

Liam Harwood

1

Liam Harwood

2

Table of Contents:

Executive Summary……3

Entity Relationship Diagram……………………………………………………………………………………..……………....4

Tables….…….5

Views….………...14

Reports and Interesting Queries….…………………………………………………………………………………………..18

Stored Procedures………...20

Triggers……….…23

Security……….……...25

Implementation Notes…….….27

Known Problems / Future Enhancements…………………………………………………………………………………28

Liam Harwood

3

 Executive Summary

 This document outlines the design and implementation of a database which holds
up-to-date historical data on the people, houses, and conflicts of Westeros. First, the ER
diagram of the database will be presented, followed by a description of each table and
its SQL create statements. Sample data for each table will also be shown. Next, the
views, reports, stored procedures, and triggers implemented in this database will be
discussed, along with sample output. Then, there will be a description of all roles and
security privileges suggested for this database. Finally, notes on the implementation will
be given, followed by known issues and ideas for future improvement.

This implementation is intended to be used by the maesters of the Citadel for the
purpose of furthering the documentation and analysis of Westerosi history. This
database will allow for easier keeping of records concerning the people, places, and
events of Westeros. Maesters will be able to gain useful information from queries that
will provide interesting and valuable historical data. The goal of this database
implementation is to provide the Citadel with a functional, normalized database that
will make the process of keeping track of historical events (past, present, and future)
easier and more efficient.

Liam Harwood

4

ER Diagram

Liam Harwood

5

Sample Data 1: People

 Tables

People: The people table contains all people and their basic attributes, which are shared
with the subtypes Kings, Knights, and Night’s Watchmen.
create table People (

 pid integer not null,

 name text not null,

 gender char(1) not null check(gender='m' or gender='f'),

 birthyear integer not null,

 deathyear integer,

 primary key(pid)

);

Functional Dependencies:

pid  name, gender, birthyear, deathyear

Liam Harwood

6

Sample Data 2: Kings

Sample Data 3: Knights

Kings: Subtype of People. Contains all people that are kings and basic information about
their reign.
create table Kings (

 pid integer not null references People(pid),

 title text not null,

 reignstartyear integer not null,

 reignendyear integer,

 primary key(pid)

);

Functional Dependencies:

pid  title, reignstartyear, reignendyear

Knights: Subtype of People. Contains all people that are knights and the type of knight
that each person is.
create table Knights (

 pid integer not null references People(pid),

 type text,

 primary key(pid)

);

Functional Dependencies:

pid  type

Liam Harwood

7

Sample Data 4:
Night's Watchmen

Sample Data 5: Aliases

Night’s Watchmen: Subtype of People. Contains all people that are members of the
Night’s Watch as well as their job in the Watch.
create table NightsWatchMen (

 pid integer not null references People(pid),

 job text check(job='ranger' or job='steward' or job='builder'),

 primary key(pid)

);

Functional Dependencies:

pid  job

Aliases: Contains any aliases, nicknames, or assumed identities that people have used.
create table Aliases (

 pid integer not null references People(pid),

 name text not null,

 primary key(pid, name)

);

Functional Dependencies:

(pid, name) 

Liam Harwood

8

Sample Data 6: Regions

Sample Data 7: Castles

Regions: Contains the different geographic regions of Westeros.
create table Regions (

 rid integer not null,

 name text not null,

 description text not null,

 primary key(rid)

);

Functional Dependencies:

rid  name, description

Castles: Contains the different castles and strongholds as well as their locations.
create table Castles (

 cid integer not null,

 name text not null,

 rid integer not null references Regions(rid),

 primary key(cid)

);

Functional Dependencies:

cid  name, rid

Liam Harwood

9

Sample Data 8: Houses

Houses: Contains the Great Houses (families) of Westeros as well as basic information
about each house. (Note: “seatid” is a foreign key referencing the ID of the current
castle where the house is based and “lordid” is a foreign key referencing the ID of the
person who is currently the lord of the house.)
create table Houses (

 hid integer not null,

 name text not null,

 words text,

 coatofarms text,

 seatid integer references Castles(cid),

 lordid integer references People(pid),

 primary key(hid)

);

Functional Dependencies:

Hid  name, words, coatofarms, seatid, lordid

Liam Harwood

10

Sample Data 10: Wars

Allegiance: Contains the current allegiances of each person, i.e. the houses that they are
loyal to, as well as the nature of this allegiance (familial, marital, or sworn vow).
create table Allegiance (

 pid integer not null references People(pid),

 hid integer not null references Houses(hid),

 type text check(type='marital' or type='familial' or type='sworn'),

 primary key(pid, hid)

);

Functional Dependencies:

(pid, hid)  type

Wars: Contains different wars that have happened or are currently
happening, as well as some basic information about each war.
create table Wars (

 wid integer not null,

 name text not null,

 startyear integer not null,

 endyear integer,

 primary key(wid)

