DUNKIN'

DONUTS

Database Design Proposal
Bridget Leahy

Table of Contents

Executive Summary
ER Diagram
Create Table Statements:
Zipcode Table
People Table_________________
Banned Customers Table_______
Customers Table______________
Staff Table_______ ___________

Managers Table
Crew Table

StoreOfferings Table
Items Table

Create View Statements:

inactiveCustomers_

unorderedFood_____

perkslLocations
Stored Procedures:

searchCustomerName

getCalories_______

storelocation_____
Triggers:

checkFood

Reports
User Roles/Security
Problems/Enhancements

18

19

20

21

23

25

Executive Summary

The Dunkin Donuts database has been created to keep track of all aspects of
the operation of this successful company.

The following paper provides an information regarding the database as well as
indications of its uses. The ER diagram, create statements for tables, and
their sample data are first presented. Following this, uses 1include creating
queries, views, stored procedures, reports, and triggers are designed and
tested. The function of the database is to provide accurate and relevant
information on all bases of the company - from customers, to food, to store
locations, to managers and staff.

America runs on Dunkin and Dunkin runs on its database.

Managers

E/R Diagram L

PID
HourlyWageUSD
HireDate

PromotionDate

Crew

PK, FK PID
HourlyWageUSD
HireDate

BannedCustomers

PID

DateofBan

Reason

Pl People
Pk PID
Staff FirstName Customers]
PK PID HO—PID— LastName | —}—PID——()-H PK, FK PID
D.O.B PerksMember
StreetAddress
FK Zipcode r:i\D
Orders

PK e]]»]
Zipcodes EK PID
PK Zipcode FK []o}
State —————ZipCode EK sID

City DateTime

Zipcode Country TotalUSD

o
Stores Items
R siE) I StoreOfferings PK e
StreetAddress Type
SiD PK, FK sID >—||DJ i
Zipcode |—< PK, FK D
1o 11D
Drinks Foods
PK, FK 1o PK, FK L[]
Description Description
Calories Calories
PriceUSD PriceUSD

Lipcode Table

The table containing all zipcodes for stores and people, whether
they are customers, managers, or crew. There is a city, state, and

country for each unique zipcode.

DROP TABLE IF EXISTS ZipCode;
CREATE TABLE ZipCode (
ZipCode 1int not null,
City text,
State text,
Country text,
primary key(ZipCode)
)3

Functional Dependencies:

zipcode | city state country
integer | text text text

1 | 26475/01d Saybrook |CT |USA

2 | 37446 Ramsey NJ USA

3 12601 |Poughkeepaie NY TSk

4 | 12538 Hyde Park NY TSk

3 | 11524 Leicester MR |USA

Zipcode > city, state,

country

Table containing information on any customer, banned

customer crew, or manager. Gives the erson’s name
People Table , creu, g . ,

date of birth, street address, and zip code based on
their unique ID.

pid firstname lastname dob streetaddress zipcode
character{4)| text text date text int
1 pO01 Tien Liengtiraphan 1996-05-26 3399 North Road 12601
F 't . -L D d . . 2 p002 Alan Labouseur 2017-04-01|3399 North Road 12601
unctiona epen encies: 3 p003 Mary Morrison 1996-01-21 |11 Fox Hollow Road| 26475
3 4 pO04 Rachel Wheaton 1996-04-30 |52 Sun Valley Road| 37446
PID » FirstName, LastName, DOB, :
. 5 005 Bridget Leahy 1995-09-08 5 Pryor Road 11524
StreetAddress B Zi pCode 6 |poog John Doe 1990-05-06 3399 North Road 12601
7 p007 Jane Deer 1989-09-22 3399 North Road 12601
8 p00& Data Base 1970-01-01 3399 North Road 12601
9 009 Ronald |McDonald 1960-11-04 3399 North Road 12601
10 |p0l0 Star Buck 1971-03-31 3434 North Road 12601
11 |p011 Jeff Kortina 1989-12-13|34 Main Street 37446
DROP TABLE IF EXISTS People; 12 |poi2 Spoon | Wotherspoon |1993-04-01 &3 Bee Way 37446
13 |p013 Alex Carlin 1990-06-05 4 Pleasant Street 374486
CREATE TABLE PeOple (14 |poi4 Hannah |Youseff 1990-06-05 |3399 North Road 12601
PID Cha r (4) not nu'L'L 15 |p01s Erma Leahey 1996-08-08 |3 Britney Drive 11524
.) 16 |p0lé Michael Leahy 1993-11-07|5 Pryor Road 11524
FirstName text B 17 |po17 Anna Young 1998-02-26 3399 North Road 12601
18 |polg Erin Concannon 1996-02-14 |13 Irish Lane 37446
LaStName teXt 5 19 |p013 Michael |Leahy 1993-11-07 |5 Orange Road 37448
DOB date s 20 |po20 Anna Young 1998-02-26 98 Sun Road 26475

