The Meadows | Marcus Zimmermann

QUEENS - NEW YORK

Database Design Documentation

Marcus Zimmermann

The Meadows | Marcus Zimmermann

EXECULIVE SUMIMIAIY....iiiiiiiieieieeeee ettt ene e s 3
Entity Relationship Diagram..........ccoeveieiiiieiieeeeeeeeee et 4
Create Type Statements... ... s 5
Create Table Statements........oociiii s 6
Create View Statements........ooeoieieeeeee e 22
Reports And Interesting QUETIES.......cuovveeieueieeeieeeeeeeeeeeie et 25
StOred ProCeAUIES........ooieiiiee et 26
TTIGGEIS ettt ettt ettt et sttt et st s e b e b e st ebees et e st eseseseeneesenaeneenas 30
SRCUTIEY ettt ettt sttt b et b et ne e ae e 31
IMplementation NOLES.........cooivieiiieeeeee e 32
Know Problems and Future Enhancements..........ccccooveviiinieeiiecieieees 32

The Meadows | Marcus Zimmermann

The Meadows was a two-day, multistage music and arts festival that
showcased the very best in hip hop, electronic, indie rock, and more. It
featured two impressive lineups, forty artists in total, over the course of a
single weekend (October 1t and October 2"%). Unlike most other music
festivals, The Meadows had four separate concert venues, allowing multiple
artists to perform at the same time. In addition to the many performers,
there was also a huge number of staff, volunteers, and of course,
concertgoers. Needless to say, there were a lot of people...

So, to keep track of everyone at the concert, a large database had to
be designed and implemented, one that kept records of concertgoers,
performers, staff, and volunteers. For performers, set times and venue
assignments had to be defined and potentially manipulated. Similarly, for
staff and volunteers, shift assignements and job assignments had to be
defined and potentially manipulated. Lastly, the databse had to be capable
of supporting certain views, queries, stored procedures, and triggers, each
one providing staff and volunteers with valuable tools and/or important
information that kept the The Meadows running smoothly.

This document outlines the design and implementation of The
Meadows Database. To start, an ER diagram will be shown as a general
overview, followed by create statements for special data types. Then, create
table statements will be shown with sample data given for each one.
Similarly, view definitions, reports and their queries, stored procedures, and
triggers will be shown with sample output given for each one. Lastly,
security priviliges, implementation notes, known problems, and future
enhancements will be shared.

The Meadows | Marcus Zimmermann

Jobs
JID (PK)
Name
Description
= AssignedTo
PID (PKIFK)
JID (PK/FK)
< WorksDuring JobLocations
PID (PK/FK) JID (PK/FK)
SID (PK/FK) VenuelD (PK/FK)
4+ E Shifts +
o Staff SID (PK) Volunteers
PID (PK/FK) Day PID (PK/FK)
HourlyWageUSD StartTime HoursCompleted
EndTime
L'— People
Concertgoer PID (PK) T
PID (PK/FK) HO——}{FirstName Sets Venues
TicketType LastName | SetID (PK) VenuelD (PK)
DOB VenuelD (FK) Name
Day
StartTime
Performer Appearsin EndTime
PID (PK/FK) PID (PK/FK)
StageName SetlD (PK/FK)
PreShowRitual SongsinSet
-+ SonglD (PK/FK)
SetlD (PK/FK)
MemberOf KnowsHowToPlay Songs
PID (PK/FK) PID (PKIFK) SongID (PK)
BID (PK/FK) InstrumentID (PK/FK) SongName
Bands Instruments UsedIn
BID (PK) InstrumentID (PK) InstrumentID (PK/FK)
Name Name SonglD (PK/FK)
YearsTogether

The Meadows | Marcus Zimmermann

dayText: Only Saturday or Sunday can be entered for Day

CREATE TYPE dayText AS ENUM ('Saturday', 'Sunday') ;

TTText: Only certain ticket types can be entered for TicketType

CREATE TYPE TTText AS ENUM ('Saturday GA', 'Sunday GA', '2-Day
GA', 'Saturday VIP', 'Sunday VIP', '2-Day VIP', '2-Day Super
VIP') ;

HCText: Only yes or no can be entered for HoursCompleted

CREATE TYPE HCText AS ENUM ('yes', 'mno') ;

Tables

People: The People table has the following attributes: PID, FirstName, LastName, and
DOB. These attributes are shared with the subtypes Concertgoers, Performers, Staff, and

Volunteers.

