b & U3l
HANNAHFLIX & 8

'ﬁ'_.-',' . :

s | -- i

.|
-

:
|

-
o

Table Of Contents:

EXECULIVE SUMMIAIY ...t 3

Entity Relationship Diagram......eseeeeeseseseseseseeseeenas 4

Table StatemMeNts...... e 5

VieW STAtemMENTS.. ... 18
REIORUSIIINNL. o i sicossteteitamaaseasansseamnamsaamsatannstaaeae s sanns s amnsssmantes 22
STOred ProCeAUIES.......o ettt 26
flgle[c (S LA S TN 31
ST=Toll [([nV/ WOTR. e N OO 34
Implementation Notes and Known Problems...........cccveennn.. 37
Future Enhancements.........ccccoocceececceecee e 38

Hannah Riedman 2

..-. "J
LT

Executive Summary

HannahFlix is a new high quality streaming service
with more titles than ever before. This service prides
itself with high quality movies that are hand picked
by film critics from around the world, while also
providing the latest and greatest TV shows for their
customers to enjoy.

This database will be used to keep track of films, tv
shows and users. HannahFlix administrators will be
able to see who is watching what and better tailor
every user's experience based on what films and
shows they watch the most.

Hannah Riedman 3

Entity
Relationship
Diagram

GenrelD
GenreName

UID

GenrelD

T APKFK|UID B SubscriptionPK

TID.

' T V)
uID, TID

Firstname
uib Lastname
Email

PK,FK|TID | CreditcardNum
Streetaddress
uiD FK |ZipCode

ZipCode

SeasonNum

TID

PK |Episode

EpisodeTitle EpisodeNum

PK,FK|Season
PK,FK|Episode State

City

Tables

JJ._..
-3 | 4
o X
¢ - /.
. N
{o:) <
4 |
e &/
-
“
,\. ﬁ

5 v
o
o
£

e

L

o

=
o
=
&
o

I

Tables: Users

This table is used to keep track of Users of the HannahFlix system and
what their information is for billing purposes.

i CREATE TABLE Users (
- uid int not null,

firstname text not null,

lastname text not null,

: Functional Dependencies:
email text not null,

subscriptionPK text not null, Uid__’ firStnome_’|05tn0me,
creditcardNum bigint not null, email,subscriptionPK,
streetaddress text not null, creditcardNum,streetaddress,
zipcode int not null references ZipCodes(zipcode), zipcode

unique(uid),)

PRIMARY KEY (uid)
);

uid firstname lastname email subscriptionpk creditcardnum streetaddress zipcode
integer text text text text bigint text integer

1 Hanngh Riedman |Hannah.riedman®marist.edu Premium 51051@51@51851@0 2630 East S5t | 14424
2 Alan Labouseur alan@labouseur.com Basic 4012888888881881 3399 Morth Rd 12681
3 Phobe Rebinson PRobinscon@gmail.com Basic 51@5675895105100 600 45th 5t 11281
4 Charlie Donner Charliedon&yahoo.com Basic 40128E9988384881 17 5th St 10065

Hannah Riedman 6

tid title type
integer text text

1 The Walking Dead TVshow
2 Cosmas TVShow
3 Arrested Development TVshow
4 The Office TVShow
5 Parks and Rec TVShow
6 Black Mirror TVShow

7 Rick and Morty TVShow

8 Mr.Robot TVShow

9 Breaking Bad TVShow

1@ Do The Right Thing Movie

11/City of God Movie |

1Z Back to the Future Mowvie
13 Monty Python and the Holy Grail Mowvie
14 North by Northwest Movie
15 Strangers on a Train Movie
16 Kill Bill Vol. 1 Mowvie
17 Kill Bill Veol. 2 Movie

18 Forrest Gump Movie |

19 Edward Scissorhands Mowvie

28 American Psycho Movie |
21 Goldfinger Movie

genreid
integer

=
rJ

o |

=
7
=
1
=
]
5
4
B
=
7
3l
1
=
&
4
&
zl
=

Tables: Titles

This table is used to keep track of the titles currently available.
Each Title has a name and a type (TV show or Movie) and each
title is assigned a genrelD from the genre table.

