
CAIN'S
JAWBONE 

RELATIONAL DATABASE
Daisy Kopycienski

CMPT308
May 2022



EXECUTIVE SUMMARY
Cain's Jawbone is a murder mystery puzzle book from 1934 where the 100
pages are printed out of order. The book is accompanied by a competition
where the reader's job is to arrange the 100 pages in the correct order and solve
the 6 murders (6 murderer/victim pairs) in the story. The pages are printed with
"incorrect" page numbers from 1-100 to identify which page is which. 

I was contacted to build a relational database for a wealthy potential solver of
the book. They were having trouble keeping track of which characters and
events happened on which pages, as well as additional details such as poem
segments, puzzles, and the murders. I was tasked to create tables to organize
and keep track of the data relating to past and current competitions, solvers,
and book details (pages, characters, murders etc.). To create a working
database, I was presented with a handful of pages from the book, which I used
as sample data. 



TABLE OF CONTENTS
Entity Relationship Diagram: 
Tables:
Views:
Reports:
Stored Procedures:
Triggers:
Security:
Implementation Notes:
Known Problems:
Future Enhancements:

4
5
22
32
36
41
44
46
47
47



ENTITY-RELATIONSHIP DIAGRAM



TABLES:



People
Create Statement:

Functional Dependency:
PID → FirstName, LastName

CREATE TABLE People (
    PID int NOT NULL,
    FirstName text,
    LastName text,
PRIMARY KEY(PID)
);

 

TestData:
This table stores the full name of every person in the database (both real and fictional)

 



Characters

Create Statement:

Functional Dependency:
PID → Gender,  Nickname, Profession 

CREATE TABLE Characters (
    PID int NOT NULL references People(PID),
    Gender char(1) CHECK (Gender in (‘M’, ‘F’)), 
    Nickname text, 
    Profession text,
PRIMARY KEY(PID)
);

 

TestData:
This table is a sub-type of the People table and stores data specific to the fictional
characters in the book



Solvers

Create Statement:

Functional Dependency:
PID → CompID, Address, ZipCode 

CREATE TABLE Solvers (
    PID int NOT NULL references People(PID),
    CompID int NOT NULL references Competitions(CompID),
    Address text,
    Zipcode numeric(5) references Zipcodes(Zipcode),
PRIMARY KEY(PID)
);

 

TestData:

This table is a sub-type of the People table and store data specific to the real people
who solved the puzzle and won a competition



Zipcodes

Create Statement:

Functional Dependency:
Zipcode→ City, State

CREATE TABLE Zipcodes (
    Zipcode numeric(5) NOT NULL,
    City text,
    State text,
PRIMARY KEY(Zipcode)
);

 

TestData:

This table relates to the zipcodes in the Solver table and stores the city and
state data that accomponies them



Murderers

Create Statement:

Functional Dependency:
PID → 

CREATE TABLE Murderers (
    PID int NOT NULL references People(PID),
PRIMARY KEY(PID)
);

 

TestData:

This is a sub-type of the People table and the Characters table and keeps track
of the characters which are also murderers 



Victims

Create Statement:

Functional Dependency:
PID → CauseOfDeath

CREATE TABLE Victims (
    PID int NOT NULL references People(PID),
    CauseOfDeath text,
PRIMARY KEY(PID)
);

 

TestData:

This is a sub-type of the People table and the Characters table and keeps track of the
characters which are also murder victims



Murders

Create Statement:

Functional Dependency:
MurderID → VictimPID, MurdererPID

CREATE TABLE Murders (
    MurderID int NOT NULL references Murders(MurderID),
    VictimPID int NOT NULL references Victims(PID) UNIQUE,
    MurdererPID int NOT NULL references Murderers(PID),
PRIMARY KEY(MurderID)
);

 

TestData:

This is a strong entity which records murderer/victim pairs and identifies them
with a unique number



PagesMurders

Create Statement:

Functional Dependency:
MurderID, PageNum → 

CREATE TABLE PagesMurders (
    PageNum int NOT NULL references Pages(PageNum),
    MurderID int NOT NULL references Murders(MurderID),
PRIMARY KEY(PageNum, MurderID)
);

 

