
Database Design Proposal
Bridget Leahy

Table of Contents
Executive Summary_________________3
ER Diagram________________________4
Create Table Statements:

Zipcode Table_________________5
People Table__________________6
Banned Customers Table________7
Customers Table_______________8
Staff Table___________________9
Managers Table_______________10
Crew Table___________________11
Stores Table_________________12
StoreOfferings Table_________13
Items Table__________________14
Drinks Table_________________15
Food Table___________________16
Orders Table_________________17

Create View Statements:
inactiveCustomers____________18
unorderedFood________________19
perksLocations_______________20

Stored Procedures:
searchCustomerName___________21
getCalories__________________23
storeLocation________________25

Triggers:
checkFood____________________26
checkDrink___________________28
priceCeiling_________________30

Reports__________________________32
User Roles/Security______________33
Problems/Enhancements____________34

Executive Summary

The Dunkin Donuts database has been created to keep track of all aspects of
the operation of this successful company.

The following paper provides an information regarding the database as well as
indications of its uses. The ER diagram, create statements for tables, and
their sample data are first presented. Following this, uses include creating
queries, views, stored procedures, reports, and triggers are designed and
tested. The function of the database is to provide accurate and relevant
information on all bases of the company - from customers, to food, to store
locations, to managers and staff.

America runs on Dunkin and Dunkin runs on its database.

E/R Diagram

Zipcode Table

The table containing all zipcodes for stores and people, whether
they are customers, managers, or crew. There is a city, state, and
country for each unique zipcode.

DROP TABLE IF EXISTS ZipCode;
CREATE TABLE ZipCode (

ZipCode int not null,
City text,
State text,
Country text,
primary key(ZipCode)

); Functional Dependencies:
Zipcode → city, state,

 country

People Table

Functional Dependencies:
PID → FirstName, LastName, DOB,

 StreetAddress, ZipCode

DROP TABLE IF EXISTS People;
CREATE TABLE People (
PID char(4) not null,
FirstName text,
LastName text,
DOB date,
StreetAddress text,
ZipCode int not null references ZipCode(ZipCode),
primary key(PID)

);

Table containing information on any customer, banned
customer, crew, or manager. Gives the person’s name,
date of birth, street address, and zip code based on
their unique ID.

Banned Customers Table

Any person who has been banned from Dunkin Donuts will be listed
here, along with the date of their ban and the reason for the ban.
The person must already exist in the People table to be banned.

DROP TABLE IF EXISTS BannedCustomers;
CREATE TABLE BannedCustomers (

PID char(4) not null references People(PID),
DateofBan date,
Reason text,
primary key (PID)

);

Functional Dependencies:
PID → DateofBan, Reason

Customers Table

The customers table contains all of Dunkin’s customers and whether it is
true or false that they are a DD Perks Member. A person cannot be in the
customer table unless they exist in the people table. If information
regarding whether or not the customers is a perks member is not given,
the default value will be false.

DROP TABLE IF EXISTS Customers;
CREATE TABLE Customers (

PID char(4) not null references People(PID),
PerksMember text DEFAULT 'No',
primary key(PID),
CONSTRAINT CHK_Member CHECK

 (PerksMember='Yes' OR PerksMember='No')
);

Functional Dependency: PID → PerksMember

Staff Table

The staff table contains the ID of each staff memeber. A person cannot be
added to the staff table unless they already are in the person table.

DROP TABLE IF EXISTS Staff;
CREATE TABLE Staff (

PID char(4) not null references People(PID),
primary key(PID)

);

Functional Dependency:
PID →

Managers Table
The managers table contains the person ID, hourly wage in U.S. dollars,
original hire date, promotion to manager date, and hourly wage for each
manager. A person cannot be added to the manager table unless he or she
already exists in the staff table. The person must be a manager for the same
store as in the staff table. A person cannot be promoted at a date earlier
than he or she is hired and if salary is not entered, the default value will
be $20 based on company policy.

DROP TABLE IF EXISTS Managers;
CREATE TABLE Managers (

PID char(4) not null references Staff(PID),
HireDate date,
PromotionDate date,
HourlyWageUSD numeric(10,2) default 20.00,
primary key(PID),
check (PromotionDate > HireDate)

);

Functional Dependencies:
PID → HireDate, PromotionDate,

 HourlyWageUSD

Crew Table

The crew table contains the person ID, hourly wage in U.S. dollars, original
hire date, and hourly wage for each crew member. A person cannot be added to
the crew table unless he or she already exists in the staff table. The person
must be a crew member for the same store as in the staff table. The default
hourly wage is $10.