The Meadows | Marcus Zimmermann

Functional Dependencies: PID - FirstName, LastName, DOB

CREATE TABLE People (

PID SERIAL NOT NULL PRIMARY KEY,

FirstName TEXT NOT NULL,

LastName TEXT NOT NULL,

DOB DATE NOT NULL

) ;

pid firstname |lastname dob

integer text | text date |
1 1 Marcus Zimmermann 1997-01-26
2 2G Leaden 1887-02-24
3 3 Marcella |Rose 1996-05-29
4 4 Janine Lim 1997-09-11
5 5 Lauren Vecchio 1997-01-02
6 6 Katie Kilkullen 1887-098-03
7 7|Chancellor Bennett 1993-04-16
8 g |Nico Segal 1993-06-25
9 9 Bryson Tiller 1993-01-02
10 10 Austin Post 1995-07-04

The Meadows | Marcus Zimmermann

Concertgoers: Concertgoers are a subtype of People. The Concertgoers table has the
following attributes: PID and TicketType.

Functional Dependencies: PID - TicketType
CREATE TABLE Concertgoers (
PID SERIAL NOT NULL REFERENCES People (PID),

TicketType TTText NOT NULL

pid tickettype
integer tttext

1 Sunday GA

2 Sunday GA

3 Sunday GA

4 Sunday GA

5 Sunday GA

¢ 2-Day Super VIP

s WN =

Performers: Performers are a subtype of People. The Performers table has the following
attributes: PID, StageName, and PreShowRitual.
Functional Dependencies: PID - StageName, PreShowRitual
CREATE TABLE Performers (
PID SERIAL NOT NULL REFERENCES People (PID),
StageName TEXT,

PreShowRitual TEXT

pid stagename preshowritual
integer text text
1 7|Chance The Rapper Eats some Sunday candy
2 8 Donnie Trumpet Talks to his trumpet
3 9 Looks for Waldo amongst all the concertgoers
4 10|/Post Malone Balls like Iverson
5 11 Admires himself in the mirror for ten minutes
6 12 Puts on an entirely plaid outfit
7 13 Tunes his guitar more times than necessary
B 14 Smokes two packs of cigarette
9 15 Walks around aimlessly
10 16 Prays to Codd
11 17 Drazsre t+n CodA

The Meadows | Marcus Zimmermann

Staff: Staff are a subtype of People. The Staff table has the following attributes: PID and
HourlyWageUSD.

: PID > HourlyWageUSD
CREATE TABLE Staff (
PID SERIAL NOT NULL REFERENCES People (PID),

HourlyWageUSD INT NOT NULL

pid hourlywageusd
integer integer

20 10
11
11
11

W N =
ST SN
w N

Volunteers: Volunteers are a subtype of People. The Volunteers table has the following
attributes: PID and HoursCompleted.

: PID - HoursCompleted
CREATE TABLE Volunteers (
PID SERIAL NOT NULL REFERENCES People(PID),

HoursCompleted HCText NOT NULL

pid hourscompleted
integer| hctext

1 24|no
2 25|no
3 26/no

The Meadows | Marcus Zimmermann

Venues: The Meadows featured four separate concert venues, each one capable of
entertaining huge crowds. Their names were The Meadows, Linden Blvd, Queens Blvd,
and Shea. The Venues table has the following attributes: VenuelD and Name.

