enrollment is within 25% of the capicity then give a message to every student
-- that has this in there enrollment
IF NEW.enrollment >= NEW.maximumEnrollment * .75 THEN
do_message := true;
message := NEW.subjectCode || ' ' || NEW.courseNumber || ' *
|| NEW.number || ' only has ' || (NEW.maximumEnrollment - NEW.enrollment) || ' seats left!';
ELSIF OLD.enrollment > NEW.enrollment THEN
do_message := true;
message := NEW.subjectCode || ' ' || NEW.courseNumber []| ' '
|| NEW.number || * has ' || (OLD.enrollment - NEW.enrollment) || ' new seats and ' ||
(NEW.maximumEnrollment - NEW.enrollment) || ' seats left!!';
END IF;

IF do_message THEN
RAISE NOTICE '%, %, %, %', NEW.courseNumber, new.subjectCode, new.number, new.term;
RAISE NOTICE '%', message;

END IF;

IF do_message THEN
SELECT p.studentID
INTO students
FROM PreferredEnrollments p
WHERE
p.courseNumber = NEW.courseNumber AND
p.subjectCode = NEW.subjectCode AND
p.sectionNumber = NEW.number AND
p.term = NEW.term;
IF students != NULL THEN
FOREACH student in ARRAY students LOOP
INSERT INTO Messages (studentId, message)
VALUES(student, message);
END LOOP;
END IF;
END IF;

RETURN NEW;
END;
$$ LANGUAGE plpgsql;
CREATE TRIGGER capacity_notice
AFTER UPDATE ON SECTIONS
FOR EACH RO
EXECUTE FUNCTION capacity_notice();

Trigger - Update Meetings
e Notifies students through the

message table when a section is filling
up or has gotten more available seats

Below is sample output from when
various sections had changed after
loading some of the sample data

https://github.com/Pjt727/CMPT308/blo
b/main/finalProject/capacityTrigger.sal

message

CMPT 475N 113 only has 0 seats left!

CMPT 476N 721 only has 0 seats left!

COM 324L 200 only has 0 seats left!

ART 101L 113 only has 0 seats left!

CMPT 422N 111 only has 6 seats left!

PHED 132N 111 only has 3 seats left!
(ED)

https://github.com/Pjt727/CMPT308/blob/main/finalProject/capacityTrigger.sql
https://github.com/Pjt727/CMPT308/blob/main/finalProject/capacityTrigger.sql

Security Notes

e Teachersonly have view access on all tables as their only use case would
be advising

e Students (or the api students interact through) have view access on all
tables to complete their schedule, update access on students to change
their name, and update, insert, delete access on their preferred
enrollments and messages to manage their information (example use
cases: add preferred sections and delete read messages)

@

e Theregistrar has access to

CREATE ROLE teacher; all powers on each table as
GRANT SELECT ON all tables in schema public TO student;

it must manage all classes
CREATE ROLE student;
GRANT SELECT ON all tables in schema public TO student; and StUdent data (example
GRANT UPDATE ON Students TO student; use cases: add/ removing

GRANT UPDATE, INSERT, DELETE ON PreferredEnrollments, Messages TO student;
students, messages, and
CREATE ROLE registrar;

GRANT ALL ON all tables in schema public TO registrar; classes)

1=

Implementation Notes

The accuracy of section upserts relies on the consistency of
Banner id’s which are not expected to be directly controlled
by the system and thus section upserts must be closely
monitored

The database component of the system relies on a separate
piece to retrieve the data from Banner and parse it into
insert statements or procedure calls

Data ran through procedures is assumed to be in full and
problems will occur if the scraping part of the system does
not obtain data for a term/ section in its entirety

Known Problems

Students may prefer sections which overlap in time

Students may want to get notified on section
additions for certain courses or changes of sections
that are not preferred enrollment

Certain procedures are very inefficient especially as
the database scales (IN and NOT IN are very
expensive operations and are used liberally)

Future Enhancements

Add procedures / triggers to notify students on timing conflicts on meeting
changes

Allow students to get notified on section additions/ changings on section
courses

Optimize queries perhaps putting more weight on non-database parts of
the system especially the differentiating step of meetings and sections (the
stored procedures for upsert meetings/sections were painful to write and
will be difficult to maintain)

Have simple procedure interfaces for determining sections that overlap in
time

Keep logs of certain data points to create trends on items such as
enrollments graphs for individual courses