DROP TABLE IF EXISTS Crew;
CREATE TABLE Crew (

PID char(4) not null references Staff(PID),
SID char(4) not null references Staff(SID),
HireDate date,
HourlyWageUSD numeric(10,2) default 10.00,
primary key(PID)

);

Functional Dependencies:
PID → HireDate, HourlyWageUSD

Stores Table

The stores table contains the ID, street address, and zipcode for each
store. A zipcode cannot be given to a store unless it already exists in
the zipcode table.

DROP TABLE IF EXISTS Stores;
CREATE TABLE Stores (

SID char(4) not null,
StreetAddress text,
Zipcode int not null references Zipcode(Zipcode),
primary key(SID)

);

Functional Dependencies:
SID → StreetAddress, Zipcode

StoreOfferings Table

The store offerings table contains which items are offered
at each store. A store ID cannot be listed unless it is
already in the stores table. An item ID cannot be listed
unless it is already in the items table.

DROP TABLE IF EXISTS StoreOfferings;
CREATE TABLE StoreOfferings (

SID char(4) not null references Stores(SID),
IID char(4) not null references Items(IID),
primary key(SID, IID)

);

Functional Dependencies:
SID, IID →

A portion of the sample data:

Items Table

The items table contains the id and type of item for any food or
drink sold at any Dunkin location.

DROP TABLE IF EXISTS Items;
CREATE TABLE Items (

IID char(4) not null,
Type text,
primary key(IID),
CONSTRAINT CHK_Type CHECK
(Type='food' OR Type='drink')

);

Functional Dependency:
IID → Type

Drinks Table

The drinks table contains each drink’s ID, description, calorie count,
and price in U.S. dollars. An item cannot be added to the drinks table
unless it already exists as a drink item in the items table.

DROP TABLE IF EXISTS Drinks;
CREATE TABLE Drinks (

IID char(4) not null references items(IID),
Description text,
Calories integer,
PriceUSD numeric(10,2)

);

Functional Dependencies:
IID → Description, Calories, PriceUSD

Food Table

The food table contains each food item’s ID, description, calorie count,
and price in U.S. dollars. An item cannot be added to the food table
unless it already exists as a food item in the items table.

DROP TABLE IF EXISTS Food;
CREATE TABLE Food(

IID char(4) not null references items(IID),
Description text,
Calories integer,
PriceUSD numeric(10,2)

);

Functional Dependencies:
IID → Description, Calories, PriceUSD

Orders Table
The orders table lists the order id, customer who ordered, item that was ordered,
store at which the item was ordered, and the date of the order. An item cannot be in
the orders table unless it is already in the items table. A customer cannot be in
the orders table unless he or she is already in the customers table. An store cannot
be in the orders table unless it is already in the stores table.

DROP TABLE IF EXISTS Orders;
CREATE TABLE Orders (

OID char(4) not null,
PID char(4) not null references Customers(PID),
SID char(4),
IID char(4),
DateOrdered date,
totalUSD numeric(10,2),
foreign key(SID, IID) references StoreOfferings(SID, IID),
primary key(OID)

);

Functional Dependencies:
OID → PID, SID, IID, DateOrdered

inactiveCustomers view

Gets the id, first name, and last name of any customer who
has not placed an order

create or replace view inactiveCustomers
as select distinct p.pid, p.firstname, p.lastname
from customers c, orders o, people p
where c.pid not in

(select pid from orders)
 and c.pid = p.pid

order by p.pid ASC;

Select * from inactiveCustomers;

unorderedFood view

Retrieves information about each food that has never been ordered

create or replace view unorderedFood
as select * from food f
where f.iid in (
select distinct i.iid

from items i
where i.iid not in
(select iid from orders))

order by f.iid ASC;

select * from unorderedFood;

View: perksLocations

A view designed to get the city and states of customers who
are perks members. This is to analyze the locations where
the new perks membership is being used.

create or replace view perksLocations
as

select z.city, z.state
from zipcode z, customers c, people p
where z.zipcode = p.zipcode
and c.pid = p.pid and c.perksmember = ‘Yes’
group by z.city, z.state;

Select * from perksLocations;

Stored Procedure: searchCustomerName

This procedure allows users to search for people based on an element of their first name,
last name, or both. This is also easily adaptable to be able to search only staff,
customers, managers, crew, or banned customers instead of every person.

