DATABAS]
OF

ICE AND FIRE

DESIGNED BY LIAM HARWOOD

Liam Harwood

Liam Harwood

TABLE OF CONTENTS:

EXE@CUTIVE SUMIMAIYottt ettt ee e st aee e saebeesesbeaeesbaaesen sasaaesensebeesesnsesen sasaeesensnnnes 3
Entity Relationship DIagrami................oo oottt e e e e se e e saeeeneesaneee 4
TADBIES....ceeee ettt ettt et b eae et ee s be s et e b eae et e esben e et et she et et eesbens 5
VWS, ettt et sttt sttt e et te e et e sbe et sae et ben she e ea e Saefeaae eateea b et ben sheees st shetea e st eeneeennes 14
Reports and INteresting QUETIES............cooviiiiiiie et e s s ae et e sae e eaaeesaneeseesanes 18
STOrEA PrOCEAUIES.........ceeeeee ettt ettt et et st s ae ettt s e s et st sae et et aesben et see saeeneennes 20
LI T4 ==L ST 23
=T ol ¥) o 2RO OO RUPPTSPR 25
IMPIEMENTATION NOTES...... .o ettt ae e et be e eaebeeebbeessbeessaeesasaeesasaeesenn 27
Known Problems / FUtUIE ENNANCEMENTES...........oooeieeeii ettt ettt et eae et essaeseaaessresennessneas 28

Q Liam Harwood

EXECUTIVE SUMMARY

This document outlines the design and implementation of a database which holds
up-to-date historical data on the people, houses, and conflicts of Westeros. First, the ER
diagram of the database will be presented, followed by a description of each table and
its SQL create statements. Sample data for each table will also be shown. Next, the
views, reports, stored procedures, and triggers implemented in this database will be
discussed, along with sample output. Then, there will be a description of all roles and
security privileges suggested for this database. Finally, notes on the implementation will
be given, followed by known issues and ideas for future improvement.

This implementation is intended to be used by the maesters of the Citadel for the
purpose of furthering the documentation and analysis of Westerosi history. This
database will allow for easier keeping of records concerning the people, places, and
events of Westeros. Maesters will be able to gain useful information from queries that
will provide interesting and valuable historical data. The goal of this database
implementation is to provide the Citadel with a functional, normalized database that
will make the process of keeping track of historical events (past, present, and future)
easier and more efficient.

Liam Harwood
NightsWatchMen Knights
ER DIAGRAM [*=[= HO—po— [P [
job type
pid Allegiance
Ki
“'_?S <} Pk, FK1 |pid
PK.FK pid HO—id FK, FK2 |hid
litle type
reignsiartyear
I‘E'EHEI'II:I:'IE‘N pid A
L —
hd
People
PE | pid] 4
AT name a
PK., FE | pid it gender ouses
P [name birthyear PK |hid
deathyear name
'I' wards —
picl -I- pid | coatofarms
/L FE1 |seatid
Foughtin Fk2 |lordid
—&] PK. FKL [bio Castles j—
. [
PK, FK2 |pid PK Jeid } cid hid
FKa |fid name
fid died i
bid L'F
+ Regions Alliedwith
. PE |rid PE.FKL1 [hid
ricl=—f— m \ i
PK [bid name PKFKZ |fid
FKL Jwid description N7
FK2 |rid
name
Combatants
wid
bid—] PK, FK1 | bid
'|' PK, FK2 |fid e fid | Factions ficl
Wars wonbattie PE |fid
PK |wad FEK |[wad I
name } il < name
startyear Waonwar
endyear -+
4

Liam Harwood
People: The people table contains all people and their basic attributes, which are shared
with the subtypes Kings, Knights, and Night’s Watchmen.
create table Feople (pid name gender birthyear deathyear
pid integer not null, integer | text character(1) integer | integer
1 Eddard Stark m 263 2939
name text not null, 2 Robb Stark m 283 299
gender char (1) not null check(gender='m' or gender='f'), 3|Catelyn Stark £ 264 299
4 3ansa Stark f 286
birthyear integer not null, s|arya Stark £ 289
deathyear integer, & Euron Greyjoy m 287
7|Iyrion Lannister m 273
primary key(pid) g Tywin Lannister |m 242 300
) ; 9 Jaime Lannister m 266
10|Cerzei Lannister f 266
Functional Dependencies: 11 Dacnerys Targaryen f 284
Z Robert Baratheon |m 262 298
. H 13|5tannis Baratheon m 264
pid 2 name, gender, birthyear, deathyear 14|dotfrey Barathoon |m e 200
15|Jon Snow m 283
16|Dawvos Seaworth m 260
17|Brienne of Tarth f 280
18 Samwell Tarly m 283
19(0keryn Martell m 257 300
20|Doran Martell m 247
21 Theon Greyjov m 278
22 Balon Grejoy m 250 2939
23|Tommen Baratheon |m 291
24 Edmure Tully m 270
Sample Data 1: People
5