:VenuelD = Name
CREATE TABLE Venues (
VenueID Serial NOT NULL PRIMARY KEY,

Name TEXT NOT NULL

venueid name
integer text

1 The Meadows
2 Linden Blwvd
3 Queens Blvd
4 Shea

BW N =

Sets: The full line-up at The Meadows included forty separate performances. So, venue
assignments, day assignments, and set times had to be given to each one. The Sets
table has the following attributes: SetID, VenuelD, Day, StartTime, EndTime.
: SetID - VenuelD, Day, StartTime, EndTime
CREATE TABLE Sets (
SetID SERIAL NOT NULL PRIMARY KEY,

VenuelD Serial NOT NULL REFERENCES Venues (VenuelD),

Day dayText NOT NULL,

StartTime TIME NOT NULL,

EndTime TIME NOT NULL

) ;

setid |venueid day starttime endtime

integer integer daytext time without time zone| time without time zone
1 1 1 Saturday 15:00:00 15:45:00
2 2 1 Saturday 20:45:00 22:00:00
5+ 3 2 Sunday 13:15:00 14:00:00
4 4 1 Sunday (15:45:00 16:45:00
5 5 1 Sunday 17:45:00 19:00:00
6] 4 Sunday 19:00:00 20:00:00
7 7 3 Sunday 20:00:00 21:30:00
8 8 1 Sunday 20:15:00 22:00:00

The Meadows | Marcus Zimmermann

Appearsin: To link performers to the sets they appear in, an Appearsin table had to be
created. The Appearslin table has the following attributes: PID and SetID. These two
attributes combine to form a composite key, allowing for a many to many relationship
between People (Performers) and Sets. This is necessary because it is possible for a
performer to be in muliple sets, and a set can have multiple performers.
: SetID - PID

CREATE TABLE AppearsIn (

PID Serial NOT NULL REFERENCES People (PID),

SetID Serial NOT NULL REFERENCES Sets(SetID),

PRIMARY KEY (PID, SetId)

pid setid

integer integer
| 10 1
2 18 2
3 16 3
4 17 3
5 g 4
6 7 5
T 8 5
8 12 6
9 13 6
10 14 6

-
-
n

10

The Meadows | Marcus Zimmermann

Bands: Because many performers perform in a band together, a Bands table was created
to keep track of all bands performing at The Meadows. The Bands table has the
following attributes: BID, Name, and YearsTogether.
: BID = Name, YearsTogether
CREATE TABLE Bands (
BID SERIAL NOT NULL PRIMARY KEY,
Name TEXT NOT NULL,

YearsTogether INT

bid name yearstogether
integer text integer
1 1 The 1975 14
2 2 Chairlift 11

MemberOf: Just like the Appearsin table, the MemberOf table allows for a many to
many relationship between People (Performers) and Bands, as a performer can be a
member of multiple bands, and a band can be comprised of multiple performers. The
Bands table has the following attributes: PID and BID.

: BID = PID
CREATE TABLE MemberOf (
PID Serial NOT NULL REFERENCES People(PID),
BID Serial NOT NULL REFERENCES Bands (BID),

PRIMARY KEY (PID, BID)

pid bid

integer integer
1 12 1
2 13 1
3 14 1
4 15 1
5 1é 2
6 17 2

11

The Meadows | Marcus Zimmermann

Instruments: Many instruments are used in each song, let alone each performance. So,
an Instruments table was created to keep track of each type of instrument onsite during
the two-day music festival. The Instruments table has the following attributes:
InstrumentID and Name.