TestData:

This table connects the murders with the page or pages they occurred in 



Competitions
Create Statement:

Functional Dependency:
CompID→ YearStart, YearEnd, PrizeAmountEuros

CREATE TABLE Competitions (
    CompID int NOT NULL,
    YearStart numeric(4) CHECK (YearStart <= YearEnd),
    YearEnd numeric(4) CHECK (YearEnd >= YearStart),
    PrizeAmountEuros numeric(6,2),
PRIMARY KEY(CompID)
);

TestData:

This is a strong entity that records the competition details that occur for solving the book 



Pages

Create Statement:

Functional Dependency:
PageNum → SequenceNum, Location, Genre

CREATE TABLE Pages (
    PageNum int NOT NULL CHECK (PageNum <= 100),
    SequenceNum int CHECK (SequenceNum <= 100) UNIQUE,
    Location text,
    Genre text,
PRIMARY KEY(PageNum)
);

TestData:

This is a strong entity to record additional information on each page. Every out of order
page is marked with a unique number 1-100 which serves as a natural primary key
(PageNum). The sequence number is used to denote the "correct" page number in the
sequence 1-100. 



PagesPeople

Create Statement:

Functional Dependency:
PageNum, PID →

CREATE TABLE PagesPeople (
    PageNum int NOT NULL references Pages(PageNum),
    PID int NOT NULL references People(PID),
PRIMARY KEY(PageNum, PID)
);

TestData:

This table connects the people in the book to what pages they appear in



Poems

Create Statement:

Functional Dependency:
PoemID → PoemDesc

CREATE TABLE Poems (
    PoemID int NOT NULL,
    PoemDesc text,
PRIMARY KEY(PoemID)
);

TestData:

This is a strong entity which assigns a unique key to each poem and contains a brief
content description.



PagesPoems
Create Statement:

Functional Dependency:
PageNum, PoemID → 

CREATE TABLE PagesPoems (
    PageNum int NOT NULL references Pages(PageNum),
    PoemID int NOT NULL references Poems(PoemID),
PRIMARY KEY(PageNum, PoemID)
);

TestData:
This table connects the poems with page numbers



PoemPairs

Create Statement:

Functional Dependency:
BeginningPoemID, EndPoemID → 

CREATE TABLE PoemPairs (
    BeginningPoemID int NOT NULL references Poems(PoemID),
    EndPoemID int NOT NULL references Poems(PoemID),
PRIMARY KEY(BeginningPoemID, EndPoemID)
);

TestData:

Each poem in the book is split into two halves and spread over two separated pages.
This table connects the first half of a poem with its end pair 



Puzzles

Create Statement:

Functional Dependency:
PuzzleID → PuzzleType, PuzzleText, Solution

CREATE TABLE Puzzles (
    PuzzleID int NOT NULL,
    PuzzleType text NOT NULL,
    PuzzleText text NOT NULL ,
    Solution text DEFAULT  '?',
PRIMARY KEY(PuzzleID)
);

TestData:

This is a strong entity to record all of the puzzles within the book with their type and
solutions. If a solution has not yet been found, a '?' character will be inserted by
default. 



PagesPuzzles

Create Statement:

Functional Dependency:
PageNum, PuzzleID → 

CREATE TABLE PagesPuzzles (
    PageNum int NOT NULL references Pages(PageNum),
    PuzzleID int NOT NULL references Puzzles(PuzzleID),
PRIMARY KEY(PageNum, PuzzleID)
);

TestData:

This table connects the puzzles to its page or pages, as sometimes the puzzle is on
one page and its solution is on another



VIEWS



View 1: MurderDetails
This view provides additional character data for each
murder/victim pair

CREATE VIEW MurderDetails
AS
Select ms.MurderID, ms.victimPID as VPID, p1.firstname as
VFirstName, p1.lastname as VLastName, c1.nickname as VNickname,
c1.gender as VGender, c1.profession as VProfession, v.causeofdeath,
ms.murdererpid as MPID, p2.firstname as MFirstName, p2.lastname as
MLastName, c2.nickname as MNickName, c2.gender as MGender,
c2.profession as MProfession
FROM 
Murders ms inner join victims v on ms.victimpid = v.pid
                         inner join murderers m on ms.murdererpid = m.pid
                         inner join characters c1 on ms.victimpid = c1.pid
                         inner join characters c2 on ms.murdererpid = c2.pid
                         inner join people p1 on ms.victimpid = p1.pid
                         inner join people p2 on ms.murdererpid = p2.pid
ORDER BY ms.murderid ASC;