Liam Harwood

Kings: Subtype of People. Contains all people that are kings and basic information about
their reign.

create table Kings (

pid integer not null references People (pid),
title text not null, pid title reignstartyear| reignendyear
integer | text integer integer
reignstartyear integer not null, 2 The Hing in the North 299 299
: : &|Iron King of the Isles and the North
reignendyear integer, . - .
12 |Eing of the Andals, the Ehoynar and the First Men 283 298
primary key(pid) 13|The King in the Narrow Sea
14 |King of the Andals, the Bhoynar and the First Men
); 22|Irocn King of the Isles and the Horth 2949 299
23|King of the Andals, the Bhoynar and the First Men
Functional Dependencies: Somple Data 2: Kings

pid - title, reignstartyear, reignendyear

Knights: Subtype of People. Contains all people that are knights and the type of knight
that each person is.

create table Knights (FH type
pid integer not null references People (pid), Wieger| text
9|Kingsguard
type text, 12|Landed knight
primary key (pid) 16 Landed knight
19 Landed knight
); 24 Landed knight
Functional Dependencies: Sample Data 3: Knights

pid =2 type

Liam Harwood

Night’s Watchmen: Subtype of People. Contains all people that are members of the
Night’s Watch as well as their job in the Watch.

create table NightsWatchMen (. .
pid job
pid integer not null references People(pid), integer text

))))) 15|steward
job text check (job="'ranger' or job='steward' or job='builder'),

18 steward

primary key(pid) Sample Data 4:

) ; Night's Watchmen
Functional Dependencies:
pid = job

Aliases: Contains any aliases, nicknames, or assumed identities that people have used.

create table Aliases (::'::Eger :;:tne
pid integer not null references People (pid), 2/The Young Wolf
3 Lady Stoneheart
name text not null, 4|Alayne Stone
)) 5|\ Arry
primary key(pid, name) 5 |Mymeria
) ; 5 Cat of the Canals
&|Crow"s Eye
. . 7 The Imp
Functional Dependencies: 7 Halfnan

7/¥ollo
(pid name) 9 9| Kingslayer
’ 11 Stormborn
11 |Mother of Dragons
12|The Usurper
15|99&8th Lord Commander of the Night's Watch
16|0nion Enight
17 The Maid of Tarth
17|Brienne the Beauty
158|Sam the Slayer
19|The Red Viper
21 Reek

Sample Data 5: Aliases 7

Liam Harwood

Regions: Contains the different geographic regions of Westeros.

create table Regions (rid name description
integer text text
rid integer not null, The North Cold and snowy
name text not null, Iron Islands Cold and salty
Riverlands Wet and soggay
description text not null, The Vale High and hilly

primary key(rid)
Crownlands Flat and kingy

The Eeach West and flowery
Stormlands Harsh and stormy

1
2
3
4
5 Westerlands Flat and Lannistery
3
) ; 7
9
1]

Functional Dependencies: 10 Dorne Hot and sandy
11 The Wall Cold and spooky
rid =2 name, description Sample Data 6: Regions

Castles: Contains the different castles and strongholds as well as their locations.

create table Castles (

cid integer not null, Fid LolL= .“d
integer | text integer
name text not null, 1|Winterfell 1
rid integer not null references Regions (rid), 2 Casterly Rock 3
primary key (cid) 3|Dragonstone 9
4 | Eyke 2
) 5 Sunspear 140
. . 6|Riverrun 3
Functional Dependencies: 7|Harrenhal 3
& Castle Black 11
cid =2 name, rid 9 Surmerhall 3
10/ Red Eeep &

Sample Data 7: Castles

Liam Harwood

Houses: Contains the Great Houses (families) of Westeros as well as basic information
about each house. (Note: “seatid” is a foreign key referencing the ID of the current
castle where the house is based and “lordid” is a foreign key referencing the ID of the
person who is currently the lord of the house.)