: InstrumentID > Name
CREATE TABLE Instruments (

InstrumentId Serial NOT NULL PRIMARY KEY,

Name TEXT NOT NULL

instrumentid name
integer text

Trumpet
Guitar

Bass Guitar
4 Drums

s W N e
UL B R PR S R

Piano

12

The Meadows | Marcus Zimmermann

KnowsHowToPlay: The KnowsHowToPlay table allows for a many to many relationship
between People (Performers) and Instruments, as a performer can know how to play
multiple instruments, and an instrument can be played by multiple performers. The
KnowsHowToPlay table has the following attributes: PID and InstrumentID.
: InstrumentID - PID
CREATE TABLE KnowsHowToPlay (
PID Serial NOT NULL REFERENCES People (PID),

InstrumentID Serial NOT NULL REFERENCES
Instruments (InstrumentID),

PRIMARY KEY (PID, InstrumentID)

pid instrumentid

integer integer
1 8 1
2 12 2
3 13 2
4 17 2
5 17 B
6 14 3
7 15 B
8 7 5
9 16 5

13

The Meadows | Marcus Zimmermann

Songs: Many songs are performed in each set. So, a Songs table was created to keep
track of all songs to be performed. The Songs table has the following attributes: SonglD
and SongName.

: SongID - SongName
CREATE TABLE Songs (
SongID Serial NOT NULL PRIMARY KEY,

SongName TEXT NOT NULL

songid songname
integer text

1 White Iverson Intro

2|Too Young

3/Go Flex

4 Hollywood Dreams Come Down
5 Tear$

6 Window Shopper

7 Money Made Me Do It

€ White Iverson

O 0NN A WN -

9 A Tale of 2 Citiez

—
o

10 Fire Squad

anlzs o =

-
-

14

The Meadows | Marcus Zimmermann

UsedIn: The UsedIn table allows for a many to many relationship between Instruments
and Songs, as an instrument can be used in multiple songs, and a song can have
multiple instruments. The UsedIn table has the following attributes: InstrumentID and
SonglID.

: SongID = InstrumentID
CREATE TABLE UsedIn (

InstrumentID Serial NOT NULL REFERENCES
Instruments (InstrumentlID),

SonglD Serial NOT NULL REFERENCES Songs (SonglID),

PRIMARY KEY (InstrumentID, SonglD)

instrumentid songid

integer integer
1 1 50
2 1 51
3 1 68
4 1 69
5 1 70
6 1 71
7 2 74
8 2 75
9 2 76
10 2 78

-
-

-

15

The Meadows | Marcus Zimmermann

SongsInSet: The SongsinSet table allows for a many to many relationship between
Songs and Sets, as an song can be used in multiple sets, and a set can have multiple
songs. The SongsInSet table has the following attributes: SongID and SetID.
: SetID - SongID
CREATE TABLE SongsInSet (
SongID Serial NOT NULL REFERENCES Songs (SongID),
SetID Serial NOT NULL REFERENCES Sets (SetID),

PRIMARY KEY (SonglID, SetID)

songid setid

integer| integer
1 1 1
2 2 1
3 3 1
4 4 1
- 5 1
6 8 1
7 7 1
8 8 1
9 9 2
10 2

10

-
-

16

The Meadows | Marcus Zimmermann

Shifts: Staff and Volunteers are assigned different shifts. More specifcally, they are
assigned an early Saturday shift, a late Saturday shift, an early Sunday shift, and/or a late
Sunday shift. The Shifts table has the following attributes: SID, Day, StartTime, and
EndTime.

: SID - Day, StartTime, EndTime
CREATE TABLE Shifts (
SID Serial NOT NULL PRIMARY KEY,
Day DayText NOT NULL,
StartTime TIME NOT NULL,

EndTime TIME NOT NULL

sid day starttime endtime
integer daytext |time without time zone time without time zone

Saturday 06:00:00 15:00:00
2 Saturday 15:00:00 00:00:00
3 Sunday 06:00:00 15:00:00
4 Sunday 15:00:00 00:00:00

[

- W N -

17

The Meadows | Marcus Zimmermann

WorksDuring: The WorksDuring table allows for a many to many relationship between
People (Staff and Volunteers) and Shifts, as a person can be assigned multiple shifts, and
a shift can be assigned to multiple people. The WorksDuring table has the following
attributes: PID and SID.
:SID - PID

CREATE TABLE WorksDuring (

PID Serial NOT NULL REFERENCES People (PID),

SID Serial NOT NULL REFERENCES Shifts (SID),

PRIMARY KEY (PID, SID)

pid sid
integer integer

(=

]