CREATE TABLE Titles (

tid int not null,

title text not null,

type text not null,

genrelD int not null references Genres(genrelD),
unique(tid),

PRIMARY KEY (tid)

»

Functional Dependencies:
tid—title ,type, genrelD

Hannah Riedman 7

genreid genrename
integer text

1 Thriller

Z Romance

3 Epic

4 Mystery
5 Science Fiction %

T 6 Action
7 Comedy
& Crime
9 Drama
18 Romantic Comedy
11 Fantasy
12 Documentary

ot

Tables: Genres

This table is used to keep track of what genres there are. More genres
can easily be added if a title is added with no appropriate genre.

CREATE TABLE Genres (
genrelD int not null,
genreName text not null,
PRIMARY KEY (genrelD)

);

Functional Dependencies:

genrelD — genreName

Hannah Riedman 8

Tables: Movies

This table is used to keep track of all the Movies available. It also holds
information for the Directors of Movies

CREATE TABLE Movies Al
tid int not null references titles(tid),
director text not null,

unique(tid), 11 Fernando Meirelles and Kdtia Lund
PRIMARY KEY (tid)

)i

18 Spike Lee

12 Robert Zemeckis

13 Terry Gilliam and Terry Jones
14 Alfred Hitchcock

15 Alfred Hitchcock

Functional Dependencies:

tid— director
16 Quentin Tarantino

17 Quentin Tarantino

18 Robert Zemeckis
13 Tim Burton

28 Mary Harron

21 Guy Hamilton

Hannah Riedman

Tables: TV shows

This table is used to keep track of all the TV shows available. It also
holds information for the number of seasons.

CREATE TABLE TVshows (tie
tid int not null references titles(tid),
seasonNum int not null,

unique(tid), 1
PRIMARY KEY (tid)
);

SEasSonnum
integer integer

Functional Dependencies:
tid—seasonNum

i
1
4
9
i
3
rd
rd
>

Hannah Riedman 10

Tables: Seasons

O [tomet] ot This table is used to keep track of all the Seasons available. It also
i 7 2 holds information for how many episodes are in
tid season episodenum
24 eth Sedson. integer integer Irlpmgar

25
B

P CREATE TABLE Seasons (
7 tid int not null references TVshows(tid),
. season int not null,
episodeNum int not null,
unique(tid,season),
PRIMARY KEY (tid,season)
Jk

I 1 &
13
16
16
16
16
16
13
rra
18
13
15

6
22
25
19
28
26

L N @ N A W M e

Functional Dependencies:
tid, season— episodeNum

1
1
1
1
i
1
Z
a
3
a
3
4
4
4
4
4
4

L R T o O T - T i T B el e SR~ 2 IR ¥ IR oY

4
4
5
5
5
5
5
5
5
4]
6
<]
7
7
g8
g
9
9
9
9
9

'
B o I e o T e TR T R o e B = B - T T o R - -

Hannah Riedman 11

et X7\
LA AN \ J This table is used to keep track of all the Episodes available and their
| WYy I ~ respective season number, TV show and episode title.

e |
l e 1 Tables: Episodes
!

CREATE TABLE Episodes (
tid season episode episodetitle b .
integer integer integer text tld Int not nu”,
I season int not null,

1 What Lies Ahead 2 3
= episode int not null,

130 days without an accident episodeTitle text not null,
1No Sanctuary FOREIGN KEY(tid, season) REFERENCES Seasons(tid, season),
1|First Tine Again PRIMARY KEY (tid, season, episode)