create table Houses (

hid integer not null,
name text not null,
words text,

coatofarms text,

seatid integer references Castles(cid),
lordid integer references People (pid),
primary key(hid)

) ;

Functional Dependencies:

Hid = name, words, coatofarms, seatid, lordid

hid name words coatofarms seatid | lordid

integer text text text integer integer
1 Stark Winter is Coming Direwolf 1
2 Lannister Hear Me Roar Lion 2 14
3|Baratheon of Dragonstone Ours i= the Fury Flaming 3tag 3 13
4|Greyjoy We Do Mot Sow Kraken 4 [
5 Martell Unbowed, Unbent, Unbroken|Sun and spear 5 20
&|Tully Family, Duty, Honor Trout 3] 24
7|Targaryen Fire and Blood Dragon 11
2|Baratheon of King's Landing Ours is the Fury Stag and lion 10 23

Sample Data 8: Houses

Liam Harwood

Allegiance: Contains the current allegiances of each person, i.e. the houses that they are
loyal to, as well as the nature of this allegiance (familial, marital, or sworn vow).

create table Allegiance (o W |ty
pi pe
integer integer text

pid integer not null references People (pid), 1 familial
1 familial

hid integer not null references Houses (hid), 3 1 marital
4 1 familial
type text check (type='marital' or type='familial' or type='sworn'), 1/familial
15 1/familial

primary key(pid, hid) 7 1 aworn

2|familial

) 8 2| familial
k] 2 familial
. . 10 2|familial
Functional Dependencies: 1 2femlia)
23 2 familial
13 3 familial
(pid, hid) = type R
21 4 familial
. . 22 4| familial
Wars: Contains different wars that have happened or are currently o] Slemmsiiny
20 5 familial
happening, as well as some basic information about each war. 3 G faniii
24 6 familial
create table Wars (11 7 familial
10 8 marital
wid integer not null, 12 8| familial
14 g familial
name text not null, 23 8 familial
startyear integer not null, Sample Data 9:
Allegiance
endyear integer,
primary key(wid) wid name startyear| endyear
) s integer text integer integer
’ 1 War of the Fiwe Kings 298 300
Functional DependenCieS: 2 Rokert's Rebellion 282 283
3|Conflict Beyond the Wall 296
4|War of the Ninepenny Kings 260 2a0

wid = name, startyear, endyear

Sample Data 10: Wars

10

Liam Harwood

Factions: Contains the factions that were in conflict in each war as well as basic

information about each faction. (Note: “wonwar” is true if the faction won the war, false

if the faction lost the war, and null if the war is ongoing.)

create table Factions (fid wid name wonwar

integer | integer| text boolean

fid integer not null, 1 3|The Night's Watch

2 3 Wildlings
wid integer not null references Wars (wid), 3 2 The Others
name text not null, 4 2 Rebels

3 2 Royalists
wonwar boolean, & 1 The King on the Iron Throne

)

1|The King in the North and the Trident

L T R (R R TR S o (R

primary key(fid) 8 1 The King in the Narrow Sea
9 1 The Hing in Highgarden
)i 10 1|The King of the Isles and the North
. . 11 4|Seven Kingdoms
Functional Dependencies: 12 43and of Nine

Sample Data 11: Factions

fid 2 wid, name, wonwar

AlliedWith: Contains the factions that each house was allied with in the different wars.

create table AlliedWith (:'“‘:eger ::"teger

hid integer not null references Houses (hid), 3 i

1 4

fid integer not null references Factions (fid), . 1

4 4

primary key(hid, fid) 5 4
7 5

); 5 5
2 &

[5

Functional Dependencies:
(hid, fid) 2>

1
[3
3 8
4 10
11

Sample Data 12:
AlliedWith

11

Liam Harwood

Battles: Contains the battles that were fought during the different wars as well as basic

information about each battle. e R a—
integer | integer | integer text
create table Battles (1 1 3|/Battle Near the Golden Tooth
2 1 3|Battle Near Riverrun
bid integer not null, 3 1 3 Battle on the Green Fork
4 1 3 Battle in the Whispering Wood
wid integer not null references Wars (wid), 5 1 3/Battle of the Camps
. . . . & 1 1 Battle at Winterfell
rid integer not null references Regions(rid), 7 1 5 Battle of Oxcross
11 g 1 9 5iege of Storm's End
name text not nu ’ 9 1 & Battle of the Blackwater
. . 10 1 3 The Red Wedding
rimary key(bid
p y y() 11 2 3|Battle of the Trident
) . 12 2 & Sack of King's Landing
! 13 2 10 Tower of Joy
. . 14 3 11|Fight at the Fist
Functional Dependencies: 15| 3 11Bastle of Castle Black