View 1: MurderDetails
Query 1: All Information (the v stands for victim and the m
stands for murderer)
select *
from murderDetails



View 1: MurderDetails
Query 2: Names of victim and murderer for every murder in which both
characters are female

select murderID, vfirstName, vlastname, mfirstname, mlastname
from murderDetails
where vgender = 'F'and mgender = 'F'



View 1: MurderDetails
Query 3: Full names for each victim/murderer pair with associated IDs.
With a fully completed database, this query would return the 6 pairs of
information necessary to solve the murder section of the competition.  

select murderID, vfirstName, vlastname, mfirstname, mlastname
from murderDetails



View 2: PageDetails
This view provides all data connecting characters to pages they
are on 

Create view PageDetails
AS
select p.pageNum as PageNum, p.sequenceNum, p.location, p.genre, ppl.PID,
ppl.firstName, ppl.lastName
from PagesPeople pppl right outer join Pages p on pppl.pageNum = p.pagenum
                                               left outer join People ppl on pppl.pid = ppl.pid 



View 2: PageDetails
Query 1: All Information
select *
from PageDetails



View 2: PageDetails
Query 2: Sequence numbers from 1-100 with associated
page number. With a fully completed database, this
query will output the correct order of pages needed to
submit for the competition. 

select distinct sequencenum, pagenum
from pageDetails
order by sequenceNum ASC



View 2: PageDetails
Query 3: Character's name and PID who is present in the
highest number of pages 

select Distinct pd.pid, pd.firstName, pd.lastname
from pageDetails pd
where pid in (select pd.pid
                       from pageDetails  pd
                       group by pd.pid
                       order by count(pd.pid) DESC
                       limit 1)
;



View 2: PageDetails
Query 4: All page numbers and locations which have no
characters present

select pd.pageNum, pd.location
from pageDetails pd
where pd.PID is NULL



REPORTS



Report 1
Query: Returns page numbers and locations of murders
using both of the views and the genre column
select distinct pageNum, location
from pageDetails pd left outer join murderDetails md1 on pd.pid = md1.Vpid
                                    left outer join murderDetails md2 on pd.pid = md2.Mpid
where genre = 'Murder'



Report 2
Query: Returns puzzle IDs and solutions of solved puzzles
that are sharing pages with characters who have been to
a university

select puzzleID, solution
from Puzzles 
where Solution != '?' and 
   puzzleID in (select puzzleID
                        from PagesPuzzles
                        where pageNum in (select pageNum
                                                           from pageDetails
                                                           where location like '%University'));



Report 3
Query: Returns number of characters present at location and name of
location in which there there is a beginning half of a poem on the same page
and more than one character at the location

select location, count(pid)
from pageDetails
where pagenum in (select pageNum
                                  from pagespoems
                                  where poemID in (select poemID
                                                                 from poems
                                                                 where poemID in (select beginningPoemID
                                                                                                from poemPairs)
                                                                   )

                                   )
Group by location
having count(distinct pid) >= 2;



STORED
PROCEDURES



create or replace function PagesFor(int, REFCURSOR) returns refcursor as 
$$
declare
   personID int       := $1;
   resultset   REFCURSOR := $2;
begin 
   open resultset for 
      select pageNum
      from   PagesPeople
       where  personID = PID;
   return resultset;
end;
$$ 
language plpgsql;

Stored Procedure 1
Returns every page a character is on. Input: PID for the character.

-- Example for person 11 
select PagesFor(011, 'results');

Fetch all from results;



Valid Input Checks

 Each sequence number from 1-100 can only be used exactly once, as this denotes the
correct order of the pages and there can only be one page in one spot (Unique constraint).
 It is impossible for one person to be a victim of more than one murder (Unique constraint).
 A person can only be on a page if they are a character.
 A poem can not be a beginning half and an end half, they have to be one or the other.
 A poem can not be in more than one pair, because a poem only has one match.
 There can not be more than 6 entries in the Murders table, because there are only 6
murders throughout the book.