1 The Day will come when you wont be .
1 The Shores of the Cosmic Ocean)’
13 Who Speaks for Earth?

1Pilot

1 The One Where Michael Leaves Functionql Dependencies:

1 The Cabin Show . g . 3

1 Flight of the Phoentx tid, season, episode — episodeTitle
1 Pilot

1 The Dundies

1 Gay Witch Hunt

W Em N @ wn A W N e

=
o

B e e
o B W N

1 Fun Run

-
~

1 Weight Loss

-
-]
SV A W N R W N R R RN o B W N

1
ik
1
1
1
1
2
2z
3
11 3
3
3
4
4
4
4
4
4

1 Gossip

Hannah Riedman 12

Tables: Episodes-- more sample data

tid season episode episodetitle
integer integer integer text

1 Nepotism

1 The List

1 MNew Guys

1Pilot

1 Pawnee Zoo

1 Go Big or Go Home
1Im Leslie Knope

1 Ms.Knope Goes to Washington
1 London

12817

1 The National Anthem
1 Be Right Back

1 NoseDive

6 Hated in a Nation
1Pilot

1A Rickle in Time

5 Get Schwifty

1 epsl.@_hellofriend.mov
1 epsZ.@_unmdsk-ptl.tc
1Pilot

1 Seven Thirty-Seven

1 No Mds

1 Box Cutter

1 Llive Free or Die Hannah Riedman 13

L L Y N O T T e TR e L N T o B = B ¥) O e o I = - T

4
4
4
5
5
5
5
5
5
5
5]
5]
5]
5]
7
7
7
B
8
9
9
9
9
9

.- Tables: WatchedTitles

This table is used to keep track of all the Titles watched by each certain
user. This includes movies and TV show titles. wid tid

i integer integer

CREATE TABLE WatchedTitles (x
: - uid int not null references Users(uid),
’ ' tid int not null references Titles(tid),
unique(uid, tid),
pod PRIMARY KEY (uid, tid)
il

- * Functional Dependencies:
uid, tid —

7= T - B T - I B S A

1
1
1
1
1
1
Z
2
2
z
3
3
3
4
4
4

Hannah Riedman 14

1
2
3
4
5
13
7
8
9

uid

1

A A e e A

tid

1

- N A L A T A

season episode
integer integer integer integer

1

1

Tables: WatchedEpisodes

This table is used to keep track of all the episodes watched by each
user. This is so HannahFlix can keep track if you have finished a show

or what episode you are on in the series.

CREATE TABLE WatchedEpisodes (
uid int not null references Users(uid),
tid int not null,
season int not null,
episode int not null,

FOREIGN KEY (tid, season, episode) REFERENCES Episodes(tid, season, episode),

PRIMARY KEY (uid, tid, season, episode)

Functional Dependencies:
uid, tid, season, episode —

Hannah Riedman 15

Mg T2 0D Tables: TitleRatings

- L A . This table is used to keep track of all the titles rated by the userona 1
% ' to 5 star rating scale. The user can rate movies or a TV show as a
whole but only if the user has watched the title (and is therefore in the

WatchedTitles table).
CREATE TABLE TitleRatings (il tid ke
uid int not null, integer integer integer

tid int not null,

rating int not null check (rating > 0 and rating < 6),

FOREIGN KEY (uid, tid) REFERENCES WatchedTitles(uid, tid),
PRIMARY KEY (uid, tid)

1 3
1@
11

Functional Dependencies:
uid, tid — rating

'w
. , Hannah Riedman 16

[L I ¥ I T T))

1
2
3
4
5
B
7
8
9

oA B W W N e

Tables: Queues

This table is used to keep track of what titles are on a user’s list. A user
can add any movie or tv show to their Queue to watch later.

CREATE TABLE Queues (

uid int not null references Users(uid),
tid int not null references Titles(tid),

unique(uid, tid),
PRIMARY KEY (uid, tid)
);

Functional Dependencies:

uid, tid —

uid tid
integer integer

1 9

19
14
15
10
11

Hannah Riedman 17

Views: view_all_movies

This view is used to see all the available movies with the movie titles

and directors.

CREATE VIEW view_all_movies
AS
SELECT t.tid, title as "Movie title", director

FROM movies m INNER JOIN titles t ON m.tid = t.tid;

