==
&
=
QO
L&
a2
>
®©
_I

Table of Contents

Executive Summary........ccevveunenneee. 3
ER Diagram.....ccceececeeeeeeceeereceenens 4
Table Statements........................ 6-23
View Statements.........ccoceeuennee. 25-30
Stored Procedures...................... 32-33
Y=Y 010] o €T 34-35
LT e =] £ 36-37
SECUNMTY vt 38

Problems/Enhancements................ 39

Executive Summary

This database has been created for the Dunn
Hotel, a hotel that is run by Taylor Dunn and her
minions. It has been created to keep track of all
records needed to ensure the success of the hotel.

The information that follows is an intensive review
of the database itself, and aspects of it's uses.
There are numerous parts of this review including
the ER Diagram, create statements for tables, and
the sample data that was inserted into the table.
Next are the results of queries, views, stored
procedures, reports, and triggers. These were all
created and then tested.

The purpose of this database is to condense all of
the information that the hotel needs to function
into one central, and organized collection of tables.

ER Diagram:

attractions
attraction_id
miscellaneous_charges
attraction_name
attraction_description PK | miscellaneous_charges_id
name
chargesusd
hotels description
PK hotel_id
FK attraction_id
room_type
street_address
PK roomtype_id city miscellaneous_charges_add
room_name
! state FK | miscellaneous_charges_id
max_guest
g zipcode FK transaction_id
smoking hotel_name
description owner_firstname
room_priceusd owner_lastname

— reservations transactions payment_type
rooms

reservation_id PK transaction_id = PK payment_id PK | payment_type_id
PK room_id
— room id FK reservation_id FK | payment_type_id payment_name
FK - h -

roomtype_id BT FK employee_id
FK status_id B

check_out FK payment_id
room_number
no_of_guests FK customer_id

floor_number FK hotel_id

people employees timesheet

room_status PK PID PK employee_id PK |timesheet_insert_id
status_id first_name FK PID FK employee_id
status_name last_name FK job_id date

=

status_description street_address hire_date time_in

state hourly_wageusd time_out
memberships e

customers zipcode \ total_hours

birthday

membership_id
PID

contact_number
customer_id

email_address

username I job_type
password PK job_id
date_of_membership job, r;ime

Jjob_description

Attractions: This table contains different attractions
in the area of Liverpool, Texas, including the hotel
that this database focuses on.

CREATE TABLE attractions (

attraction_id char(3) not null,
attraction_name text not null,
attraction_description text not null,

primary key (attraction_id)

attraction_id attraction_name attraction_description

4 character (3) text text

1 al Hotel Places to stay in the ar...
2 a2 FDR Museum Places to check out his...
3 a3 Riverwalk Places to explore the a...
4 a4 Restaurants Places to eat in the area

Functional Dependencies: attraction_id — attraction_name, attraction_description

Transactions: This table holds all of the information regarding the
transactions that go through this hotel day in and day out.

CREATE TABLE transactions (

transaction_id char(8) not null,
reservation_id char(8) not null,
employee_id char(3) not null,
payment_id char(3) not null,
customer_id char(3) not null,
hotel_id char(3) not null,

primary key (transaction_id),

foreign key (hotel_id) references hotels (hotel_id),

foreign key (reservation_id) references reservations (reservation_id),
foreign key (employee_id) references employees (employee_id),

foreign key (payment_id) references payment (payment_id)

);
transaction_id reservation_id employee_id payment_id customer_id hotel_id
4 character (8) character (8) character (3) character (3) character (3) character (3)

il 11111 rvl el b1 ¢l hi

2 12222 rv2 el b2 c2 hi

3 13333 rv4 e3 b3 c3 hi

4 14444 rv3 el b4 cl h1

5 155555 rv5 e3 b5 (0157 hi

6 166666 vé e3 b6 cl hi

7/ 177777 v7 el b7 c3 hi

8 188888 rv8 e3 b8 c3 hi

9 199999 v9 el b9 c4 hi

0 112222 rvio el b10 c4 hi

Functional Dependencies: transaction_id — employee_id, payment_id,
reservation_id, customer_id, hotel_id

Hotels: This table contains the specific information about one of
the hotel attractions in the area.