StreetAddress text,
ZipCode 1int not null references ZipCode(ZipCode),
primary key(PID)

Banned Customers Table

Any person who has been banned from Dunkin Donuts will be listed
here, along with the date of their ban and the reason for the ban.
The person must already exist in the People table to be banned.

DROP TABLE IF EXISTS BannedCustomers;

CREATE TABLE BannedCustomers (
PID char(4) not null references People(PID),
DateofBan date,
Reason text,

primary key (PID) pid dateofban |reason
) character(4) date text
1 |pooz 2017-04-21 Fan of Starbucks
Functional Dependencies: 2 |po1o 1971-05-01 Brought Starbucks into Dunkin

PID » DateofBan, Reason

Customers Table

The customers table contains all of Dunkin’s customers and whether it is
true or false that they are a DD Perks Member. A person cannot be in the
customer table unless they exist in the people table. If information
regarding whether or not the customers is a perks member is not given,
the default value will be false.

DROP TABLE IF EXISTS Customers; = T B
CREATE TABLE Customers (character(4) text
PID char(4) not null references People(PID), 1 |p00s No
PerksMember text DEFAULT 'No', 2 |p0od Yes
primary key(PID), 2 __paoé Yes
CONSTRAINT CHK_Member CHECK A .
(PerksMember="'Yes' OR PerksMember="'No') : e res
. |p020 Yes @
)a

Functional Dependency: PID > PerksMember

Staff Table

The staff table contains the ID of each staff memeber. A person cannot be

added to the staff table unless they already are in the person table.

DROP TABLE IF EXISTS Staff;

CREATE TABLE Staff (
PID char(4) not null references People(PID),
primary key(PID)

)3

Functional Dependency:
PID -

pid
character(4)

U= RS T S R

[
(=]

[
ok

p001
po03
p005
007
p011
p0l12
p0l3
p0l4d
p015
p017
p0l6

Managers Table

The managers table contains the person ID, hourly wage in U.S. dollars,
original hire date, promotion to manager date, and hourly wage for each
manager. A person cannot be added to the manager table unless he or she
already exists in the staff table. The person must be a manager for the same
store as in the staff table. A person cannot be promoted at a date earlier
than he or she is hired and if salary is not entered, the default value will

be $20 based on company policy.
Functional Dependencies:
DROP TABLE IF EXISTS Managers; PID > HireDate, PromotionDate,
CREATE TABLE Managers (Hour lyWageUSD
PID char(4) not null references Staff(PID),
HireDate date,
PromotionDate date,

pid hiredate promotiondate
character(4) date date

p001 2016-02-03 2017-02-03 20.00
p007 2015-10-15 2016-12-31 25.00
p015 2013-04-19 2014-06-13 27.00

HourlyWageUSD numeric(10,2) default 20.00,
p0lé 2012-09-01 2014-12-01 25.00

primary key(PID),
check (PromotionDate > HireDate) B e Tt ©
G

) EEE!

hourlywageusd
numeric(10,2)

(LR RN TR SR

Crew Table

The crew table contains the person ID, hourly wage in U.S. dollars, original
hire date, and hourly wage for each crew member. A person cannot be added to
the crew table unless he or she already exists in the staff table. The person
must be a crew member for the same store as in the staff table.

hourly wage is $10.

