
The Meadows | Marcus Zimmermann

1

Database Design Documentation

Marcus Zimmermann

The Meadows | Marcus Zimmermann

2

Table Of Contents

Executive Summary………………………………………………………………………………………3

Entity Relationship Diagram…………………………………………………………………………4

Create Type Statements……………………………………………………………………………….5

Create Table Statements……………………………………………………………………………....6

Create View Statements……………………………………………………………………………..22

Reports And Interesting Queries...........………………………..………………………………25

Stored Procedures………………………………………………………………………………………26

Triggers………………………………………………………………………………………………………30

Security……………………………………………………………………………………………………….31

Implementation Notes………………………………………………………………………………..32

Know Problems and Future Enhancements………………………………………………..32

The Meadows | Marcus Zimmermann

3

Executive Summary

The Meadows was a two-day, multistage music and arts festival that

showcased the very best in hip hop, electronic, indie rock, and more. It

featured two impressive lineups, forty artists in total, over the course of a

single weekend (October 1st and October 2nd). Unlike most other music

festivals, The Meadows had four separate concert venues, allowing multiple

artists to perform at the same time. In addition to the many performers,

there was also a huge number of staff, volunteers, and of course,

concertgoers. Needless to say, there were a lot of people…

So, to keep track of everyone at the concert, a large database had to

be designed and implemented, one that kept records of concertgoers,

performers, staff, and volunteers. For performers, set times and venue

assignments had to be defined and potentially manipulated. Similarly, for

staff and volunteers, shift assignements and job assignments had to be

defined and potentially manipulated. Lastly, the databse had to be capable

of supporting certain views, queries, stored procedures, and triggers, each

one providing staff and volunteers with valuable tools and/or important

information that kept the The Meadows running smoothly.

This document outlines the design and implementation of The

Meadows Database. To start, an ER diagram will be shown as a general

overview, followed by create statements for special data types. Then, create

table statements will be shown with sample data given for each one.

Similarly, view definitions, reports and their queries, stored procedures, and

triggers will be shown with sample output given for each one. Lastly,

security priviliges, implementation notes, known problems, and future

enhancements will be shared.

The Meadows | Marcus Zimmermann

4

ER Diagram

The Meadows | Marcus Zimmermann

5

Types

dayText: Only Saturday or Sunday can be entered for Day

CREATE TYPE dayText AS ENUM ('Saturday', 'Sunday') ;

TTText: Only certain ticket types can be entered for TicketType

CREATE TYPE TTText AS ENUM ('Saturday GA', 'Sunday GA', '2-Day

GA', 'Saturday VIP', 'Sunday VIP', '2-Day VIP', '2-Day Super

VIP') ;

HCText: Only yes or no can be entered for HoursCompleted

CREATE TYPE HCText AS ENUM ('yes', 'no') ;

The Meadows | Marcus Zimmermann

6

Tables

People: The People table has the following attributes: PID, FirstName, LastName, and

DOB. These attributes are shared with the subtypes Concertgoers, Performers, Staff, and

Volunteers.

Functional Dependencies: PID  FirstName, LastName, DOB

CREATE TABLE People (

 PID SERIAL NOT NULL PRIMARY KEY,

 FirstName TEXT NOT NULL,

 LastName TEXT NOT NULL,

 DOB DATE NOT NULL

);

The Meadows | Marcus Zimmermann

7

Concertgoers: Concertgoers are a subtype of People. The Concertgoers table has the

following attributes: PID and TicketType.

Functional Dependencies: PID  TicketType

CREATE TABLE Concertgoers (

 PID SERIAL NOT NULL REFERENCES People(PID),

 TicketType TTText NOT NULL

);

Performers: Performers are a subtype of People. The Performers table has the following

attributes: PID, StageName, and PreShowRitual.

Functional Dependencies: PID  StageName, PreShowRitual

CREATE TABLE Performers (

 PID SERIAL NOT NULL REFERENCES People(PID),

 StageName TEXT,

 PreShowRitual TEXT

);

The Meadows | Marcus Zimmermann

8

Staff: Staff are a subtype of People. The Staff table has the following attributes: PID and

HourlyWageUSD.

Functional Dependencies: PID  HourlyWageUSD

CREATE TABLE Staff (

 PID SERIAL NOT NULL REFERENCES People(PID),

 HourlyWageUSD INT NOT NULL

);

Volunteers: Volunteers are a subtype of People. The Volunteers table has the following

attributes: PID and HoursCompleted.