CREATE TABLE hotels (
hotel_id
street_address
city
state
zipcode
hotel_name
owner_firstname
owner_lastname
attraction_id
primary key (hotel_id),

char(7) not
text not
text not
text not
integer not
text not
text not
text not
char(3) not

null,
null,
null,
null,
null,
null,
null,
null,
null,

foreign key (attraction_id) references attractions (attraction_id)

hotel_id street_address city
4 character (7) text text
1 hi 123 Galway Lane Live...
2 h2 134 Hello Street ' Ha...

state
text

Texas

New ...

zipcode hotel_name
integer text

12894 The Dunn H...
12345 The Hilly Hall

owner_firstname owner_lastname attraction_id

text text character (3)
Taylor Dunn al
John Cena al

Functional Dependencies: hotel_id — street_address, city, state, zipcode,
hotel_name, owner_firstname, owner_lastname, attraction_id

Miscellaneous_Charges: This table contains the miscellaneous
charges options that can be added to a transaction. These charges
are broken down into three options, but more could be added as
neccessary.

CREATE TABLE miscellaneous_charges (

miscellaneous_charges_id char(3) not null,
name text not null,
chargesuUsD decimal(15,2) not null,
description text not null,
primary key (miscellaneous_charges_id)
);
miscellaneous_charges_id name chargesusd description
4 character (3) text numeric (15,2) text
1 m1 Stolen Item 50.00 Something from the room is missing.
2 m2 Broken Furniture 200.00 Something from the room is broken and needs to be replaced.
38 m3 Food 25.00 All room service for food is under a $25 buffet, all you can eat style.

Functional Dependencies: miscellaneous_charges_id — name, chargesUSD,
description

Miscellaneous_Charges_Add: This table displays which
transactions have miscellaneous charges in their orders.

CREATE TABLE miscellaneous_charges_add (
miscellaneous_charges_id char(3) not null,
transaction_id char(8) not null,
foreign key (miscellaneous_charges_id) references miscellaneous_charges (miscellaneous_charges_id},
foreign key (transaction_id) references transactions (tranaction_id)
);

miscellaneous_charges_id transaction_id

4 character (3) character (8)
1 mi i 1 47160 i §

2 m2 155555

3 m3 199999

Functional Dependencies : none

Payment: This table shows how a customer paid for their
reservation, and is linked to the transaction table through the
payment_id column.

CREATE TABLE payment (
payment_id char{3} not null,
payment_type_id char(2) not null,
primary key (payment_id),
foreign key (payment_type_id) references payment_type (payment_type_id)

¥

payment_id payment_type_id

4 character (3) character (2)
1 b1 t1
2 b2 t2
3 b3 t1
4 b4 t3
5 (b5 t2
6 b6 3
7 b7 E1
8 b8 t3
9 bo t1
10 b10 t2

Functional Dependencies: payment_id — payment_type_id

Payment_Type: This table holds the different payment methods that
this hotel accepts.
CREATE TABLE payment_type (

payment_type_id char(2) not null,

payment_name text not null,

primary key (payment_type_id)
);

payment_type_id payment_name

4 character (2) text
1 :t1 Cash
20 t2 Card
3 it3 Bitcoin

Functional Dependencies: payment_type_id — payment_name

People: This table holds all of the people that interact with the hotel
and it’s database.