DROP TABLE IF EXISTS Crew;

CREATE TABLE Crew (
PID char(4) not null references Staff(PID),
SID char(4) not null references Staff(SID),
HireDate date,
HourlyWageUSD numeric(10,2) default 10.00,
primary key(PID)

)3

Functional Dependencies:
PID » HireDate, HourlyWageUSD

The default

pid hiredate hourlywageusd

character(4)| date numeric{10,2)
1 pO00Ss 2010-06-18 10.00
2 p003 2010-06-18 10.00
3 p0ll 2010-06-18 10.00
4 p0l2 2010-06-18 10.00
5 p0l13 2010-06-18 10.00
6 p0l4d 2016-12-22 11.00

Stores Table

The stores table contains the ID, street address, and zipcode for each
store. A zipcode cannot be given to a store unless it already exists 1in
the zipcode table.

sid streetaddress zipcode

character{4)| text integer

DROP TABLE IF EXISTS Stores; 1 |[s001 101 Main Street 11524
CREATE TABLE Stores (: 3002 |3979 Albany Post Road| 12538
3003 1 Dunkin Way 124601

SID Char(4) not null, 4 3004 22 Sunset Road 26475
StreetAddress text, 5 |s005 92 Flower Lane 37446

Zipcode 1int not null references Zipcode(Zipcode),
primary key(SID)
)3

Functional Dependencies:
SID » StreetAddress, Zipcode

StoreOfferings Table

The store offerings table contains which items are offered
at each store. A store ID cannot be listed unless it 1s
already in the stores table. An item ID cannot be listed
unless it is already in the items table.

DROP TABLE IF EXISTS StoreOfferings;

CREATE TABLE StoreOfferings (
SID char(4) not null references Stores(SID),
IID char(4) not null references Items(IID),
primary key(SID, IID)

)3

Functional Dependencies:
SID, ITID »

A portion of the sample data:

sid iid
character(4) character(4)

W N AN s W N e

GIR|R B|e

-
-

-
v

[
@

-
~

-
=]

=
)

b=

N
=

N
N

B

b

N
e

N
-]

N
~

N
]

B

g

W
-

5001
5001
5001
5001
5001
5001
5001
5001
5001
3001
5001
5001
5002
8002
5002
5002
5002
5003
5003
5003
5003
5003
5003
5003
5003
5003
5003
5003
5004
5004
5004

inol
iooz
i003
i004
i00s
i0oe
i007
i00&

|i009

iolo
i01l
i014
iooz2
i0oe
i007
i00&
i010
iool
igoz
i003
i004
i0os
i007
i00&
i009
iolo
i01l
i014
i001
igoz
i005

ltems Table

The items table contains the id and type of item for any food or
drink sold at any Dunkin location.

DROP TABLE IF EXISTS Items;
CREATE TABLE Items (

IID char(4) not null,

Type text,

primary key(IID),

CONSTRAINT CHK_Type CHECK

(Type="'food' OR Type='drink"')
)3

Functional Dependency:
IID > Type

iid
character(4)

type
text

U= R R R RN S R

ok
=]

[y
[

i0o1
igo2
i0os3
ioo4
i00s
i004
ioa7
i008
inos
i010
ioll

food
drink
food
food

|food

drink
drink
drink
food
drink
food

Drinks Table

The drinks table contains each drink’s ID, description, calorie count,
and price in U.S. dollars. An item cannot be added to the drinks table
unless it already exists as a drink item in the items table.

DROP TABLE IF EXISTS Drinks;
CREATE TABLE Drinks (
IID char(4) not null references +items(IID),
Description text,
Calories 1integer,
PriceUSD numeric(10,2)

)

Functional Dependencies:
ITD > Description, Calories, PriceUSD

description

iid calories | priceusd

character(4) text integer | numeric(10,2)
1 inoz2 Medium Dunkaccino 350 3.00
2 i00& Medium Hot Chocolate 330 2.75
3 i007 Small Hot Coffee 5 1.75
4 inog Espresso 5 1.99
5 iolo |Espresso with Sugar 30 2.25
6 ignz Medium Dunkaccino 350 3.00
¥ inoe Medium Hot Chocolate 330 2.175
8 ion7 Small Hot Coffee 5 3275
9 igoa Espressc 5 1.99
10 |i010 Espressc with Sugar 30 2.25

Food Table

The food table contains each food item’s ID, description, calorie count,
and price in U.S. dollars. An 1item cannot be added to the food table
unless it already exists as a food item in the 1items table.