The next section shows the stored procedure functions to ensure the inserts and
updates done by my client and their assistant adhere to the rules of the puzzle book.

RULES:
1.

2.
3.
4.
5.
6.



Valid Input Checks
Checks to make sure that the person being inserted into the PagesPeople table is a
Character (ensures that rule 3 is being followed).

CREATE OR REPLACE FUNCTION PersonOnPageIsCharacter() 
RETURNS TRIGGER AS $$ 
BEGIN 
  IF new.pid not in(select ch.pid
        from Characters ch
        where (new.pid = ch.pid)
  )THEN RAISE EXCEPTION 'Person needs to be a character';
  END IF; 
RETURN NULL;
END; 
$$ LANGUAGE plpgsql;

Trigger results on slide 42



Valid Input Checks
Checks that there are not more than 6 entries in the Murders table, because there are
only 6 murders throughout the book. (ensures that rule 6 is being followed).

CREATE OR REPLACE FUNCTION OnlySixMurders() 
RETURNS TRIGGER AS $$ 
BEGIN 
  IF (select count(MurderID)
      from Murders
      ) > 6
  THEN RAISE EXCEPTION 'There are already 6 murders, can not add another.';
  END IF; 
RETURN NULL;
END; 
$$ LANGUAGE plpgsql;

Trigger results on slide 43



TRIGGERS



Trigger 1
CREATE OR REPLACE TRIGGER PersonOnPageIsCharacter
BEFORE INSERT ON PagesPeople
FOR EACH ROW
EXECUTE PROCEDURE PersonOnPageIsCharacter();

insert into PagesPeople(pageNum, PID)
values
(23, 007);



Trigger 2
CREATE OR REPLACE TRIGGER OnlySixMurders
AFTER INSERT ON Murders
FOR EACH ROW
EXECUTE PROCEDURE OnlySixMurders();

insert into Murders(MurderID, VictimPID, MurdererPID)
values
(007, 003, 011);



SECURITY
Admin: This role grants access to all aspects of
the database (only for the database architect)

Client: This role grants access to the client
who hired me, they do not get to edit the
schema of the database, but can query, insert,
and delete rows

Assistant: This role grants limited access to
the client's assistant who is helping read
through the pages and enter the data into the
database. They do not need to query from it.



SECURITY
Admin:  

Client: 

Assistant: 



IMPLEMENTATION NOTES
With a larger number of pages and
sample data, the queries could return
more interesting and complex
information. 
In order for the database to achieve its
goal of assisting my client with the
puzzle, the entered data must be
complete and accurate. Something the
database is unable to check for and
therefore, there is risk for human error.



KNOWN PROBLEMS FUTURE ENHANCEMENTS
To solve problem 1, it could be helpful to implement new
columns in the Pages table that record the previous
pageNum and the following pageNum. This would help
chain the known pages together in their correct sequence. 
With a larger supply of example pages we may discover
that there are more shared features other than just poems
and puzzles. We could create more strong entities to
record these details and more Pages_____ tables to connect
them with the page numbers. 
To address problem 4, we could implement an additional
table, possibly a sub-type of characters, for pets/animals. 
Additional stored procedures and triggers could be
implemented to ensure the rules around the Poems are
followed (a poem can only be a beginning or an end, not
both, and a poem can only be apart of one pair).

 It would be difficult to assign a page with its correct sequence
number without knowing the page before it and its sequence
number. Even though this SequenceNum is a necessary data
point, it seems arbitrary at this time. 
 As it is, without the trigger check, any person could be added to a
page. This could be an issue as only characters should be on
pages.
 As we only used a small number of page data for the sample
queries, the detail and information gained was not too extensive. 
 Some people suspect that one of the characters that appears in a
large number of pages is actually a dog and not a person at all,
but in our database would be saved in the People table which
could cause problems.
 The victims table is denoted as having a 1 to many relationship
with the murders table, even though one victim can only be in
one murder.

1.

2.

3.

4.

5.