[

NN R W N e

[T S I S B S T S N R N]
wn w

Ly = = B W M

o

18

The Meadows | Marcus Zimmermann

Jobs: During the early and late shifts of Saturday and Sunday, Staff and Volunteers are
assigned different jobs. The Jobs table has the following attributes: JID, Name,
Description.
Functional Dependencies: JID = Name, Description
CREATE TABLE Jobs (

JID Serial NOT NULL PRIMARY KEY,

Name TEXT NOT NULL,

Description TEXT NOT NULL

jid name description
integer text text
1 1 Water Filling Station Fill the water bottles of thirsty concertgoers
2 2 Catering Serve food to hungry concertgoers
3 3 Trash Keep our venues clean by picking up unwanted litter
4 4 VIP Set-Up and Maintenance Set-up VIP lounges and keep them clean
5 5 Decorations Set up galleries for our sponsored artists and decorate the venues

19

The Meadows | Marcus Zimmermann

AssignedTo: The AssignedTo table allows for a many to many relationship between
People (Staff and Volunteers) and Jobs, as a person can be assigned multiple jobs, and a
job can be assigned to multiple people . The AssignedTo table has the following
attributes: PID and JID.
:JID > PID

CREATE TABLE AssignedTo (

PID Serial NOT NULL REFERENCES People (PID),

JID Serial NOT NULL REFERENCES Jobs (JID),

PRIMARY KEY (PID, JID)

pid jid
integer integer
20

[

o8]

=

N N R W N =

USRS ST S ST S
w ()

MM W e

(=)}

20

The Meadows | Marcus Zimmermann

JobLocations: The JobLocations table allows for a many to many relationship between
Jobs and Venues, as a job can be in multiple venues, and a venue can have multiple jobs
. The JobLocations table has the following attributes: JID and VenuelD.
:VenuelD - JID
CREATE TABLE JobLocations (
JID Serial NOT NULL REFERENCES Jobs (JID),
VenuelD Serial NOT NULL REFERENCES Venues (VenuelD),

PRIMARY KEY (JID, VenuelD)

jid venueid

integer integer
1 1 1
2 1 2
3 1 3
4 1 4
5 2 1
6 2 2
7 2 3
8 2 <
9 3 1
10 3 2

-
-

21

The Meadows | Marcus Zimmermann

ConcertgoerInfo: There are many situations in which it would be benefical for Staff and
Volunteers to have a view of all concertgoer information. Consider the following
examples: a concertgoer who bought a general admission ticket attempts to enter one
of the VIP lounges, a concertgoer tries to pass as 21 to buy alcohol, and a concertgoer
tries to enter The Meadows for a second day despite purchasing only a single day ticket.

CREATE OR REPLACE VIEW ConcertgoerInfo AS
SELECT p.PID, FirstName, LastName, DOB, TicketType

FROM People p INNER JOIN Concertgoers ¢ ON p.PID = c.PID;

pid firstname lastname dob tickettype
integer text text date tttext

1 1 |Marcus Zimmermann 1997-01-2& Sunday GA

2 2 G Leaden 1997-02-24 Sunday GA

3 3 Marcella Rose 1996-05-29 Sunday GA

4 4 Janine Lim 1997-09-11 Sunday GA

5 5|Lauren Vecchio 1997-01-02 Sunday GA

6 6 Katie Kilkullen 1997-09-03 2-Day Super VIP

22

The Meadows | Marcus Zimmermann

PerformerShowtimes: As performers finish their set, it's important to know who is on
stage next. The PerformerShowtimes view allows Staff and Volunteers to view the full

lineup.