tid

Movie title

integer text

18 Do The Right Thing

11 City of God

12 Back to the Future

13 Monty Python and the Holy Grail
14 North by Northwest

15 Strangers on a Train
16 Kill Bill Vol. 1
17 Kill Bill Vol. 2

18 Forrest Gump

19 Edward Scissorhands
20 American Psycho

21 Goldfinger

director
text

Spike Lee

Fernando Meirelles and Kdtia Lund
Robert Zemeckis

Terry Gilliam and Terry Jones
Alfred Hitchcock

Alfred Hitchcock

Quentin Tarantino

Quentin Tarantino

Robert Zemeckis

Tim Burton

Mary Harron

Guy Hamilton

Hannah Riedman

19

W O® N WM B W N e

NN E R R R R R R e e e
H S L ® N @O WL s W N RO

tid TV show title
integer text

1 The Walking Dead

1 The Walking Dead

1 The Walking Dead

1 The Walking Dead

1 The Walking Dead

1 The Walking Dead

1 The Walking Dead

2 Cosmos

2 Cosmos

3 Arrested Development
3 Arrested Development
3 Arrested Development
3 Arrested Development
4 The Office

4 The Office

4 The Office

4 The Office

4 The Office

4 The Office

4 The Office

4 The Office

AS

Views: view_all_tvshow_episodes
This view is used to see all the available tv show episodes with the
tvshow title, season number, episode number, and episode titles.
CREATE VIEW view_all_tvshow_episodes

SELECT t.tid, title as "TV show title", season, episode, episodetitle

FROM episodes e INNER JOIN titles t ON e.tid = t.tid;

season episode episodetitle
integer integer text

1

0N O W B W N R R W N R R RN o U s W N

1 Days Gone Bye

1 What Lies Ahead

1 Seed

130 days without an accident

1 No Sanctuary

1First Time Again

1 The Day will come when you wont be
1 The Shores of the Cosmic Ocean
13 Who Speaks for Earth?

1Pilot

1 The One Where Michael Leaves
1 The Cabin Show

1 Flight of the Phoenix

1Pilot

1 The Dundies

1 Gay Witch Hunt

1 Fun Run

1 Weight Loss

1 Gossip

1 Nepotism
1 The List

TV show title

integer text

4 The Office

4 The Office

4 The Office

5 Parks and Rec
5 Parks and Rec
5 Parks and Rec
5 Parks and Rec
5 Parks and Rec
5 Parks and Rec
5 Parks and Rec
6 Black Mirror

6 Black Mirror

6 Black Mirror

& Black Mirror

7 Rick and Morty
7 Rick and Morty
7 Rick and Morty
8 Mr.Robot

8 Mr.Robot

9 Breaking Bad
9 Breaking Bad
9 Breaking Bad
9 Breaking Bad

season episode episodetitle
integer integer text

AW N R N R NN R W W N RN O W A W N E D e N

1 Nepotism

1The List

1 New Guys

1 Pilot

1 Pawnee Zoo

1 Go Big or Go Home
11Im Leslie Knope

1 Ms.Knope Goes to Washington
1 London

12017

1 The National Anthem
1 Be Right Back

1 NoseDive

6 Hated in a Nation
1Pilot

1A Rickle in Time

5 Get Schwifty

1 epsl.@_hellofriend.mov
1 epsZ.@_unmdsk-ptl.tc
1Pilot

1 Seven Thirty-Seven

1 No Mas

1 Box Cutter

Hannah Riedman 20

Views: most_popular_titles

This view is used to show administrators how many users are watching
each title. This will help our film and tv show curators decide what kind
of titles are most desired.

CREATE VIEW most_popular_titles
AS

SELECT t.tid, title, type, count(*) as "Users Watched" td it type Users Watched
FROM titles t INNER JOIN watchedtitles wt ON t.tid = wt.tid ieger) Tt fext | Dlalne
GROUP BY t.tid

ORDER BY count(*) DESC, t.tid:

5 Parks and Rec TVShow
& Black Mirror TVShow
18 Forrest Gump Movie

1 The Walking Dead TVshow
2 Cosmos TVShow
3 Arrested Development TVshow
4 The Office TVShow
7 Rick and Morty TVShow
18 Do The Right Thing Movie

11 City of God Movie

1
2
3
4
5
(]
7
8
9

=
(=]

12 Back to the Future Movie

[
=

14 North by Northwest Movie

-
Lo

20 American Psycho Movie

-
W

e e e i i e B e s A

21 Goldfinger Movie

[
S

Hannah Riedman 21

| .r e s
‘Il ﬁ = -_m-_-_':_g_\ -P‘-'.
: Hannah Riedman

Reports: Percent of Users that are Basic

This Report will be used to find the percentage of how many users have
a basic subscription package. This is useful to help HannahFlix see
what packages are the most popular.