Functional Dependencies: PID  HoursCompleted

CREATE TABLE Volunteers (

 PID SERIAL NOT NULL REFERENCES People(PID),

 HoursCompleted HCText NOT NULL

);

The Meadows | Marcus Zimmermann

9

Venues: The Meadows featured four separate concert venues, each one capable of

entertaining huge crowds. Their names were The Meadows, Linden Blvd, Queens Blvd,

and Shea. The Venues table has the following attributes: VenueID and Name.

Functional Dependencies: VenueID  Name

CREATE TABLE Venues (

 VenueID Serial NOT NULL PRIMARY KEY,

 Name TEXT NOT NULL

);

Sets: The full line-up at The Meadows included forty separate performances. So, venue

assignments, day assignments, and set times had to be given to each one. The Sets

table has the following attributes: SetID, VenueID, Day, StartTime, EndTime.

Functional Dependencies: SetID  VenueID, Day, StartTime, EndTime

CREATE TABLE Sets (

 SetID SERIAL NOT NULL PRIMARY KEY,

 VenueID Serial NOT NULL REFERENCES Venues(VenueID),

 Day dayText NOT NULL,

 StartTime TIME NOT NULL,

 EndTime TIME NOT NULL

);

The Meadows | Marcus Zimmermann

10

AppearsIn: To link performers to the sets they appear in, an AppearsIn table had to be

created. The AppearsIn table has the following attributes: PID and SetID. These two

attributes combine to form a composite key, allowing for a many to many relationship

between People (Performers) and Sets. This is necessary because it is possible for a

performer to be in muliple sets, and a set can have multiple performers.

Functional Dependencies: SetID  PID

CREATE TABLE AppearsIn (

 PID Serial NOT NULL REFERENCES People(PID),

 SetID Serial NOT NULL REFERENCES Sets(SetID),

 PRIMARY KEY (PID, SetId)

);

The Meadows | Marcus Zimmermann

11

Bands: Because many performers perform in a band together, a Bands table was created

to keep track of all bands performing at The Meadows. The Bands table has the

following attributes: BID, Name, and YearsTogether.

Functional Dependencies: BID  Name, YearsTogether

CREATE TABLE Bands (

 BID SERIAL NOT NULL PRIMARY KEY,

 Name TEXT NOT NULL,

 YearsTogether INT

);

MemberOf: Just like the AppearsIn table, the MemberOf table allows for a many to

many relationship between People (Performers) and Bands, as a performer can be a

member of multiple bands, and a band can be comprised of multiple performers. The

Bands table has the following attributes: PID and BID.

Functional Dependencies: BID  PID

CREATE TABLE MemberOf (

 PID Serial NOT NULL REFERENCES People(PID),

 BID Serial NOT NULL REFERENCES Bands(BID),

 PRIMARY KEY (PID, BID)

);

The Meadows | Marcus Zimmermann

12

Instruments: Many instruments are used in each song, let alone each performance. So,

an Instruments table was created to keep track of each type of instrument onsite during

the two-day music festival. The Instruments table has the following attributes:

InstrumentID and Name.

Functional Dependencies: InstrumentID  Name

CREATE TABLE Instruments (

 InstrumentId Serial NOT NULL PRIMARY KEY,

 Name TEXT NOT NULL

);

The Meadows | Marcus Zimmermann

13

KnowsHowToPlay: The KnowsHowToPlay table allows for a many to many relationship

between People (Performers) and Instruments, as a performer can know how to play

multiple instruments, and an instrument can be played by multiple performers. The

KnowsHowToPlay table has the following attributes: PID and InstrumentID.

Functional Dependencies: InstrumentID  PID

CREATE TABLE KnowsHowToPlay (

 PID Serial NOT NULL REFERENCES People(PID),

 InstrumentID Serial NOT NULL REFERENCES

Instruments(InstrumentID),

 PRIMARY KEY (PID, InstrumentID)

);

The Meadows | Marcus Zimmermann

14

Songs: Many songs are performed in each set. So, a Songs table was created to keep

track of all songs to be performed. The Songs table has the following attributes: SongID

and SongName.

Functional Dependencies: SongID  SongName

CREATE TABLE Songs (

 SongID Serial NOT NULL PRIMARY KEY,

 SongName TEXT NOT NULL

);

The Meadows | Marcus Zimmermann

15

UsedIn: The UsedIn table allows for a many to many relationship between Instruments

and Songs, as an instrument can be used in multiple songs, and a song can have

multiple instruments. The UsedIn table has the following attributes: InstrumentID and

SongID.