CREATE OR REPLACE VIEW PerformerShowtimes AS

SELECT p.PID, FirstName, LastName, Day, Name AS Venue,
StartTime, EndTime
FROM People p INNER JOIN Performers pe ON p.PID = pe.PID
INNER JOIN AppearsIn a ON p.PID = a.PID
INNER JOIN Sets s ON a.SetID = s.5etlID
INNER JOIN Venues v ON s.VenuelD = v.VenuelD;
pid firstname lastname day venue starttime endtime
integer text text daytext text time without time zone time without time zone
1 10 Rustin Post Saturday The Meadows 15:00:00 15:45:00
2 18 |Jermaine Cole Saturday The Meadows 20:45:00 22:00:00
3 16/Caroline Polacheck Sunday |Linden Blvd 13:15:00 14:00:00
4 17 Patrick Wimberly Sunday Linden Blvd 13:15:00 14:00:00
5 9 Bryson Tiller Sunday | The Meadows 15:45:00 16:45:00
6 7 Chancellor Bennett Sunday The Meadows 17:45:00 19:00:00
7 g|Nico Segal Sunday | The Meadows 17:45:00 19:00:00
8 12 Matthew Healy Sunday Shea 19:00:00 20:00:00
> 13 Adam Hann Sunday Shea 19:00:00 20:00:00
10 14 Ross Macdonald Sunday Shea 19:00:00 20:00:00
11 15 fCanraa Nanial Sund=asr Shas 1@-NN-=-NN 20 =NAN=0N

23

The Meadows | Marcus Zimmermann

StaffSchedule: The StaffSchedule view allows staff and volunteers to see what day and
time every staff member is on duty.

CREATE OR REPLACE VIEW StaffSchedule AS
SELECT p.PID, FirstName, LastName, Day, StartTime, EndTime, Name

FROM People p INNER JOIN Staff s ON p.PID = s.PID

INNER JOIN WorksDuring w ON p.PID = w.PID
INNER JOIN Shifts sh ON w.SID = sh.SID
INNER JOIN AssignedTo a ON p.PID = a.PID
INNER JOIN Jobs ON a.JID = j.JID;
pid firstname | lastname day starttime endtime name
integer text text daytext time without time zone time without time zone text
1 20 Tom Russel Saturday 06:00:00 15:00:00 VIP Set-Up and Maintenance
2 21|Jordan |Wolowitz Saturday 15:00:00 00:00:00 Decorations
3 22 Jennifer Styles Sunday 06:00:00 15:00:00 VIP Set-Up and Maintenance
4 23 Alex Joffe Sunday 15:00:00 00:00:00 Water Filling Station

VolunteerSchedule: The VolunteerSchedule view allows staff and volunteers to see what
day and time every volunteer is on duty.

CREATE OR REPLACE VIEW VolunteerSchedule AS
SELECT p.PID, FirstName, LastName, Day, StartTime, EndTime, Name

FROM People p INNER JOIN Volunteers v ON p.PID = v.PID

INNER JOIN WorksDuring w ON p.PID = w.PID

INNER JOIN Shifts sh ON w.SID = sh.SID

INNER JOIN AssignedTo a ON p.PID = a.PID

INNER JOIN Jobs j ON a.JID = j.JID;
pid firstname lastname day starttime endtime name
integer| text text daytext |time without time zone time without time zone text

1 24 Jack Black Saturday 06:00:00 15:00:00 TIrash

2 25 Kyle Gass Saturday 06:00:00 15:00:00 Catering

3 26 Dave Grohl Sunday Ne:00:00 15:00:00 Catering

24

The Meadows | Marcus Zimmermann

Reports And Interesting Queries

Preshow rituals of all peformers in a band

SELECT p.PID, FirstName,

LastName,

b.BID, Name, PreShowRitual

FROM People p INNER JOIN Performers pe ON p.PID = pe.PID

INNER JOIN MemberOF m ON pe.PID = m.PID

INNER JOIN Bands b ON m.BID = b.BID;
Preshow Rituals of The 1975 and Chairlift
pid firstname lastname bid name preshowritual
il r text text integer text text
1 12 Matthew Healy 1 The 1975 |Puts on an entirely plaid outfit
2 13 Adam Hann 1 The 1975 Tunes his guitar more times than necessary
3 14 |Rosas Macdonald 1 The 1975 |Smokes two packs of cigarette
4 15 George Daniel 1 The 1975 Walks around aimlessly
5 16|/Caroline Polacheck 2 Chairlift|Prays to Codd
6 17|Patrick Wimberly 2 Chairlift|Prays to Codd

