
Marist Banner
Tracker

Patrick Tyler
CMPT 308
May 2024

Executive Summary
This is a system engineered for Marist students
to track their sections throughout the
registration process. Students are annoyed with
uncertainty during registration. This system aims
to provide them with live and accurate
information and programmatically notifying
students on changes to sections they plan on
registering for. This system takes all class data for
a term at multiple points in the registration
process updating its existing data accordingly.

Entity-Relationship Diagram

Tables

Functional Dependency: email -> firstName, lastName

● Strong entity to represent Marist Professors

● Email is chosen as primary key even though it is generally
discouraged because the Marist Banner website only
exposes email as identifying professor information

Professors - Sample Data

Functional Dependency: code -> name

● Strong entity to represent Marist Schools

Schools - Sample Data

Functional Dependency: code -> name, schoolCode

● Weak entity to represent Marist Subjects

Subjects - Sample Data

Functional Dependency:
number, subjectCode -> bannerId, name

● Weak entity to
represent Marist
Courses

● bannerId is not chosen as the primary key, yet has a UNIQUE constraint… this is
because if Banner is no longer used or for some reason became inconsistent it would
be a much harder migration if it was used for as a PK everywhere. It is still kept as it
could be useful for various procedures to have this identifier while we know it is
consistent .

Professor - Sample Data

Marist boasts over
6000 courses!

(many not available
every term)

Functional Dependency:
courseNumber, subjectCode, number, term-> enrollment,
maximumEnrollment, bannerId, primaryProfessor

● Weak entity to
represent Marist
sections

● BannerId has the
same reasoning
as with courses

● Term could arguably be brought out to another table especially if
other attributes such as whether it is historical or not is needed

Sections - Sample Data (1st scrape)

Functional Dependency: id -> firstName

● Strong entity to represent
Marist students

Students - Sample Data

Functional Dependency: every field is part of pk

● Weak entity to represent Marist students’ preferred
enrollments

Preferred Enrollments - Sample Data

Functional Dependency: id -> studentId, message

● Strong entity to represent Marist students’ messages

● Not reliant on anything such as sections or meetings to make
messages more flexible and resilient to deletions

Messages - Sample Data
(Generated as several scraped points were added)

Functional Dependency:
courseNumber, subjectCode, sectionNumber, term, startTime, day -> duration

● Weak entity to represent Marist sections’ meetings

Meetings - Sample Data

View - School to Course

● Allows easy access for all data typically associated with a
course

View Output - School to Course

View - Course to Meeting

● Allows easy access for all data typically associated with a
meeting

View Output - Course to Meeting

Report 1

● Get all meeting information for meetings where the
course’s primary professor starts with ‘Al’

● Many marist students enjoy taking classes taught by ‘Al’
prefixed professor first names

Report 1 output

Report 2
● Get identifying section information for all CMPT courses

which have meetings but not at 8:00 or on Friday

● Many marist students have contempt for 8:00am’s and
Friday classes

Report 2 output

● Get course information on preferred enrollment sections
of student with first name ‘Alan Jr’

● Marist students need all Course information to submit
prereq and capacity override forms and discuss courses
with advisors

Report 3

*probably
better suited as
a procedure
with input as
student but
because it is for
Alan Jr the
system has this
hardcoded

Report 3 output

● Get the count of all sections by school name

● Registrar may find this breakdown interesting to see

Report 4

Procedure - Upsert Sections

● Given all the updated sections for a
given term harmonize it with the
current sections

● If the section is not in the updated
section delete it else update it with
the new values

https://github.com/Pjt727/CMPT308/bl
ob/main/finalProject/upsertSections.sql

https://github.com/Pjt727/CMPT308/blob/main/finalProject/upsertSections.sql
https://github.com/Pjt727/CMPT308/blob/main/finalProject/upsertSections.sql

Procedure Example Call - Upsert Sections

● The output is the side effect this
procedure has on the Sections table
by updating all sections in that term

● It is also important for the triggers
that this procedure calls the correct
create, update, delete SQL action
instead of just deleting all and then
remaking

Procedure - Upsert Meetings

● Given all the updated meetings for a
given section harmonize it with the
current meeting

● Make the least amount of changes
(e.i. If one meeting’s day changes
interpret that as the only update and
do not update any other meeting)

FULL SCRIPT NOT SHOWN, SEE:
https://github.com/Pjt727/CMPT308/bl
ob/main/finalProject/upsertSections.sql

https://github.com/Pjt727/CMPT308/blob/main/finalProject/upsertSections.sql
https://github.com/Pjt727/CMPT308/blob/main/finalProject/upsertSections.sql

Procedure Example Call - Upsert Meetings
● Several calls to the upsert meeting procedure in

between each showing the all meetings for that
section ● The output (on the next page)

demonstrates how the
meetings change…
furthermore the messages
table demonstrates the
correct SQL action (delete,
update, create) is made

Procedure Example Call Output - Upsert Meetings

Trigger - Update Meetings
● Notifies students through the message

table when a meeting has changed and
what field(s)

● Below is sample output from when
various meetings had changed after
loading some of the sample data

https://github.com/Pjt727/CMPT308/blob
/main/finalProject/meetingTriggers.sql

https://github.com/Pjt727/CMPT308/blob/main/finalProject/meetingTriggers.sql
https://github.com/Pjt727/CMPT308/blob/main/finalProject/meetingTriggers.sql

Trigger - Update Meetings
● Notifies students through the

message table when a section is filling
up or has gotten more available seats

● Below is sample output from when
various sections had changed after
loading some of the sample data

https://github.com/Pjt727/CMPT308/blo
b/main/finalProject/capacityTrigger.sql

https://github.com/Pjt727/CMPT308/blob/main/finalProject/capacityTrigger.sql
https://github.com/Pjt727/CMPT308/blob/main/finalProject/capacityTrigger.sql

Security Notes
● Teachers only have view access on all tables as their only use case would

be advising

● Students (or the api students interact through) have view access on all
tables to complete their schedule, update access on students to change
their name, and update, insert, delete access on their preferred
enrollments and messages to manage their information (example use
cases: add preferred sections and delete read messages)

● The registrar has access to
all powers on each table as
it must manage all classes
and student data (example
use cases: add/ removing
students, messages, and
classes)

Implementation Notes
The accuracy of section upserts relies on the consistency of
Banner id’s which are not expected to be directly controlled
by the system and thus section upserts must be closely
monitored

The database component of the system relies on a separate
piece to retrieve the data from Banner and parse it into
insert statements or procedure calls

Data ran through procedures is assumed to be in full and
problems will occur if the scraping part of the system does
not obtain data for a term/ section in its entirety

Known Problems

Students may prefer sections which overlap in time

Students may want to get notified on section
additions for certain courses or changes of sections
that are not preferred enrollment

Certain procedures are very inefficient especially as
the database scales (IN and NOT IN are very
expensive operations and are used liberally)

Future Enhancements
Add procedures / triggers to notify students on timing conflicts on meeting
changes

Allow students to get notified on section additions/ changings on section
courses

Optimize queries perhaps putting more weight on non-database parts of
the system especially the differentiating step of meetings and sections (the
stored procedures for upsert meetings/sections were painful to write and
will be difficult to maintain)

Have simple procedure interfaces for determining sections that overlap in
time

Keep logs of certain data points to create trends on items such as
enrollments graphs for individual courses