Sample Data 13: Battles

bid 2 wid, rid, name

Combatants: Contains the factions that fought in each battle as well as whether or not

bid fid wonbattle 8)
they won the battle. e O O el ol
1 6t - -
create table Combatants (1 -t 9 8 £
- g it
bid integer not null references Battles(bid), i fE 10 7 £
& (k3
]
fid integer not null references Factions (fid), 3 6t il jz
3 7
wonbattle boolean, 1 5l 11 5f
P 7l 12 4t
primary key(bid, fid) p ot 12 Sl
) ; 5 7t 13 it
! P £t 13 5f
. . 5 7£ 14 1f
Functional Dependencies: s 10: st
7 af 15 1t
7 7t 15 2|

(bid, fid) 2 wonbattle

Sample Data 14: Combatants

12

Liam Harwood

Foughtln: Contains the people that fought in each battle as well as the faction they
fought for and whether or not they died at that battle.

create table FoughtIn (
bid pid fid died

bid integer not null references Battles (bid), integer | integer| integer| boolean
1 9 &
pid integer not null references People(pid), 2 a 6
fid integer not null references Factions(fid), j 2: ; i
died boolean not null, 4 2 TE
4 9 6 f
primary key(pid, bid) 5 2 7£
[21 10/f
)i 7 2 7£
2 13 8|f
Functional Dependencies: ? 6 A
3 16 8|f
(pid, bid) = fid, died 2 1 ez
3 8 &
10 2 7|t
10 3 7t
10 24 7\
11 1 4|f
11 12 4|f
12 8 4|f
12 g 4|f
12 1 4|f
13 1 4|f
14 15 1£
14 8 1
15 15 1
15 8 1
15 13 1
15 18 1

Sample Data 15: Foughtin

13

Liam Harwood

VIEWS

LivingKings: Lists the names and titles of all living, reigning kings

create view LivingKings as
select name, title
from people p inner join kings k on p.pid = k.pid
where deathyear is null
and reignendyear is null

order by name asc;

name title
text text
Euron Greyjoy Ircn Eing of the Isles and the North

Tommen Baratheon King of the Andals, the Bhovnar and the First Men

Sample Output 1: LivingKings

14

Liam Harwood

BattleExperience: Lists the names of all people along with the wars they fought in, each
battle they fought in for each war, and the side they were on for each battle

create view BattleExperience
select p.name as person,

from

inner join factions fa on fi.fid

inner join
inner join

order by person asc;

Sample Output 2: BattleExperience

as

battles

wars

person
text

Catelyn Stark
Davos Seaworth
Davos Seaworth
Davos Seaworth
Eddard Stark
Eddard Stark
Eddard Stark
Edmure Tully
Edmure Tully
Jaime Lannister
Jaime Lannister
Jaime Lannister
Jaime Lannister
Jon Snow

Jon Snow

Robk Stark

Robb Stark

Robb Stark

Robb Stark
Robert Baratheon
Samwell Tarly
Samwell Tarly
Stannis Baratheo
Stannis Baratheo
Stannis Baratheo
Theon Greyjoy
Tyrion Lannister
TIywin Lannister
Tywin Lanniater
Iywin Lannister

w.name as war,

people p inner join foughtin fi on p.pid

b

W

n
n
n

b.name as battle,

= fi.pid
= fa.fid

on fi.bid = b.bid

on b.wid = w.wid
war battle
text text
War of the Fiwve Kings The Red Wedding
War of the Five Kings Siege of Storm's End
War of the Fiwve Kings Battle of the Blackwater
Conflict Beyond the Wall Battle of Castle Black

Robert's Rebellion
Robert's Rebellion
Robert's Rebellion

War of the Fiwve Kings
War of the Fiwve Hings
War of the Fiwve Kings
War of the Fiwve Kings
War of the Fiwve Kings
Robert's Rebellion
Conflict Beyond the Wall
Confliet Beyond the Wall

War of the Five Kings
War of the Fiwve Kings
War of the Fiwve Kings
War of the Fiwve Kings