DROP TABLE IF EXISTS Food;
CREATE TABLE Food(
IID char(4) not null references +items(IID),
Description text,
Calories 1integer,
PriceUSD numeric(10,2)

Functional Dependencies:
ITD > Description, Calories, PriceUSD

nd description calories priceusd

character(4) text integer numeric(10,2)
1 iool Plain Bagel 310 2.50
2 1003 Chocolate Coconut Donut 400 1.00
3 ign4 Lemon 3Jtick 430 1.50
4 i005 Blueberry Bagel 310 3.00
5 i009 Poppy Seed Bagel 350 3.00
& 1011 Blueberry Crumbk Cake Donut 420 1.25
7 inol Plain Bagel 310 2.50
8 i003 Chocolate Coconut Donut 400 1.00
-) ino4 Lemon Stick 430 150
10 i00s Blueberry Bagel 310 3.00
11 |igog Poppy Seed Bagel 350 3.00
12 |io1l Blueberry Crumb Cake Donut 420 1.25

Orders Table

The orders table lists the order id, customer who ordered, item that was ordered,
store at which the item was ordered, and the date of the order. An +item cannot be in
the orders table unless it is already in the items table. A customer cannot be 1in
the orders table unless he or she 1is already in the customers table. An store cannot
be in the orders table unless it is already in the stores table.

DROP TABLE IF EXISTS Orders;
CREATE TABLE Orders (~
OID char(4) not null, odﬂ:racter@}‘?ﬂracter(ﬂ‘?::Iaracter(d.)
PID char(4) not null references Customers(PID),
SID char(4),
IID char(4),
DateOrdered date,
totalUSD numeric(10,2),
foreign key(SID, IID) references StoreOfferings(SID, IID),
primary key(OID)

iid ‘ dateordered
character(4)| date

o001 pd04 3002 i002 2017-04-26
o002 polg 3001 i006 2017-02-02
o003 plosg 3005 1003 2016-05-22
o005 pl2od 3003 1010 2017-01-15
o006 pl0& 3005 iong 2014-12-26
o004 pd04 3004 1002 2017-04-14
o007 p004 3005 i011 2017-01-31
o008 pl2o0 s001 1007 2016-12-25
o009 pd09 3002 ino02 2017-03-17
0010 po04d 3003 iool 2017-04-26

)3
o
Functional Dependencies: '
01D » PID, SID, IID, DateOrdered \

)

LW NN R W N

[
(=]

inactiveGustomers view

Gets the 1id, first name, and last name of any customer who
has not placed an order

create or replace view inactiveCustomers
as select distinct p.pid, p.firstname, p.lastname
from customers c, orders o, people p
where c.pid not 1in

(select pid from orders) pid firstname | lastname
and c.pid = p.pid character(4) text text
1 |p019 Michael Leahy

order by p.pid ASC;

Select * from inactiveCustomers;

unorderedFood view

Retrieves information about each food that has never been ordered

create or replace view unorderedFood
as select x from food f
where f.iid in (- ,
. iid description c s
Se-l.ect d 1 St-l nct 1.11 d character(4)| text integer | numeric(10,2)
. . 1 inod Lemon Stick 430 1.50
from items i 2 |ioos Blueberry Bagel 310 3.00
where 1.iid not 1in
(select iid from orders))
order by f.iid ASC;

calories| priceusd

select * from unorderedFood;

View: perkslocations

A view designed to get the city and states of customers who
are perks members. This is to analyze the locations where
the new perks membership is being used.

create or replace view perkslLocations

as
select z.city, z.state = e
. text text
from zipcode z, customers c, people p — o =
where z.zipcode = p.zipcode 2 Foughkeepsie NY
. 0 3 .
and c.pid = p.pid and c.perksmember = ‘Yes’ SRR

group by z.city, z.state;

Select * from perkslLocations;

Stored Procedure: searchCustomerName

This procedure allows users to search for people based on an element of their first name,
last name, or both. This 1is also easily adaptable to be able to search only staff,
customers, managers, crew, or banned customers instead of every person.

CREATE OR REPLACE FUNCTION searchCustomerName(TEXT, TEXT, REFCURSOR) RETURNS refcursor AS

$$
DECLARE
searchFirst TEXT := $1;
searchlLast TEXT := $2;
resultSet REFCURSOR := $3;
BEGIN
OPEN resultset FOR
SELECT *
FROM people
WHERE firstname LIKE searchFirst
AND lastname LIKE searchlLast;
return resultSet;
end;
$$
LANGUAGE plpgsql;

searchGustomerName examples

SELECT searchCustomerName('A%',

FETCH ALL FROM ref;

SELECT searchCustomerName('%',

FETCH ALL FROM refl;

SELECT searchCustomerName('%n',

FETCH ALL FROM ref2;