SELECT round(
((count(*) filter (WHERE subscriptionPK = 'Basic')::numeric
/ count(*)::numeric) * 100)::numeric, 2
) as "Percent Users Basic"

FROM users

Percent Users Basic
FIUFeric

7>.08

Hannah Riedman 23

Reports: Most Popular Genre

| | This report will be used to find the most popular genre of titles users
/ watch. This will help HannahFlix in finding more titles in that category
I(to add to their library.

SELECT genreName as “Most Popular Genre”
FROM genres
WHERE genrelD = (SELECT genrelD
FROM (SELECT genrelD,count(*)
FROM watchedtitles wt INNER JOIN titles t ON wt.tid = t.tid
GROUP BY genrelD
ORDER BY count(*) DESC
LIMIT 1) as "GenrelD");

Most Popular Genre
Text

Comedy

Hannah Riedman 24

Reports: Most Popular Director

This report will be used to find the most popular Director of titles users
watch. This will help HannahFlix in finding more titles from that
Director to add to their library.

SELECT director as "Most Popular Director"
FROM (SELECT director, count(*)
FROM watchedetitles wt INNER JOIN movies m ON wt.tid = m.tid
GROUP BY director
ORDER BY count(*) DESC
limit 1)'as "director";

Maost Popular Director
text

Robert Zemeckis

Hannah Riedman 25

Stored Procedures: Recommendations

This procedure will look at a user's watched titles and take the most
watched genre of titles they have watched and recommended titles
from that genre for the user to watch while also ensuring that no titles
that the user has watched will be recommended.

Below is sample results for user, Alan Labouseur when the user's id is
passed into the function. SQL for the procedure is shown on the next

page.

Recommended Titles
text

North by Northwest

Strangers on a Train

American Psycho

Hannah Riedman 27

Stored Procedures: Recommendations cont.
DROP FUNCTION recommendations(theuser integer,resultSet refcursor);

CREATE or REPLACE function recommendations(theuser int,resultSet refcursor) returns refcursor as
$$
DECLARE

theuser int:= $1;

resultSet refcursor := $2;
BEGIN

open resultset for
SELECT title
FROM titles
WHERE genrelD = (SELECT genrelD
FROM(SELECT genrelD,count(*)

FROM watchedtitles wt INNER JOIN titles t ON wt.tid = t.tid
WHERE uid = theuser

=

-t
-
-

|

i GROUP BY genrelD
" wr ORDER BY count(*) DESC
. - LIMIT 1) as "genrelD")

AND title not in (SELECT title

a - FROM watchedtitles wt INNER JOIN titles t ON wt.tid = t.tid

g WHERE uid = theuser);
| return resultset;

5y ~ END;

- $$ language plpgsq|

Hannah Riedman 28

Stored Procedures: View by Genre

This procedure will accept a genre as text and then return all titles in
that genre. This will be useful when users search titles by genre.
Sample data is shown on the next page.

DROP FUNCTION viewbygenre(genre text,resultSet refcursor);

CREATE or REPLACE function viewbygenre(genre text,resultSet refcursor) returns refcursor as

$$
DECLARE
genre text := $1;
resultSet refcursor := $2;
BEGIN
open resultset for
SELECT title, type
FROM titles
WHERE genrelD = (SELECT genrelD
FROM genres
WHERE genreName = genre);
return resultset;
END;
$$ language plpgsql

Hannah Riedman 29

Stored Procedures: View by Genre cont.

Here is some sample data for this procedure. Figure 1 shows data when
the genre ‘Thriller’ is entered into the function. Figure 2 shows data when
the genre ‘Drama’ is entered into the function.

Figure 1 Figure 2

title type title type
text text ext Text

Black Mirror TVShow The Walking Dead TVshow
North by Northwest Movie . Breaking Bad TVShow

Strangers on a Train Movie Do The Right Thing Movie

American Psycho Movie Forrest Gump Movie

Hannah Riedman

30

Triggers: Credit Card Check

This Trigger will check the credit card entered for each user to ensure it
is valid (has 16 digits) before allowing the user data into the Users
table. The credicard_num() function will be executed whenever a new
row is Inserted into the table.