CREATE TABLE people (

PID char(5) not null,
first_name text not null,
last_name text not null,
street_address text not null,
state text not null,

Zipcode integer not null,
birthday date not null,
contact_number text not null,
email_address text not null,

primary key (PID)

Functional Dependencies: pid — first_name, last_name, street_address, state,
zipcode, birthday, contact_number, email_address

People Sample Data
on next slide

People Sample Data:

pid first_ name last_name street_address state zipcode birthday contact_number email_address
4 character (5) text text text text integer date text text

1 pl Jason Haley 13 School Street New ... 11946 1978-11.. 4587390869 jason.haley@g...
2 p2 Scott Fritsch 10 Emerson Co... | New ... 11946 1989-06... 1234567890 scott.fritsch@g...
3 p3 Jami Domenico 15 Maple Court New ... 18977 1997-04... 6312546789 jami.domenico...
4 p4 Alan Laboseur 255 Honey Drive New ... 12601 1985-09.. 1118675301 alan.lab@coolg...
5 p5 Jack Heuber 123 Talk Road New ... 12445 1998-10.. 1345879978 talkingguy@tal...
6 pb6 Dave Connelly 15 Bae Court Rhod... 12366 1997-11.. 1879087890 jefferyjeffery@...
7 i p7 Taylor Connelly 17 Harbor Road River... 14577 1997-11... 6316805787 taylor.kathryn...
8 p8 John Sasso 40 Bestfriend L... = New ... 12889 1997-12... 2267897765 john.sasso@be...
9 p9 Shannon Cover 33 Oak Ave New ... 89059 1990-06... 0987654321 shannon.cover...
10 pilo0 Sreya Sobti 1334 Linda Lane : Penn... 37890 1995-10.. 7778987654 sreyasobti@ind...

Employees and Customer: Both people, these tables connect to the
people table and include extra information.

CREATE TABLE employees (CREATE TABLE customers (
employee_id char(3) not null, PID char(3) not null,
PID char(5) not null, customer_id char(3) not null,
job_id char(2) not null, primary key (customer_id),
hire_date date not null, foreign key (pid) references people (pid)
hourly wageusd decimal(15,2) not null,):

primary key (employee_id),

foreign key (PID) references people(pid},

foreign key (job_id) references job_type (job_id) pid customer id

M 4 character (3) character (3)
employee_id pid job_id hire_date hourly_wageus(i pl cl

4 character (3) character (5) character (2) date numeric (15,2)

1 el p6 20 2017-03-... 10.00 2 p2 c2

2 ie2 p7 91 2012-08-... 10.00 3 p3 c3

3 e3 p8 91 2011-07-... 10.00

4 eq po 92 2009-05-... 20.00 4 p4 c4

5 e5 p10 93 2017-08-... 15.00 5 p5 c5
Functional Dependencies: employee_id — pid, pid — customer_id

job_id, hire_date, hourly_wageusd

Timesheet: This table includes all of the employees and their hours.

CREATE TABLE timesheet [

timesheet_insert_id char(1@} not null,
employee_id char(3] not null,
date date not null,
time_in time not null,
time_out time not null,
total_hours integer not null,

primary key (timesheet_insert_id),
foreign key (employee_id) references employees (employee id)

)

timesheet_insert_id employee_id date time_in time_out total_hours
4 character (10) character (3) date time without time zone time without time zone integer
1 timel el 2017.. 11:00:00 17:00:00 6
2 time2 el 2017.. 10:00:00 18:00:00 8
3 time3 e2 2017.. 11:00:00 18:00:00 7
4 time4 e3 2017.. 08:00:00 16:00:00 8

Functional Dependencies : employee_id — date, time_in, time_out

total _hours — time_in, time_out

Job_Type: This table holds information about different jobs that the
employees hold.

CREATE TABLE job_type (

job_id char(2) not null,
job_name text not null,
description text not null,

primary key (job_id)

job_id job_name description
4 character (2) text text
1 90 Front Desk Person aids...
28 91 Housekee... ' Person clea...
3 92 Manager Person look...
4 93 Bell Hop Person take...

Functional Dependencies: job_id — job_name, job_description

Memberships: This table contains membership information for
customers who are considered members.