Robert's Rebellion
Conflict Beyond the Wall
Conflict Beyond the Wall

Conflict Beyond the Wall

War of the Fiwve Kings
War of the Fiwve Kings
War of the Fiwve Kings
War of the Fiwve Kings
War of the Fiwve Hings

Robert's Rebellion
War of the Fiwve Kings

Tower of Joy

Sack of King's Landing
Battle of the Trident
Battle Near Riverrun
The Red Wedding

Battle Near the Golden Tooth

EBattle Near Riverrun

Battle in the Whispering Wood

Sack of Hing's Landing
Battle of Castle Black
Fight at the Fist

The Red Wedding

Battle in the Whispering Wood
Battle of Oxcross

Battle of the Camps

Battle of the Trident

Battle of Castle Black

Fight at the Fist

Battle of Castle Black
Siege of Storm's End
Battle of the Blackwater
Battle at
Battle of
Battle on

Winterfell

the Blackwater
the Green Fork
Sack of Hing's Landing
Battle of the Blackwater

faction
text

The
The

King in
King in
The King in
The Night's
Rebels

Rebels

Rebels

The
The
The

King in
King
Hing
The King
The HKing
Rebels

The Night's
The Night's
The King
The HKing
The Hing
The Hing
Rebels

The Night's
The Night's
The Night's
The Hing
The King
The HKing
The Hing
The Hing
Rebels

The King

in
on
on
on

in
in
in
in

in
in

ol

fa.name as faction

the
the
the

Horth and the
Narrow Sea
Narrow Sea

Watch

the
the
the
the
the

North and the
Horth and the
Iron Throne
Ircon Throne
Iron Throne

Watch
Watch

the
the
the
the

Horth
North
Horth
Horth

and the
and the
and the
and the

Watch
Watch
Watch

the
the
the
the
the

the

Harrow Sea
Harrow Sea
Isles and the
Iron Throne
Iron Throne

Ircon Throne

Irident

Trident
Irident

Trident
Trident
Trident
Irident

North

15

Liam Harwood

HouseWarHistory: Lists the names of all houses along with the wars they were a part of
and the faction they allied with for each war

create view HouseWarHistory as

select h.name as house, w.name as war, f.name as faction

from houses h inner join alliedwith a on h.hid = a.hid
inner join factions f on a.fid = f.fid
inner join wars w on f.wid = w.wid
order by house asc;
house war faction
text text text
Baratheon of Dragonstone Conflict Beyond the Wall The Hight's Watch
Baratheon of Dragonstone War of the Five Kings The King in the Narrow Sea
Baratheon of King's Landing War of the Fiwve Kings The King on the Iron Throne
Baratheon of King's Landing Robert's Rebellicon Bebkels
Greyjoy Robert's Rebellion Eebels
Greyjoy War of the Five Kings The King of the Islesz and the HNorth
Lannister Robert's Bekellion Bebels
Lannister War of the Five Kings The King on the Iron Throne
Martell Robert's Rebellion Boyalists
Stark War of the Five Kings The King in the MNorth and the Trident
Stark Robert's Bekellion Bebels
Targaryen RBobkert's Rebellicon Boyalists
Targaryen War of the Hinepenny Kings|Seven Kingdoms
Tully War of the Five Kings The King in the MNorth and the Trident
Tully Robert's Rebellion Bebels

Sample Output 3: HouseWarHistory

16

Liam Harwood

Fealty: Lists each living person who swears fealty to a lord as well as that lord’s name

create view Fealty as

select pl.name as person, p2.name as lord

from people pl inner join allegiance a on pl.pid = a.pid
inner join houses h on a.hid = h.hid
inner join people p2 on h.lordid = p2.pid
where pl.pid !'= p2.pid

and pl.deathyear is null

order by lord asc;

peErson lord
text text

Jaime Lannister |Cersei Lannister
Tommen Baratheon Cersei Lannister
Tyrion Lannister |Cersei Lannister
Brienne of Tarth|Edmure Tully

Theon Grey]joy Euron Grey]joy

Davos Seawocrth Stannis Baratheon
Cersel Lannister |Tommen Barathecon

Sample Output 4: Fealty

17

Liam Harwood

1. Query to return the number of wars won by each house

house Warswon

select h.name as house, count(h.hid) as warsWon text bigint
from houses h inner join alliedwith a on h.hid = a.hid Lannister i
inner jOil’l factions f on a.fid = f.fid Baratheon of King's Landing 2
where f.wonwar = true Tully 1
group by h.name Stark 1
order by warsWon desc; Greyijoy 1
Targaryen 1