CREATE OR REPLACE FUNCTION creditcard_num() RETURNS TRIGGER AS
$$
DECLARE

creditcard text := cast(new.creditcardnum as text);
BEGIN

. & IF creditcard is NULL THEN
§ ‘ RAISE EXCEPTION 'creditcard cannot be null’;
S 5 ot END IF;
=R \ %" IF (SELECT length(creditcard)
' FROM Users

WHERE Uid = new.uid) <> 16 THEN
RAISE EXCEPTION 'creditcard must be valid';
END IF;
RETURN NEW,;
END;
$$ LANGUAGE plpgsql;

st

Hannah Riedman 32

Triggers: Credit Card Check cont.

Here is the Trigger SQL and sample output when an incorrect credit
card is entered.

CREATE TRIGGER creditcard_check
AFTER INSERT
ON Users

FOR EACH ROW

EXECUTE PROCEDURE creditcard_num();

-- Executing query:

INSERT INTO Users(uid, firstname, lastname, email, subscriptionPK, creditcardnum,streetaddress,zipcode)
MVALUESCE, "New", 'User', 'alpacas@alpaca.gov’, 'Premium’,634562899392812569@, '34 Alpaca Lane',126@81);

ERROR: creditcard must be valid

CONTEXT: PL/pgSQL function creditcard_num() linme 17 at RAISE

'._l. e o S ok o ok Rk ok Er-ur-uoli e ok ok o sk ok ok ok

ERROR: creditcard must be wvalid
i 50L state: PR@@1
© - MContext: PL/pgSQL function creditcard_num() line 17 at RAISE

Hannah Riedman 33

Security: Admin & Film Curator Roles

ADMIN
The admin of the database can see and edit all information for all the
tables in the database.

CREATE ROLE Admin;

GRANT ALL

ON ALL TABLES IN SCHEMA PUBLIC
¥ TO Admin;

FILMCURATOR

The Film Curator needs to have select access to view what films are in
the database currently and also have insert access to add new films. In
the case of outdated films or unwatched films, the Film curator can also
delete movies.

CREATE ROLE FilmCurator;

GRANT SELECT, INSERT, DELETE

ON Genres, Titles, Movies, most_popular_titles
TO FilmCurator;

Hannah Riedman 35

Security: Show Specialist Role

SHOWSPECALIST

The Show Specialist, like the film curator, needs to have select access to
view what tv shows are in the database currently and also have insert
access to add new shows. In the case of outdated shows or unwatched
shows, the Show Specialist can also delete tv shows. In addition, the
Show Specialist can update TV shows since new seasons may be
added periodically.

CREATE ROLE ShowSpecialist;

GRANT SELECT, INSERT, UPDATE, DELETE

ON Genres, Titles, TVshows, Seasons, Episodes, most_popular_titles
TO ShowSpecialist;

Hannah Riedman 36

Implementation Notes & Known Problems

=» The test data in the insert statements is not fully complete for the
purpose of space and the size of this project.
o The Episodes table only contains one episode per season due
to the large amount of episodes per season.
o Similarly the ZipCodes table only contains zip codes for the
sample users since there is a large amount of zip codes.

=> Currently the way the billing address is put into the users table does
not account for users localized outside the US.

=> The recommendation stored procedure only makes
“recommendations” based on the most popular genre of watched
titles by the user.
o This can be an issue if the user has watched all the titles of
that genre, then no more recommendations will be made.
o Also this can be an issue if a user has watched a lot of one
genre but has not liked some of them.

=> Currently you can only add one genre per title and certain titles may
have multiple genres. Hannah Riedman 37

Future Enhancements

=> Once HannahFlix has been established in the US, we plan to include
international customers and make the service available worldwide.

=» Another Future Enhancement is multiple profiles per account since
accounts are usually shared in families. This way, recommendations
can be more accurate for each individual.

We are working on the ability to add multiple genres for one title.

We want to improve our recommendation function so it's more

accurate. It might be interesting to include user ratings of watched

titles for the recommendations in case a user has watched a lot of
> 4 one genre but has not liked some of them.

=* In the future, we might want to include a licences table to help
admins know when licenses are expired, in order know when to
renew licences for titles or delete titles.

Hannah Riedman 38