CREATE TABLE memberships |

membership_id char(8) not null,
PID char{3) not null,
customer_id char(3) not null,
username text not null,
password text not null,
date_of_membership date not null,

primary key (membership_id},

foreign key (pid) references people (pid),

foreign key (customer_id) references customers (customer_id)
|H

membership_i pid customer_id username password date_of membership
4 character (8) character (3) character (3) text text date
I m1111111 pl cl thisquyl17 nymets17 2016-09-18
2 m2222222 p2 c2 coolgirl12 stuff1790 2013-10-23
3 m3333333 p4 c4 useruser20 nv.Pass3 2012-12-20

Functional Dependencies: membership_id — pid, customer_id, username,
password, date_of_membership

Reservations: This table contains all information about the
reservations a customer submits or a front desk worker processes.

CREATE TABLE reservations

reservation_id char(8) not null,
room_id chari{g) nogt null,
check_in date not null,
check_out date not null,
no_of_guests char(8} not null,
smoking boolean not null,

primary key (reservation_id),
foreign key (room_id)} references rooms (room_id)
)i

Functional Dependencies: reservation_id — check_in, check_out, no_of_guests,
room_id, customer_id, transaction_id

Reservation sample data on next slide

Reservations Sample Data:

o 0 N o0 A WM

=
o

reservation_id

character (8)
rvl
rv2
rv3
rv4
rvs
rvé
rv7
rv8
rv9

rvl0

room_id
character (6)

rml
rm3
rm4
rm4
rm5
rm2
rm7
rm1l
rm3

rmé

check_in
date

2017-09-...
2016-03-...
2017-05-...
20 17-09="
2017-07-.-
2013-08-...
2012-06-...
2015-09-...
2011-03-...
2014-06-...

check_out
date

2017-09-05
2016-03-25
2017-05-28
2017-09-14
2017-07-28
2013-08-23
2012-07-01
2015-09-07
2011-03-18
2014-06-22

no_of _guests smoking

character (8)

L B % B - S - T 7 B ¥, B i -

boolean
true
false
false
true
false
false
false
true
false

true

Rooms: This table holds all the information about different rooms
in the hotel.

CREATE TABLE rooms (

room_id char{6} not null,
roomtype_id char{1@} not null,
room_number char{5} not null,
floor_number integer not null,
status_id char{2) not null,

primary key (room_id},
foreign key (roomtype_id) references room_type (roomtype_id),
foreign key (status_id) references room_status (status_id)

)i

room_id roomtype_id room_number floor_number status_id
4 character (6) character (10) character (5) integer character (2)
1 mi typel 100 1 sl
2 rmm2 type2 200 2 s2
3 rm3 type3 300 3 s1
4 rm4 type3 120 1 s1
5 rm5 type2 220 2 s2
6 rmbé type3 305 3is2
7 rm7 typel 205 2 sl

Functional Dependencies: room_id — roomtype_id, room_number, floor_num,
status_id

Room_Type: This table holds all of the room types and their other
attributes.

CREATE TABLE room_type (

roomtype_id char(8) not null,
room_name text not null,
max_guest integer not null,
smoking boolean not null,
description text not null,
room_priceUsD decimal(15,2) not null,

primary key (roomtype_id)

roomtype_id room_name max_guest smoking description room_priceusd

4 character (8) text integer boolean text numeric (15,2)

1 typel Double Quee... 5 false Two double... 150.00
2 type2 Single King 2 false One king si... 120.00
3 type3 Suite Style 8 true Two bedroo... 300.00

Functional Dependencies: roomtype_id — room_name, max_guest, smoking,
description, room_price_usd

Room_Status: This table displays whether the room is booked,
vacant or being cleaned.

CREATE TABLE room_status (

status_id char(2) not null,
status_name text not null,
status_description text not null,

primary key (status_id)
)i

status_id status_name status_description
4 character (2) text text
1 s1 Booked This room is booked.
2 s2 Vacant This room is compl...
3 is3 Being Cleaned This room is in the ...