25

The Meadows | Marcus Zimmermann

GetSongsAfter: Backstage, staff and volunteers are busy tuning guitars, adjusting lights,
conducting sound checks, and doing much more. To properly prepare for the rest of a
set, it helps to know what songs are coming up next. By inputing SonglD and SetID,
GetSongsAfter returns all songs following a song of SongID within a set of SetID.

CREATE OR REPLACE FUNCTION GetSongsAfter (INT, INT, REFCURSOR)
RETURNS refcursor AS S$S

DECLARE
iSongID INT := $1;
iSetID INT := $2;
result REFCURSOR := $3;
BEGIN

OPEN result FOR
WITH RECURSIVE SongsAfter (SonglD, SongName) AS (
SELECT s.SongID, s.SongName
FROM Songs s
INNER JOIN SongsInSet sis ON s.SongID = sis.SongID
WHERE s.SongID=iSongID AND sis.SetID = iSetID
UNION
SELECT sa.SongID+1l, s.SongName
FROM SongsAfter sa, Songs s
INNER JOIN SongsInSet sis ON s.SongID = sis.SongID
WHERE s.songID=sa.SongID+1 AND sis.SetID = iSetID

) SELECT * FROM SongsAfter;

RETURN result; songid songname
integer text
END; $$ LANGUAGE plpgsql; 43 Sorry Not Sorry
44 Rambo

SELECT GetSongsAfter (43, 4, 'ref');
45 502 Come Up
FETCH ALL FROM ref; 46 For However Long
47 The Segquence
42 Been That Way

49 Don't

N s WN -

26

The Meadows | Marcus Zimmermann

LongestSet: This stored procedure returns the set or sets with the longest runtime.

CREATE OR REPLACE FUNCTION LongestSet (REFCURSOR) RETURNS
refcursor AS

$body$ DECLARE
duration TIME := (SELECT MAX(y.SetDuration)
FROM (SELECT SetID, (EndTime - StartTime)AS SetDuration
FROM Sets
GROUP BY SetID
ORDER BY SetDuration DESC LIMIT 1) vy);
result REFCURSOR := $1;
BEGIN
OPEN result FOR

SELECT SetID, StartTime, EndTime, (EndTime - StartTime)AS
SetDuration

FROM Sets
WHERE (EndTime - StartTime) = duration;
RETURN result;
END; S$body$ LANGUAGE plpgsgl;
SELECT LongestSet ('ref');

FETCH ALL FROM ref;

setid | starttime endtime setduration
integer time without time zone time without time zone interval
1 8/20:15:00 22:00:00 01:45:00

27

The Meadows | Marcus Zimmermann

MostSongs: This stored procedure returns the set or sets with the greatest number of
songs being performed.

CREATE OR REPLACE FUNCTION MostSongs (REFCURSOR) RETURNS
refcursor AS

$body$ DECLARE
num INT := (SELECT MAX(y.SongTotal)
FROM (SELECT s.SetID, COUNT (SongID)AS SongTotal

FROM Sets s INNER JOIN SongsInSet sis ON s.SetID =
sis.SetID

GROUP BY s.SetID) vy);
result REFCURSOR := $1;
BEGIN
OPEN result FOR

SELECT s.SetID, s.StartTime, s.EndTime, COUNT (SongID)AS
SongTotal

FROM Sets s INNER JOIN SongsInSet sis ON s.SetID =
sis.SetID

GROUP BY s.SetID
HAVING COUNT (s.SetID) = num;
RETURN result;
END; S$body$ LANGUAGE plpgsgl;
SELECT MostSongs ('ref');
FETCH ALL FROM ref;

setid starttime endtime songtotal
integer time without time zone time without time zone bigint
1 5 17:45:00 19:00:00 24

28

The Meadows | Marcus Zimmermann

MostPlayedInstrument: This stored procedure returns the instrument or instruments
played by the greatest number of performers.