'L,

'Leah%"',

2/,
|9°|

'ref');

'ref2');

pid

cha racter(il}‘ text

firstname | lastname | dob

streetaddress zipcode
text date text integer

'refl');

1 p002 Alan Labougeur 2017-04-01|3399 North Roadl 12601
pid ‘ﬁrstname‘ lastname dob streetaddress zipcode
character{4)| text text date text integer

1 p005 Bridget Leahy 1995-09-08 |5 Pryor Road 1524

2 p0ls Emma Leahey |1996-08-08|3 Britney Driwve 1524

3 polé Michael Leahy 1993-11-07|5 Pryor Road 1524

4 p019 Michael |Leahy 1993-11-07|5 Orange Road 7448
pid ‘ﬁrshlame lastname dob streetaddress zipcode
character(4) text text date text integer

1 p001 Tien Liengtiraphan 1996-05-26 3399 North Road| 12601

2 p002 Zlan Labouseur 2017-04-01 3399 North Road| 12601

3 p00& John Doe 1990-05-06 3399 North Road| 12601

4 p0l2 Spoon Wotherspoon 1993-04-01 |83 Bee Way 7446

5 p0ls8 Erin Concannen 1996-02-14 |13 Irish Lane 7448

Stored Procedure: getCalories

This allows for users to search for a section of a customer’s first, last, or both names.
The result of the search includes not only the customer’s full name, but his or her ID and
total calories consumed from every order.

CREATE OR REPLACE FUNCTION getCalories(TEXT, TEXT, REFCURSOR) RETURNS refcursor AS

$$
DECLARE
searchFirst TEXT := $1;
searchlLast TEXT := $2;
resultSet REFCURSOR := $3;
BEGIN

OPEN resultset FOR
select p.pid, p.firstname, p.lastname, sum(f.calories) + sum(d.calories) as calories
from orders o left outer join drinks d on o.iid = d.1i1d
left outer join food f on o.iid = f.1d1d
left outer join customers c on o.pid = c.pid
left outer join people p on o.pid = p.pid
where o.pid=c.pid and
p.firstname LIKE searchFirst
AND p.lastname LIKE searchlLast
group by p.pid, p.firstname, p.lastname;
return resultSet;

end;
$$ G@

LANGUAGE plpgsql;

Testing getCalories

SELECT getCalories('R%', 'W%', 'ref3'); [P oy frstramelastnome colorcs
FETCH ALL FROM I"ef3; it po04 Rachel |Wheaton 1430
SELECT getCalories('%%', 'M%', 'ref4'); _ _
FETCH ALL FROM ref4; e e
1 ©009 Ronald |McDonald 750

Stored Procedure: Store Location Information

This procedure takes +dinput of a city name and finds all store location information using LIKE.

CREATE OR REPLACE FUNCTION storeLocation(TEXT, REFCURSOR) RETURNS refcursor AS

$$
DECLARE
searchZip TEXT := $1;
resultSet REFCURSOR := $2;
BEGIN

OPEN resultset FOR
select * from zipcode z

where z.city like searchZip

and z.zipcode in (select zipcode from stores);
return resultSet;

end;

$$

LANGUAGE plpgsql;

SELECT storeLocation('%e%','refl');
FETCH ALL FROM refl;

zipcode | city state country
integer | text text text
37446 Ramsey NJ TSR

12601 Poughkeepsie |NY USh
12538 Hyde Park WY |USA
11524|Leicester MR ush

R RN SR

SELECT storeLocation('%o%','refl');
FETCH ALL FROM refl;

zipcode | city state | country
i text text text
1 26475|01d Saybrook CT JUSEN

12601 Poughkeepsie NY UsA

Trigger: checkfood

This trigger ensures that a drink 1is not added to the food table.
If an item is listed as a drink in the item table and information regarding the drink is incorrectly added to
the food table, the row containing that item’s ID is deleted from the food table and added to the drink table

CREATE OR REPLACE FUNCTION checkFood()
RETURNS TRIGGER AS
$$
BEGIN
IF (select i.type from items i where i.7id=NEW.IID) = 'drink'

THEN
delete from food where +iid = NEW.IID;
insert into drinks(IID, description, calories, priceUSD) values (NEW.IID, NEW.Description, NEW.CALORIES, NEW.PriceUSD);
END IF;
RETURN NEW;
END;
$$
language plpgsql;