Functional Dependencies: status_id — status_name, status_description

Views, Triggers, Stored

Procedures, Reports

Views: Total Cost

This query will find the total price a customer must pay for their
visit, based upon reservation id. This is a quick and easy way for
the total cost of a customer’s visit to be calculated and eventually
processed through payment methods.

select ((
select chargesusd
from miscellaneous_charges
where miscellaneous_charges_id in (select miscellaneous_charges_id
from miscellaneous_charges_add
where transaction_id in (select transaction_id
from transactions
where reservation_id = "rv5'}))

(select room_priceusd
from room_type
where roomtype_id in (select roomtype_id
from rooms
where room_id in (select room_id
from reservations
where reservation_id in (select reservation_id
from transactions

where reservation_id = 'rv5'))})) as totalCost;
totalcost
4 numeric

1 320.00

Views: Total Pay

This view will show how much an employee will make for working
a certain number of hours. This is helpful for the manager or owner
to calculate how much money they will have to pay their employees
for working their hours that week.

select (
(select hourly_wageusd
from employees
where pid in (select pid
from people
where first_name = 'Taylor' AND
last_name = 'Connelly'))

(select total_hours
from timesheet
where employee_id in (select employee_id
from employees
where pid in (select pid
from people
where first_name = 'Taylor
AND
last_name ='Connelly')))) as TotalPay;

totalpay
4 numeric

1 70.00

Views: Quick View Of Room Information
This view will give the employee working at the front desk a quick
dashboard of the important information they need to know if a
customer wants to book a room.

select room_id, room_number, floor_number, status_description,
room_name, room_priceusd, max_guest

from rooms
inner join room_status on

rooms.status_id = room_status.status_id

inner join room_type on

rooms.roomtype_id = room_type.roomtype_id;

room_id room_number floor_number
4 character (6) character (5) integer
1 rmi 100
2 rm2 200
3 ™m3 300
4 rm4 120
5 rms5 220

1
2
3
1
2

status_description
text

This room is booked.
This room is compl...
This room is booked.
This room is booked.

This room is compl...

room_name
text

Double Quee...
Single King
Suite Style
Suite Style
Single King

room_priceusd max_guest

numeric (15,2)
150.00
120.00
300.00
300.00
120.00

integer

N NG

Views: Customer Information
This view shows customers that have made reservations, and their
important information.

select first_name, last_name, contact_number

from people

where pid in (select pid
from customers

|
where customer_id in (select customer_id
from transactions
where reservation_id in (select reservation_id

from reservations
FULL outer join people ON people.pid = reservations.reservation_id)))};

first_name Ilast_name contact_number
4 text text text

Jason Haley 4587390869
Scott Fritsch 1234567890
Jami Domenico 6312546789

Alan Laboseur 1118675301
Jack Heuber 1345879978

nmn AW N

Views: Non-Smoking Rooms

This view simply shows the rooms that are non-smoking, and
also available to be booked at the time of the query.

select rooms.room_id, room_status.status_description, rooms.room_number, room_type.smoking
from rooms

inner join room_type on room_type.roomtype_id = rooms.roomtype_id

inner join room_status on rooms.status_id = room_status.status_id

and room_status.status_id = 's2'

and room_type.smoking = false;

room_id status_description room_number smoking
character (6) text character (5) boolean

rm5 This room is compl... 220 false

rm2 This room is compl... 200 false

Views: Gold Members
This view simply shows members that have been with the hotel for

over a year. This accomplishment warrants special treatment from
the hotel, whether that be some sort of discount or promo.

select first_name, last_name, contact_number, email_address

from people
where pid in (select pid
from memberships
where date_of_membership < '2017-12-01");

first_name I|ast_name contact_number email_address
4 text text text text

Jason Haley 4587390869 jason.haley@ag...
Scott Fritsch 1234567890 scott.fritsch@g...
Alan Laboseur 1118675301 alan.lab@coolg...