);

Functional Dependencies:

wid  name, startyear, endyear

Sample Data 9:
Allegiance

Liam Harwood

11

Sample Data 11: Factions

Sample Data 12:
AlliedWith

Factions: Contains the factions that were in conflict in each war as well as basic
information about each faction. (Note: “wonwar” is true if the faction won the war, false
if the faction lost the war, and null if the war is ongoing.)
create table Factions (

 fid integer not null,

 wid integer not null references Wars(wid),

 name text not null,

 wonwar boolean,

 primary key(fid)

);

Functional Dependencies:

fid  wid, name, wonwar

AlliedWith: Contains the factions that each house was allied with in the different wars.
create table AlliedWith (

 hid integer not null references Houses(hid),

 fid integer not null references Factions(fid),

 primary key(hid, fid)

);

Functional Dependencies:

(hid, fid) 

Liam Harwood

12

Sample Data 13: Battles

Sample Data 14: Combatants

Battles: Contains the battles that were fought during the different wars as well as basic
information about each battle.
create table Battles (

 bid integer not null,

 wid integer not null references Wars(wid),

 rid integer not null references Regions(rid),

 name text not null,

 primary key(bid)

);

Functional Dependencies:

bid  wid, rid, name

Combatants: Contains the factions that fought in each battle as well as whether or not
they won the battle.
create table Combatants (

 bid integer not null references Battles(bid),

 fid integer not null references Factions(fid),

 wonbattle boolean,

 primary key(bid, fid)

);

Functional Dependencies:

(bid, fid)  wonbattle

Liam Harwood

13

Sample Data 15: FoughtIn

FoughtIn: Contains the people that fought in each battle as well as the faction they
fought for and whether or not they died at that battle.
create table FoughtIn (

 bid integer not null references Battles(bid),

 pid integer not null references People(pid),

 fid integer not null references Factions(fid),

 died boolean not null,

 primary key(pid, bid)

);

Functional Dependencies:

(pid, bid)  fid, died

Liam Harwood

14

Sample Output 1: LivingKings

 Views

LivingKings: Lists the names and titles of all living, reigning kings
create view LivingKings as

 select name, title

 from people p inner join kings k on p.pid = k.pid

 where deathyear is null

 and reignendyear is null

 order by name asc;

Liam Harwood

15

Sample Output 2: BattleExperience

BattleExperience: Lists the names of all people along with the wars they fought in, each
battle they fought in for each war, and the side they were on for each battle
create view BattleExperience as

 select p.name as person, w.name as war, b.name as battle, fa.name as faction

 from people p inner join foughtin fi on p.pid = fi.pid

 inner join factions fa on fi.fid = fa.fid

 inner join battles b on fi.bid = b.bid

 inner join wars w on b.wid = w.wid

 order by person asc;

Liam Harwood

16

Sample Output 3: HouseWarHistory

HouseWarHistory: Lists the names of all houses along with the wars they were a part of
and the faction they allied with for each war
create view HouseWarHistory as

 select h.name as house, w.name as war, f.name as faction

 from houses h inner join alliedwith a on h.hid = a.hid

 inner join factions f on a.fid = f.fid

 inner join wars w on f.wid = w.wid

 order by house asc;

Liam Harwood

17

Sample Output 4: Fealty

Fealty: Lists each living person who swears fealty to a lord as well as that lord’s name
create view Fealty as

 select p1.name as person, p2.name as lord

 from people p1 inner join allegiance a on p1.pid = a.pid

 inner join houses h on a.hid = h.hid

 inner join people p2 on h.lordid = p2.pid

 where p1.pid != p2.pid

 and p1.deathyear is null

 order by lord asc;

Liam Harwood

18

Sample Output 5

Sample Output 6

 Reports and Interesting Queries

1. Query to return the number of wars won by each house

select h.name as house, count(h.hid) as warsWon

from houses h inner join alliedwith a on h.hid = a.hid

 inner join factions f on a.fid = f.fid

where f.wonwar = true

group by h.name

order by warsWon desc;

2. Query to return the length in years of each king’s reign

select p.name,

 case when coalesce((k.reignendyear - k.reignstartyear), (300 - reignstartyear)) = 0

then 1

 else coalesce((k.reignendyear - k.reignstartyear), (300 - reignstartyear))

 end as reignlengthyears

from people p inner join kings k on p.pid = k.pid

order by reignlengthyears desc;

Liam Harwood

19

Sample Output 7

3. Query to return the allegiance of each person as well as their assumed aliases

select p.name, coalesce(a1.name, '(no aliases)') as alias, h.name

from people p left outer join aliases a1 on p.pid = a1.pid

 inner join allegiance a2 on p.pid = a2.pid

 inner join houses h on a2.hid = h.hid

order by p.name;