CREATE TRIGGER checkFood
AFTER INSERT ON Food

FOR EACH ROW

EXECUTE PROCEDURE checkFood()};

Testing checkFood

Add a drink to the item table, then try to insert more information on it into

the food table
insert into items(IID, Type) values ('i013', 'drink');

insert into food(IID, description, calories, priceUSD) values ('i013', 'Testing', 310,

3);
)
. . .
items: food: drinks:
I Cata output | Emian [; S — id description calories priceusd
= type = ‘descripﬁnn calories| priceusd character(4) text integer | numeric(10,2)
character(4)| text character(4)| text int: numeric(10,2) 1 |i002 Medium Dunkaccing 350 3.00
6 1006 drink 1 i001 Plain Bagel 310 2.50 2 i006 Medium Hot Chocolate 330 2.75
= ina7 drink 2 in03 Chocolate Coconut Donut 400 1.00 3 i0o7 Small Hot Coffee 3 1.75
8 ino8 drink 3 i004 Lemon Stick 430 1.50 4 1008 Espresso 5 1.99
9 i009 food 4 1005 Blueberry Bagel 310 3.00 5 ig1o Espreasc with Sugar 30 2.25
10 |i010 arink 5 inng Poppy Seed Bagel 350 3.00 6 i013 Testing 310 3.00
1 |i011 food [inll Blueberry Crumb Cake Donut 420 1.25
12 |i013 drink

Item 13 is classified as a drink, so it is removed from the food table and -inserted 1into %ii
the drinks table. \

Trigger: checkDrink

This trigger ensures that a food is not added to the drink table.

If an item is listed as a food in the +ditem table and information regarding the food is incorrectly added to
the drink table, the row containing that item’s ID is deleted from the drink table and added to the food
table

CREATE OR REPLACE FUNCTION checkDrink()
RETURNS TRIGGER AS
$$
BEGIN
IF (select i.type from items i where 1i.iid=NEW.IID) = 'food'

THEN
delete from drinks where iid = NEW.IID;
insert into food(IID, description, calories, priceUSD) values (NEW.IID, NEW.Description, NEW.CALORIES, NEW.PriceUSD);
END IF;
RETURN NEW;
END;
$$
language plpgsql;

CREATE TRIGGER checkDrink
AFTER INSERT ON Drinks

FOR EACH ROW

EXECUTE PROCEDURE checkDrink();

Testing checkDrink

Insert a new item (¢i012’) into the +items table as a food:

insert into items(IID, Type) values ('i0l2', 'food');

insert into drinks(IID, description, calories, priceUSD) values ('i0l2', 'Testing food', 352, 2.29);

Items: drinks: food:

uid type iid description calories| priceusd iid ‘descripﬁnn calories| priceusd

character(4)| text character(4) text int numeric(10,2) character(4) text int numeric(10,2)
7 ioo7 drink 1 igoz2 Medium Dunkaccino 350 3.00 i igol Plain Bagel 310 2.50
8 iong drink 2 inoe Medium Hot Chocolate 330 2.75 2 in03 Chocolate Coconut Donut 400 1.00
9 inog food 3 i007 Small Hot Coffee 5 A 3 ino4 Lemon Stick 430 1.50
10 iglo drink 4 i00g Espressao 5 1.99 4 1005 Blueberry Bagel 310 3.00
11 ioll food 5 inlo Espressoc with Sugar 30 2025 5 in0g Poppy Seed Bagel 350 3.00
12 in12 food 6 inll Blueberry Crumb Cake Donut 420 1.25

7 inl2 Testing food 352 2.29

Item 12 is classified as a food, so it is removed from the

the food table.

drinks table and 1inserted -into

Trigger: priceGeiling

Dunkin has enacted a new policy in which food ditems sold must remain under $5 to attract customers. If a food

item is added that costs $5 or more, it is immediately deleted from the food and items tables.