Views: Room Status
This view tells you the status of the rooms in hotel. This is helpful for
those employees who are booking the reservations.

select room_id, room_number, floor_number, status_description
from rooms
inner join room_status on rooms.status_id = room_status.status_id;

room_id room_number floor_number status_description
character (6) character (5) integer text

rml 100 This is booked.
rm2 200 This is compl...
rm3 300 This is booked.
rm4 120 This is booked.
rm5 220 This is compl...
rmé6 305 This is compl...
rm7 205 This is booked.

Stored Procedure: findCustomer

This procedure a”OWS the hOtel create or replace function findCustomer (TEXT, TEXT, REFCURSOR) returns refcursor as
$$
front desk workers, as well as a .
manager to look up customer or searchLasNane TEXT ©= 21
. . resultSet REFCURSOR := $3;
employee personal information eatn
with the sole knowledge of the Setect x

from people

person’s first name’ Iast name or where first_name like searchFirstName
both first and last name.

and

last_name like searchLastName;
return resultSet;

end;

$$

LANGUAGE plpgsql;

select findCustomer ('Taylor', 'Connelly', 'ref');
FETCH ALL FROM ref;

pid first_name Iast_name street_address state zipcode birthday contact_number email_address
4 character (5) text text text text integer date Text text

1% p7 Taylor Connelly 17 Harbor Road River... 14577 1997-11... 6316805787 taylor.kathryn...

Stored Procedure: findReservation

create or replace function findReservation (TEXT, REFCURSOR) returns refcursor as

This procedure is a quick and 58
easy way for a front desk declare _

. searchReservation TEXT := $1;
employee to look up the details resultSet REFCURSOR := $2;
of a reserva’gon-utlllzmg only begin et o
the reservation id. select *

from reservations

where reservation_id like searchReservation;
return resultSet;

end;

$$

LANGUAGE plpgsql;

select findReservation ('rv2%', 'ref');
FETCH ALL FROM ref;

reservation_id check_in check_out no_of_guests room_id smoking customer_id transaction_id
4 character (8) date date character (8) character (6) boolean character (3) character (8)

1 rv2 2016-03-... 2016-03-25 1 rm3 false c2 16666666

Reports:

Total number of reservations after 2015 (look for trends, see what
to do to improve the number of reservations overtime):

select count(reservation_id) count
from reservations 4 bigint
where check _in >= '2015-01-01"'; 1 6

Total number of employees that have worked over 8 hours (could
be adapted to show overtime pay information):

select count(employee_id)
from timesheet
where total_hours >= '8';

count
4 bigint

Reports:

This report groups together how many reservations are being
booked in each room type. This could show the owners of the hotel
which rooms are in the highest demand, and could lead to changes
within the hotels infrastructure, such as adding more of a certain
room type to the hotel itself.

SELECT rooms.roomtype_id, COUNT(reservations.room_id)
AS Number0fRooms

FROM reservations

LEFT JOIN rooms

ON reservations.room_id = rooms.room_id

GROUP BY roomtype_id;

roomtype_id numberofrooms
4 character (10) bigint

1 type2 2
2 typel 3
3 type3 5

Trigger: maxOccupants
The hotel does not allow more than 6 occupants to a room in one reservation.
Any time that this is entered into the database it is deleted immediately.