CREATE OR REPLACE FUNCTION MostPlayedInstrument (REFCURSOR)
RETURNS refcursor AS

$body$ DECLARE
num INT := (SELECT MAX(y.HowManyCanPlay)

FROM (SELECT i.InstrumentID, COUNT (p.PID)AS
HowManyCanPlay

FROM Instruments i INNER JOIN KnowsHowToPlay khtp ON
i.InstrumentID = khtp.InstrumentID

INNER JOIN Performers p ON khtp.PID = p.PID
GROUP BY i.InstrumentID) vy);
result REFCURSOR := $1;
BEGIN
OPEN result FOR

SELECT i.InstrumentID, i.Name, COUNT (p.PID)AS
HowManyCanPlay

FROM Instruments i INNER JOIN KnowsHowToPlay khtp ON
i.InstrumentID = khtp.InstrumentID

INNER JOIN Performers p ON khtp.PID = p.PID
GROUP BY i.InstrumentID
HAVING COUNT (p.PID) = num;
RETURN result;
END; S$Sbody$ LANGUAGE plpgsql;
SELECT MostPlayedInstrument ('ref');
FETCH ALL FROM ref;

instrumentid name howmanycanplay

integer text bigint
1 2 Guitar
2 5 Piano 3

29

The Meadows | Marcus Zimmermann

UpdateHoursCompleted: Volunteers who complete their work shift are given a full ticket
refund and free merchandise. So, as soon as they are scheduled to work a certain shift,
their HoursCompleted status is changed to yes.

CREATE OR REPLACE FUNCTION UpdateHoursCompleted() RETURNS
TRIGGER AS $$

BEGIN

IF new.PID IS NOT NULL

AND (SELECT HoursCompleted
FROM Volunteers
WHERE PID = new.PID) = 'no'

THEN
UPDATE Volunteers
SET HoursCompleted = 'yes'
WHERE PID = new.PID;

END IF;

RETURN new;

END; S LANGUAGE plpgsqgl;

UpdateHoursCompleted: This trigger triggers the function UpdateHoursCompleted.
CREATE TRIGGER UpdateHoursCompleted

AFTER INSERT ON WorksDuring

FOR EACH ROW

EXECUTE PROCEDURE updateHoursCompleted() ;

30

The Meadows | Marcus Zimmermann

Administrators: Administrators are granted the full range of capabilities on all tables
within the database.

CREATE ROLE Admin;
GRANT ALL ON ALL TABLES
IN SCHEMA PUBLIC

TO Admin;

Staff: Staff members can select, insert, and update all tables within the database.
CREATE ROLE Staff;

GRANT SELECT, INSERT, UPDATE ON ALL TABLES

IN SCHEMA PUBLIC

TO Staff;

Volunteers: Volunteers can select all tables within the database.
CREATE ROLE Volunteers;

GRANT SELECT ON ALL TABLES

IN SCHEMA PUBLIC

TO Volunteers;

31

The Meadows | Marcus Zimmermann

Songs are meticulously entered into the Songs table in the order in
which they are performed. This allows us to recursively select all songs that
come after one song in a set.

Songs are not easily moved in the databse. This is because SonglD is
a serial, autoincrementing integer. A future enhancement might be the
ability to insert, update, and delete SonglDs while automatically changing
all SonglDs that come after by an increment of one. This would allow for
the order in which songs were entered to remain as it should.

While it is possible to see what job a staff member or volunteer is
assigned to, it is not clear as to which venue the job is being done at. This is
because the same job can be done at muliple venues.

For future implementations of the database, it may be beneficial to
add more information about each venue. For example, information about
available food stands, merchandice booths, emergency care centers, and
other amenities could all be incorporated.

32