CREATE OR REPLACE FUNCTION searchCustomerName(TEXT, TEXT, REFCURSOR) RETURNS refcursor AS
$$

DECLARE
searchFirst TEXT := $1;
searchLast TEXT := $2;
resultSet REFCURSOR := $3;

BEGIN
 OPEN resultset FOR

 SELECT *
 FROM people
 WHERE firstname LIKE searchFirst
 AND lastname LIKE searchLast;

 return resultSet;
end;
$$
LANGUAGE plpgsql;

searchCustomerName examples

SELECT searchCustomerName('A%', 'L%', 'ref');
FETCH ALL FROM ref;

SELECT searchCustomerName('%', 'Leah%', 'ref1');
FETCH ALL FROM ref1;

SELECT searchCustomerName('%n', '%', 'ref2');
FETCH ALL FROM ref2;

Stored Procedure: getCalories
This allows for users to search for a section of a customer’s first, last, or both names.
The result of the search includes not only the customer’s full name, but his or her ID and
total calories consumed from every order.

CREATE OR REPLACE FUNCTION getCalories(TEXT, TEXT, REFCURSOR) RETURNS refcursor AS
$$

DECLARE
searchFirst TEXT := $1;
searchLast TEXT := $2;
resultSet REFCURSOR := $3;

BEGIN
 OPEN resultset FOR
 select p.pid, p.firstname, p.lastname, sum(f.calories) + sum(d.calories) as calories
from orders o left outer join drinks d on o.iid = d.iid

left outer join food f on o.iid = f.iid
left outer join customers c on o.pid = c.pid
left outer join people p on o.pid = p.pid

where o.pid=c.pid and
 p.firstname LIKE searchFirst
 AND p.lastname LIKE searchLast
 group by p.pid, p.firstname, p.lastname;
 return resultSet;
end;
$$
LANGUAGE plpgsql;

Testing getCalories

SELECT getCalories('R%', 'W%', 'ref3');
FETCH ALL FROM ref3;

SELECT getCalories('%%', 'M%', 'ref4');
FETCH ALL FROM ref4;

Stored Procedure: Store Location Information
This procedure takes input of a city name and finds all store location information using LIKE.

CREATE OR REPLACE FUNCTION storeLocation(TEXT, REFCURSOR) RETURNS refcursor AS
$$

DECLARE
searchZip TEXT := $1;
resultSet REFCURSOR := $2;

BEGIN
 OPEN resultset FOR
 select * from zipcode z

where z.city like searchZip
and z.zipcode in (select zipcode from stores);
 return resultSet;
end;
$$
LANGUAGE plpgsql;

SELECT storeLocation('%e%','ref1');
FETCH ALL FROM ref1;

SELECT storeLocation('%o%','ref1');
FETCH ALL FROM ref1;

Trigger: checkFood
This trigger ensures that a drink is not added to the food table.
If an item is listed as a drink in the item table and information regarding the drink is incorrectly added to
the food table, the row containing that item’s ID is deleted from the food table and added to the drink table

CREATE OR REPLACE FUNCTION checkFood()
RETURNS TRIGGER AS
$$
BEGIN
 IF (select i.type from items i where i.iid=NEW.IID) = 'drink'

 THEN
 delete from food where iid = NEW.IID;
 insert into drinks(IID, description, calories, priceUSD) values (NEW.IID, NEW.Description, NEW.CALORIES, NEW.PriceUSD);
 END IF;
 RETURN NEW;
END;
$$
language plpgsql;

CREATE TRIGGER checkFood
AFTER INSERT ON Food
FOR EACH ROW
EXECUTE PROCEDURE checkFood();

Testing checkFood
Add a drink to the item table, then try to insert more information on it into
the food table

insert into items(IID, Type) values ('i013', 'drink');

insert into food(IID, description, calories, priceUSD) values ('i013', 'Testing', 310,
3);

items:

Item 13 is classified as a drink, so it is removed from the food table and inserted into
the drinks table.

drinks:food:

Trigger: checkDrink
This trigger ensures that a food is not added to the drink table.
If an item is listed as a food in the item table and information regarding the food is incorrectly added to
the drink table, the row containing that item’s ID is deleted from the drink table and added to the food
table

CREATE OR REPLACE FUNCTION checkDrink()
RETURNS TRIGGER AS
$$
BEGIN
 IF (select i.type from items i where i.iid=NEW.IID) = 'food'

 THEN
 delete from drinks where iid = NEW.IID;
 insert into food(IID, description, calories, priceUSD) values (NEW.IID, NEW.Description, NEW.CALORIES, NEW.PriceUSD);
 END IF;
 RETURN NEW;
END;
$$
language plpgsql;

CREATE TRIGGER checkDrink
AFTER INSERT ON Drinks
FOR EACH ROW
EXECUTE PROCEDURE checkDrink();

Testing checkDrink

Insert a new item (‘i012’) into the items table as a food:

insert into items(IID, Type) values ('i012', 'food');

insert into drinks(IID, description, calories, priceUSD) values ('i012', 'Testing food', 352, 2.29);

Items: drinks: food:

Item 12 is classified as a food, so it is removed from the drinks table and inserted into
the food table.