Functional Dependencies: SongID  InstrumentID

CREATE TABLE UsedIn (

 InstrumentID Serial NOT NULL REFERENCES

Instruments(InstrumentID),

 SongID Serial NOT NULL REFERENCES Songs(SongID),

 PRIMARY KEY (InstrumentID, SongID)

);

The Meadows | Marcus Zimmermann

16

SongsInSet: The SongsInSet table allows for a many to many relationship between

Songs and Sets, as an song can be used in multiple sets, and a set can have multiple

songs. The SongsInSet table has the following attributes: SongID and SetID.

Functional Dependencies: SetID  SongID

CREATE TABLE SongsInSet (

 SongID Serial NOT NULL REFERENCES Songs(SongID),

 SetID Serial NOT NULL REFERENCES Sets(SetID),

 PRIMARY KEY (SongID, SetID)

);

The Meadows | Marcus Zimmermann

17

Shifts: Staff and Volunteers are assigned different shifts. More specifcally, they are

assigned an early Saturday shift, a late Saturday shift, an early Sunday shift, and/or a late

Sunday shift. The Shifts table has the following attributes: SID, Day, StartTime, and

EndTime.

Functional Dependencies: SID  Day, StartTime, EndTime

CREATE TABLE Shifts (

 SID Serial NOT NULL PRIMARY KEY,

 Day DayText NOT NULL,

 StartTime TIME NOT NULL,

 EndTime TIME NOT NULL

);

The Meadows | Marcus Zimmermann

18

WorksDuring: The WorksDuring table allows for a many to many relationship between

People (Staff and Volunteers) and Shifts, as a person can be assigned multiple shifts, and

a shift can be assigned to multiple people. The WorksDuring table has the following

attributes: PID and SID.

Functional Dependencies: SID  PID

CREATE TABLE WorksDuring (

 PID Serial NOT NULL REFERENCES People(PID),

 SID Serial NOT NULL REFERENCES Shifts(SID),

 PRIMARY KEY (PID, SID)

);

The Meadows | Marcus Zimmermann

19

Jobs: During the early and late shifts of Saturday and Sunday, Staff and Volunteers are

assigned different jobs. The Jobs table has the following attributes: JID, Name,

Description.

Functional Dependencies: JID  Name, Description

CREATE TABLE Jobs (

 JID Serial NOT NULL PRIMARY KEY,

 Name TEXT NOT NULL,

 Description TEXT NOT NULL

);

The Meadows | Marcus Zimmermann

20

AssignedTo: The AssignedTo table allows for a many to many relationship between

People (Staff and Volunteers) and Jobs, as a person can be assigned multiple jobs, and a

job can be assigned to multiple people . The AssignedTo table has the following

attributes: PID and JID.

Functional Dependencies: JID  PID

CREATE TABLE AssignedTo (

 PID Serial NOT NULL REFERENCES People(PID),

 JID Serial NOT NULL REFERENCES Jobs(JID),

 PRIMARY KEY (PID, JID)

);

The Meadows | Marcus Zimmermann

21

JobLocations: The JobLocations table allows for a many to many relationship between

Jobs and Venues, as a job can be in multiple venues, and a venue can have multiple jobs

. The JobLocations table has the following attributes: JID and VenueID.

Functional Dependencies: VenueID  JID

CREATE TABLE JobLocations (

 JID Serial NOT NULL REFERENCES Jobs(JID),

 VenueID Serial NOT NULL REFERENCES Venues(VenueID),

 PRIMARY KEY (JID, VenueID)

);

The Meadows | Marcus Zimmermann

22

Views

ConcertgoerInfo: There are many situations in which it would be benefical for Staff and

Volunteers to have a view of all concertgoer information. Consider the following

examples: a concertgoer who bought a general admission ticket attempts to enter one

of the VIP lounges, a concertgoer tries to pass as 21 to buy alcohol, and a concertgoer

tries to enter The Meadows for a second day despite purchasing only a single day ticket.

CREATE OR REPLACE VIEW ConcertgoerInfo AS

SELECT p.PID, FirstName, LastName, DOB, TicketType

FROM People p INNER JOIN Concertgoers c ON p.PID = c.PID;

The Meadows | Marcus Zimmermann

23

PerformerShowtimes: As performers finish their set, it’s important to know who is on

stage next. The PerformerShowtimes view allows Staff and Volunteers to view the full

lineup.