CREATE OR REPLACE FUNCTION foodCeiling()
RETURNS TRIGGER AS
$$
BEGIN
IF NEW.priceUSD >=5 THEN
delete from food where priceUSD = NEW.priceUSD;
delete from items where 1iid = NEW.i1id;
END IF;
RETURN NEW;
END;
$$
language plpgsql;

CREATE TRIGGER foodCeiling
AFTER INSERT ON Food

FOR EACH ROW

EXECUTE PROCEDURE foodCeiling();

Testing priceCeiling

Try to insert an 1item that is too expensive to check that it gets removed:
insert into items(IID, Type) values ('i014', 'food');

insert into food(IID, description, calories, priceUSD) values ('i014', 'Too
Expensive', 310, 6);

select * from food; Select * from items;

d ‘dﬁcriptinn calories| priceusd -
character(4) text integer | numeric(10,2) i ‘type ‘

1 |ioo1 Plain Bagel 310 2.50 character(4)| text

2 ino3 Chocolate Coconut Donut 400 1.00 7 i007 drink

3 i004 Lemon Stick 430 1.50 8 ioog drink

4 i00% Blueberry Bagel 310 3.00 o i0o9 food

5 i003 Poppy Seed Bagel 350 3.00 10 |io1o drink

6 in11 Blueberry Crumb Cake Donut 420 1.25 11 |io11 food

Reports on Sales in 2017

Total money collected in 2017:
select sum(totalUSD)

from orders [oom
where dateordered >= '2017-01-01"'; [T17.75

Total number of orders in 2017: oum
select count(oid) from orders where dateordered >= '2017-01-01'; =

Average calories from every item:

Select round((avg(d.calories) + avg(f.calories))/2) from drinks d, food f;

Average price from every item:
Select round((round(avg(d.priceUsD), 2) + round(avg(f.priceusD), 2))/2, 2)
from drinks d, food f;

round
numeric

257

1 round

numeric

2.20

create role admin;
create role CEO;

User Roles

create role managers;

ADMIN: Admin has administrative power over the
entirety of the Dunkin database.

grant all on all tables in schema public to admin;

MANAGERS: Have complete power over the crew.
They cannot delete people, customers, or
banned customers. They can only select orders,
items, food, drinks, and store offerings.

grant SELECT, INSERT, UPDATE, DELETE on crew to managers;
grant SELECT, INSERT, UPDATE, DELETE on staff to managers;
grant SELECT, INSERT, UPDATE on people to managers;

grant SELECT, INSERT, UPDATE on bannedCustomers to managers;
grant SELECT, INSERT, UPDATE on customers to managers;

grant SELECT on orders to managers;

grant SELECT on +items to managers;

grant SELECT on food to managers;

grant SELECT on drinks to managers;

grant SELECT on storeofferings to managers;

There are three user roles: Admin, CEO, and Managers

CEO: Has ability to make any select, 1insert,
update, or view the the majority of tables.
However cannot delete customers nor banned
customers.

grant SELECT, INSERT, UPDATE, DELETE on managers to CEO;
grant SELECT, INSERT, UPDATE, DELETE on crew to CEO;
grant SELECT, INSERT, UPDATE, DELETE on staff to CEO;
grant SELECT, INSERT, UPDATE, DELETE on people to CEO;
grant SELECT, INSERT, UPDATE on bannedCustomers to CEO;
grant SELECT, INSERT, UPDATE on customers to CEO;

grant SELECT, INSERT, UPDATE, DELETE on orders to CEO;
grant SELECT, INSERT, UPDATE, DELETE on +items to CEO;
grant SELECT, INSERT, UPDATE, DELETE on food to CEO;
grant SELECT, INSERT, UPDATE, DELETE on drinks to CEO;
grant SELECT, INSERT, UPDATE, DELETE on storeOfferings to CEO;
grant SELECT, INSERT, UPDATE, DELETE on stores to CEO;
grant SELECT, INSERT, UPDATE, DELETE on zipcode to CEO;

Chaos breaks loose and the CEO tries to
sabotage the company. Immediately the admin

will immediately:

revoke all on all tables 1in schema public from CEO;

Known Problems/Future Enhancements

e The way in which items are stored could be 1improved. Rather than the preset way
for ditems to be inserted and ordered, in the future there will be a more
“cookbook” style design, in which items can be completely customized. There
will be drink subtype tables for types of drink flavors, dairy options,
sweetener options, drink size, etc.

e Currently an order only consists of one item. In the future, the order table
will only consist of the order ID, store ID, person ID, and date. There will be
an additional table added called OrderDetails, in which multiple items can be
added to each order while maintaining 3NF.

e When the user roles and privileges are added to to the main .sql file
containing create statements, inserts, reports, triggers, views, and stored
procedures, it cannot correctly be run 1in 1its entirety. Parts of the script get
discarded. Therefore, there are two separate .sql files. 0

Q