Liam Harwood

20

Sample Output 8:
percentBattlesWon

 Stored Procedures

percentBattlesWon: Takes a faction name as an argument and returns the percentage
of battles that faction won and whether or not they won the war.
create or replace function percentBattlesWon(factionName text)

returns table(percent_won numeric, wonwar boolean) as $$

begin

 return query select trunc (

 (cast(

 (select count(c.fid) as battleswon

 from combatants c inner join factions f on c.fid = f.fid

 inner join wars w on w.wid = f.wid

 where f.name = factionName

 and c.wonbattle = true

) as decimal(5,2))

 /

 (select count(c.fid) as battlesfought

 from combatants c inner join factions f on c.fid = f.fid

 inner join wars w on w.wid = f.wid

 where f.name = factionName

) * 100) , 2

) as percent_won, factions.wonwar

 from factions

 where name = factionName;

end; $$ language plpgsql;

Liam Harwood

21

endWar: Returns a trigger that sets the endyear for a war to the current year if a faction
is updated to have won the war and the war is not over (See Triggers, p.23)

create or replace function endWar() returns trigger as

$$

declare

-- Unfortunately, the Westerosi calendar is not supported by Postgres, necessitating the following

-- variable:

 currentYear integer := 300;

begin

 if new.wonwar = true

 and (select endyear

 from wars

 where wid = new.wid) is null

 then

 update Wars

 set endyear = currentYear

 where wid = new.wid;

 end if;

 return new;

end;

$$

language plpgsql;

Liam Harwood

22

endReign: Returns a trigger that sets the endreignyear of a king to their death year if
they are updated to have died and their reign is not currently over (See Triggers, p.24)

create or replace function endReign() returns trigger as

$$

begin

 if new.deathyear is not null

 and (select reignendyear

 from kings

 where pid = new.pid) is null

 then

 update kings

 set reignendyear = new.deathyear

 where pid = new.pid;

 end if;

 return new;

end;

$$

language plpgsql;

Liam Harwood

23

Before Update After Update

Sample Output 9: endWar

 Triggers

endWar: After updating the Factions table, executes the endWar() procedure (See
Stored Procedures, p.21)

create trigger endWar

after update on Factions

for each row

execute procedure endWar();

Liam Harwood

24

Before Update

After Update

Sample Output 10: endReign

endReign: After updating the People table, executes the endReign() procedure (See
Stored Procedures, p.22)

create trigger endReign

after update on People

for each row

execute procedure endReign();

Liam Harwood

25

 Security

Administrator Role: Represents the database administrator who has full access

create role admin;

grant all on all tables in schema public to admin;

Maester Role: Represents the maesters who work at the Citadel who need to access
and change records for their studies and for archival purposes

create role maesters;

revoke all on all tables in schema public from maesters;

grant select on all tables in schema public to maesters;

grant insert on people, kings, nightswatchmen, knights,

 aliases, houses, allegiance, foughtin,

 battles, wars, combatants, factions,

 alliedwith

to maesters;

grant update on people, kings, nightswatchmen, knights,

 aliases, houses, allegiance, foughtin,

 battles, wars, combatants, factions,

 alliedwith

to maesters;

Liam Harwood

26

Visitor Role: Represents an outside visitor to the Citadel who needs to access data but is
not allowed to change anything

create role visitors;

revoke all on all tables in schema public from visitors;

grant select on people, kings, nightswatchmen, knights,

 houses, castles, regions, foughtin,

 battles, wars, combatants, factions,

 alliedwith

to visitors;

Liam Harwood

27

Implementation Notes

 Postgres does not support the Westerosi calendar including years and dates. For
this reason, years are stored as integers and the current year is manually entered
when necessary.

 In all instances when definitive historical data is not yet available, the value is left
as null. For instance, ongoing wars have a null endyear and living people have a null
deathyear.

 All names of people, houses, wars, factions, battles, etc. do not have to be unique.
For instance, a house could splinter into warring factions but maintain the same
name in both separate houses. For this reason and similar others, names are not
used as primary keys in any tables.

 For those not acquainted with Westerosi culture, a “maester” is a scholarly
individual comparable to a teacher, doctor, or other learned person. They study at
the Citadel and are often assigned to houses to serve as advisors and doctors.

Liam Harwood

28

Known Problems / Future Enhancements

 Due to the date problem described in Implementation Notes, the current year will
have to be updated in the database each year.

 With the current implementation, it is difficult to tell exactly who is related to
whom. One can see which people have familial allegiance to the same house, but
even then it will not count people who have married into that house. Thus, a future
version could improve on the current implementation by taking into account family
trees and creating a hierarchy of sorts.

 There are many more tables that could be implemented in future versions of the
database. For instance, there could be a “Groups” or “Organizations” table which
has subtypes such as “Houses”, “Mercenaries”, or “Religions”. This would allow a
greater level of detail showing different people’s allegiances to groups other than
just Houses.