Trigger: priceCeiling
Dunkin has enacted a new policy in which food items sold must remain under $5 to attract customers. If a food
item is added that costs $5 or more, it is immediately deleted from the food and items tables.

CREATE OR REPLACE FUNCTION foodCeiling()
RETURNS TRIGGER AS
$$
BEGIN
 IF NEW.priceUSD >=5 THEN
 delete from food where priceUSD = NEW.priceUSD;
 delete from items where iid = NEW.iid;
 END IF;
 RETURN NEW;
END;
$$
language plpgsql;

CREATE TRIGGER foodCeiling
AFTER INSERT ON Food
FOR EACH ROW
EXECUTE PROCEDURE foodCeiling();

Testing priceCeiling

Try to insert an item that is too expensive to check that it gets removed:

insert into items(IID, Type) values ('i014', 'food');

insert into food(IID, description, calories, priceUSD) values ('i014', 'Too
Expensive', 310, 6);

select * from food; Select * from items;

Reports on Sales in 2017

Total money collected in 2017:
select sum(totalUSD)
from orders
where dateordered >= '2017-01-01';

Total number of orders in 2017:
select count(oid) from orders where dateordered >= '2017-01-01';

Average calories from every item:
Select round((avg(d.calories) + avg(f.calories))/2) from drinks d, food f;

Average price from every item:
Select round((round(avg(d.priceUSD), 2) + round(avg(f.priceUSD), 2))/2, 2)
from drinks d, food f;

User Roles
CEO: Has ability to make any select, insert,
update, or view the the majority of tables.
However cannot delete customers nor banned
customers.

grant SELECT, INSERT, UPDATE, DELETE on managers to CEO;
grant SELECT, INSERT, UPDATE, DELETE on crew to CEO;
grant SELECT, INSERT, UPDATE, DELETE on staff to CEO;
grant SELECT, INSERT, UPDATE, DELETE on people to CEO;
grant SELECT, INSERT, UPDATE on bannedCustomers to CEO;
grant SELECT, INSERT, UPDATE on customers to CEO;
grant SELECT, INSERT, UPDATE, DELETE on orders to CEO;
grant SELECT, INSERT, UPDATE, DELETE on items to CEO;
grant SELECT, INSERT, UPDATE, DELETE on food to CEO;
grant SELECT, INSERT, UPDATE, DELETE on drinks to CEO;
grant SELECT, INSERT, UPDATE, DELETE on storeOfferings to CEO;
grant SELECT, INSERT, UPDATE, DELETE on stores to CEO;
grant SELECT, INSERT, UPDATE, DELETE on zipcode to CEO;

There are three user roles: Admin, CEO, and Managers
create role admin;
create role CEO;
create role managers;

ADMIN: Admin has administrative power over the
entirety of the Dunkin database.

grant all on all tables in schema public to admin;

MANAGERS: Have complete power over the crew.
They cannot delete people, customers, or
banned customers. They can only select orders,
items, food, drinks, and store offerings.

grant SELECT, INSERT, UPDATE, DELETE on crew to managers;
grant SELECT, INSERT, UPDATE, DELETE on staff to managers;
grant SELECT, INSERT, UPDATE on people to managers;
grant SELECT, INSERT, UPDATE on bannedCustomers to managers;
grant SELECT, INSERT, UPDATE on customers to managers;
grant SELECT on orders to managers;
grant SELECT on items to managers;
grant SELECT on food to managers;
grant SELECT on drinks to managers;
grant SELECT on storeofferings to managers;

Chaos breaks loose and the CEO tries to
sabotage the company. Immediately the admin
will immediately:

revoke all on all tables in schema public from CEO;

Known Problems/Future Enhancements

● The way in which items are stored could be improved. Rather than the preset way
for items to be inserted and ordered, in the future there will be a more
“cookbook” style design, in which items can be completely customized. There
will be drink subtype tables for types of drink flavors, dairy options,
sweetener options, drink size, etc.

● Currently an order only consists of one item. In the future, the order table
will only consist of the order ID, store ID, person ID, and date. There will be
an additional table added called OrderDetails, in which multiple items can be
added to each order while maintaining 3NF.

● When the user roles and privileges are added to to the main .sql file
containing create statements, inserts, reports, triggers, views, and stored
procedures, it cannot correctly be run in its entirety. Parts of the script get
discarded. Therefore, there are two separate .sql files.