The following reservation was attempted to be added. The result is the dataset without rv11.

create or replace function maxOccupants()
returns trigger as
$$
begin
if (NEW.no_of_guests > '6') then
delete from reservations where no_of_guests = NEW.no_of_guests;

end if;

T create trigger maxOccupants
end; after insert on reservations
$$ language plpgsql; for each row

execute procedure maxOccupants();

insert into reservations
values ('rvil', 'rm3', '2014-06-19', '2014-06-22','9', true)ﬂ

8 rv8 rm1l 2015-09-... 2015-09-07 4 true
9 o rm3 2011-03-.. 2011-03-18 3 false
2014-06-... 2014-06-22 5

rmeé true

Trigger: getAge

The hotel does not want any employees or customers working or booking
reservations under the age of 18 for liability reasons. Customers and
employees are deleted from the database if this is the case.

create or replace function getAge()
returns trigger as
$$
begin
if (NEW.birthday > '2000-12-12') then
delete from people where birthday = NEW.birthday;

end if;

return new; create trigger getAge
end; after insert on people
$$ language plpgsql; for each row

execute procedure getAge();

insert into people
values ('pl2','Noah','Fay','12 Weirdo Street', 'New York', '11947', '2001-04-08', '4587937909', 'noah.fay@gmail.com');

pid first_name last_name street_address state zipcode birthday contact_number email_addres
4 character (5) text text text text integer date text text

1 p1 Jason Haley 13 School Street New ... 11946 1978-11.. 4587390869 jason.haley@g.
2 p2 Scott Fritsch 10 Emerson Co... New ... 11946 1989-06.. 1234567890 scott.fritsch@g
3 p3 Jami Domenico 15 Maple Court New ... 18977 1997-04.. 6312546789 Jjami.domenico.
4 p4 Alan Laboseur 255 Honey Drive New ... 12601 1985-09.. 1118675301 alan.lab@coolg
5 p5 Jack Heuber 123 Talk Road New ... 12445 1998-10.. 1345879978 talkingguy@tal
6 p6 Dave Connelly 15 Bae Court Rhod... 12366 1997-11.. 1879087890 jefferyjeffery@
7 p7 Taylor Connelly 17 Harbor Road River... 14577 1997-11... 6316805787 taylor.kathryn..
8 p8 John Sasso 40 Bestfriend L.. New ... 12889 1997-12.. 2267897765 john.sasso@be
9 p9 Shannon Cover 33 Oak Ave New ... 89059 1990-06.. 0987654321 shannon.cover.

10 p1l0 Sreya Sobti 1334 Linda Lane Penn... 37890 1995-10.. 7778987654 sreyasobti@ind

Security:

create role admin;
grant all on

all tables

in schema public
to admin;

CREATE ROLE hotel_manager;
GRANT SELECT, INSERT, UPDATE
ON ALL TABLES IN SCHEMA PUBLIC
TO hotel_manager;

CREATE ROLE front_desk;
GRANT SELECT, INSERT, UPDATE
ON reservations, customer

T0 front_desk;

CREATE ROLE housekeepers;
GRANT SELECT ON room_status, rooms
TO housekeepers;

Admin: This is either the owner of the business,
or a person who would need access to everything
within the database.

Hotel Manager: The Hotel Manager has much
access to the database, as they need to be able to
add all types of data into the database.

Front Desk: The Front Desk needs to be able to
access the reservations and customer database,
and book the reservations.

Housekeepers: These employees have the least
amount of access to the database. They just need
to know which rooms need to be cleaned.

Known Problems/Future Enhancements:

J

The sample data for the purposes of this project are limited.
Much more data is needed in each of the tables for a thorough
understanding of the scope of this database. Since | used a lot
of tables, there was a plethora of information that needed to be
added to make the database sufficient.

| redid my entire ER diagram after | realized that | had repeats
of different keys within tables that did not even connect.

| had a lot of trouble joining tables because many tables have to
dig deeper to get certain information (for example, the first and
last name) since only one table holds that information.

| had some issues with the foreign keys and primary keys with
some of my tables. The tables have to be inserted in the order |
submitted in my .sql code.

The miscellaneous_charges_add table does not really have a
primary key, but | did not know how else to work this.

While naming the different IDs, | realized that | was running out
of ideas for different number patterns for IDs. If | were to redo
this, | would make sure that none of the IDs were without a
letter in front. To redo that now would be extremely time
consuming and | have internetworking. RIP.