Sample Output 5

2. Query to return the length in years of each king’s reign

select p.name,
case when coalesce((k.reignendyear - k.reignstartyear), (300 - reignstartyear)) = 0
then 1
else coalesce((k.reignendyear - k.reignstartyear), (300 - reignstartyear))
end as reignlengthyears
from people p inner join kings k on p.pid = k.pid
order by reignlengthyears desc;

name reignlengthyears
text integer
Rokert Baratheon 15

Joffrey Baratheon
Stannis Baratheon
Robk Stark

Balon Grejoy
Tommen Baratheon

R =R L]

Euron Greyjoy

Sample Output 6

18

Liam Harwood
3. Query to return the allegiance of each person as well as their assumed aliases
select p.name, coalesce(al.name, '(no aliases)') as alias, h.name
from people p left outer join aliases al on p.pid = al.pid
inner join allegiance a2 on p.pid = a2.pid
inner join houses h on a2.hid = h.hid

order by p.name;

name alias name

text text text

Lrya Stark Cat of the Canals Stark

Arya Stark Lrry Stark

Arya Stark Hymeria Stark

Balon Grejoy (no aliases) Greyjoy

Brienne of Tarth |Brienne the Beauty Stark

Brienne of Tarth The Maid of Tarth Tully

Brienne of Tarth The Maid of Tarth Stark

Brienne of Tarth |Brienns the Beauty Tully

Catelyn Stark Lady Stoneheart Stark

Catelyn Stark Lady Stoneheart Tully

Cersei Lannister {no aliases) Lannister

Cersei Lannister {no aliases) Baratheon of King's Landing

Daenerys Targaryen Mother of Dragons Targaryen

Daenerys Targaryen Stormborn Targaryen

Davos Seaworth Oniocn Enight Baratheon of Dragonstone

Doran Martell (no aliases) Martell

Eddard Stark (no aliases) Stark

Edmure Tully {no aliases) Tully

Euron Greyjoy Crow's Eye Greyjoy

Jaime Lannister Kingslayer Lannister

Joffrey Baratheon |(no aliases) Baratheon of King's Landing

Joffrey Baratheon |(no aliases) Lannister

Jon Snow 998th Lord Commander of the Night's Watch | Stark

Oberyn Martell The Red Viper Martell

Rokk Stark The Young Wolf Stark

Rokert Barathecon The Usurper Barathecn of KEing's Landing

Sansa Stark Llayne Stone Stark

Stannis Baratheon @ (no aliases) Baratheon of Dragonstone

Theon Greyjow Reek Greyijoy

Tommen Baratheon {no aliases) Baratheon of Hing's Landing

Tommen Baratheon {no aliases) Lannister

Iyricn Lannister The Imp Lannister

Iyricn Lannister Halfman Lannister

Tyricn Lannister Yollo Lannister

Tywin Lannister (no aliases) Lannister

Sample Output 7
19

Liam Harwood

@ STORED PROCEDURES

percentBattlesWon: Takes a faction name as an argument and returns the percentage
of battles that faction won and whether or not they won the war.

create or replace function percentBattlesWon (factionName text)
returns table(percent won numeric, wonwar boolean) as $$
begin
return query select trunc (
(cast (
(select count(c.fid) as battleswon

from combatants c¢ inner join factions f on c.fid = f.fid

inner join wars w on w.wid = f.wid
where f.name = factionName
and c.wonbattle = true

) as decimal (5,2))
/
(select count(c.fid) as battlesfought

from combatants c¢ inner join factions f on c.fid = f.fid

inner join wars w on w.wid = f.wid
where f.name = factionName
) * 100) , 2 select percentBattlesWon('The King in the Horth and the Trident'):
) as percent won, factions.wonwar pEI‘CEIItb.HttIEEWﬂII
record
from factions
37.50,£
where name = factionName; { d
end; $$ language plpgsql; Sample Output 8:

percentBattlesWon

20

Liam Harwood

endWar: Returns a trigger that sets the endyear for a war to the current year if a faction
is updated to have won the war and the war is not over (See Triggers, p.23)

create or replace function endWar () returns trigger as
$9

declare

-—- Unfortunately, the Westerosi calendar is not supported by Postgres, necessitating the following

-- variable:

currentYear integer := 300;
begin

if new.wonwar = true

and (select endyear

from wars

where wid = new.wid) is null
then

update Wars

set endyear = currentYear
where wid = new.wid;
end if;

return new;
end;
$S
language plpgsqgl;

21

Liam Harwood

endReign: Returns a trigger that sets the endreignyear of a king to their death year if
they are updated to have died and their reign is not currently over (See Triggers, p.24)

create or replace function endReign () returns trigger as
$S
begin
if new.deathyear is not null
and (select reignendyear
from kings
where pid = new.pid) is null
then
update kings
set reignendyear = new.deathyear
where pid = new.pid;
end if;
return new;
end;
$S
language plpgsqgl;

22

- TRIGGERS

Stored Procedures, p.21)

create trigger endWar
after update on Factions
for each row

execute procedure endWar () ;

Before Update

Liam Harwood

> endWar: After updating the Factions table, executes the endWar() procedure (See

After Update

fid wid name wonwar fid wid name wonwar
integer | integer| text boolean integer | integer| text boolean
1 3 The Night's Watch 1 3 The Night's Watch|t
wid name startyear endyear wid name startyear| endyear
integer | text integer | integer integer text integer | integer
3/ Conflict Beyond the Wall 294 3 Conflict Beyond the Wall 298 300

Sample Output 9: endWar

23

Liam Harwood

endReign: After updating the People table, executes the endReign() procedure (See

Stored Procedures, p.22)

create trigger endReign
after update on People
for each row

execute procedure endReign();

Before Update

pid name gender

birthyear deathyear

integer | text character{1) integer |integer

6|Euron Greyjoy m

267

pid title reignstartyear reignendyear
integer | text integer integer
6|Iron King of the Isles and the North 2949
After Update
pid name gender birthyear deathyear
integer| text character(1)|integer |integer
6 Euron Greyjoy m 267 300
pid title reignstartyear| reignendyear
integer text integer integer
6|Iron King of the Isles and the North 299 300

Sample Output 10: endReign

24

) SECURITY

Administrator Role: Represents the database administrator who has full access

create role admin;

grant all on all tables in schema public to admin;

Liam Harwood

Maester Role: Represents the maesters who work at the Citadel who need to access

and change records for their studies and for archival purposes

create role maesters;

revoke all on all tables in schema public from maesters;

grant select on all tables in schema public to maesters;

grant insert on people, kings, nightswatchmen, knights,
aliases, houses, allegiance, foughtin,
battles, wars, combatants, factions,
alliedwith

to maesters;

grant update on people, kings, nightswatchmen, knights,
aliases, houses, allegiance, foughtin,
battles, wars, combatants, factions,
alliedwith

to maesters;

25

Liam Harwood

Visitor Role: Represents an outside visitor to the Citadel who needs to access data but is
not allowed to change anything

create role visitors;

revoke all on all tables in schema public from visitors;

grant select on people, kings, nightswatchmen, knights,
houses, castles, regions, foughtin,
battles, wars, combatants, factions,
alliedwith

to visitors;

26

Liam Harwood

IMPLEMENTATION NOTES

® Postgres does not support the Westerosi calendar including years and dates. For
this reason, years are stored as integers and the current year is manually entered
when necessary.

® |n all instances when definitive historical data is not yet available, the value is left
as null. For instance, ongoing wars have a null endyear and living people have a null
deathyear.

® All names of people, houses, wars, factions, battles, etc. do not have to be unique.
For instance, a house could splinter into warring factions but maintain the same
name in both separate houses. For this reason and similar others, names are not
used as primary keys in any tables.

® For those not acquainted with Westerosi culture, a “maester” is a scholarly
individual comparable to a teacher, doctor, or other learned person. They study at
the Citadel and are often assigned to houses to serve as advisors and doctors.

27

Liam Harwood

KNOWN PROBLEMS / FUTURE ENHANCEMENTS

® Due to the date problem described in Implementation Notes, the current year will
have to be updated in the database each year.

® \With the current implementation, it is difficult to tell exactly who is related to
whom. One can see which people have familial allegiance to the same house, but
even then it will not count people who have married into that house. Thus, a future
version could improve on the current implementation by taking into account family
trees and creating a hierarchy of sorts.

® There are many more tables that could be implemented in future versions of the
database. For instance, there could be a “Groups” or “Organizations” table which
has subtypes such as “Houses”, “Mercenaries”, or “Religions”. This would allow a
greater level of detail showing different people’s allegiances to groups other than
just Houses.

28