CREATE OR REPLACE VIEW PerformerShowtimes AS

SELECT p.PID, FirstName, LastName, Day, Name AS Venue,

StartTime, EndTime

FROM People p INNER JOIN Performers pe ON p.PID = pe.PID

 INNER JOIN AppearsIn a ON p.PID = a.PID

 INNER JOIN Sets s ON a.SetID = s.SetID

 INNER JOIN Venues v ON s.VenueID = v.VenueID;

The Meadows | Marcus Zimmermann

24

StaffSchedule: The StaffSchedule view allows staff and volunteers to see what day and

time every staff member is on duty.

CREATE OR REPLACE VIEW StaffSchedule AS

SELECT p.PID, FirstName, LastName, Day, StartTime, EndTime, Name

FROM People p INNER JOIN Staff s ON p.PID = s.PID

 INNER JOIN WorksDuring w ON p.PID = w.PID

 INNER JOIN Shifts sh ON w.SID = sh.SID

 INNER JOIN AssignedTo a ON p.PID = a.PID

 INNER JOIN Jobs j ON a.JID = j.JID;

VolunteerSchedule: The VolunteerSchedule view allows staff and volunteers to see what

day and time every volunteer is on duty.

CREATE OR REPLACE VIEW VolunteerSchedule AS

SELECT p.PID, FirstName, LastName, Day, StartTime, EndTime, Name

FROM People p INNER JOIN Volunteers v ON p.PID = v.PID

 INNER JOIN WorksDuring w ON p.PID = w.PID

 INNER JOIN Shifts sh ON w.SID = sh.SID

 INNER JOIN AssignedTo a ON p.PID = a.PID

 INNER JOIN Jobs j ON a.JID = j.JID;

The Meadows | Marcus Zimmermann

25

Reports And Interesting Queries

Preshow rituals of all peformers in a band

SELECT p.PID, FirstName, LastName, b.BID, Name, PreShowRitual

FROM People p INNER JOIN Performers pe ON p.PID = pe.PID

 INNER JOIN MemberOF m ON pe.PID = m.PID

 INNER JOIN Bands b ON m.BID = b.BID;

Preshow Rituals of The 1975 and Chairlift

The Meadows | Marcus Zimmermann

26

Stored Procedures

GetSongsAfter: Backstage, staff and volunteers are busy tuning guitars, adjusting lights,

conducting sound checks, and doing much more. To properly prepare for the rest of a

set, it helps to know what songs are coming up next. By inputing SongID and SetID,

GetSongsAfter returns all songs following a song of SongID within a set of SetID.

CREATE OR REPLACE FUNCTION GetSongsAfter(INT, INT, REFCURSOR)

RETURNS refcursor AS $$

DECLARE

 iSongID INT := $1;

 iSetID INT := $2;

 result REFCURSOR := $3;

BEGIN

 OPEN result FOR

 WITH RECURSIVE SongsAfter(SongID, SongName) AS (

 SELECT s.SongID, s.SongName

 FROM Songs s

 INNER JOIN SongsInSet sis ON s.SongID = sis.SongID

 WHERE s.SongID=iSongID AND sis.SetID = iSetID

 UNION

 SELECT sa.SongID+1, s.SongName

 FROM SongsAfter sa, Songs s

 INNER JOIN SongsInSet sis ON s.SongID = sis.SongID

 WHERE s.songID=sa.SongID+1 AND sis.SetID = iSetID

) SELECT * FROM SongsAfter;

 RETURN result;

END; $$ LANGUAGE plpgsql;

SELECT GetSongsAfter(43, 4, 'ref');

FETCH ALL FROM ref;

The Meadows | Marcus Zimmermann

27

LongestSet: This stored procedure returns the set or sets with the longest runtime.

CREATE OR REPLACE FUNCTION LongestSet(REFCURSOR) RETURNS

refcursor AS

$body$ DECLARE

 duration TIME := (SELECT MAX(y.SetDuration)

 FROM (SELECT SetID, (EndTime - StartTime)AS SetDuration

 FROM Sets

 GROUP BY SetID

 ORDER BY SetDuration DESC LIMIT 1) y);

 result REFCURSOR := $1;

BEGIN

OPEN result FOR

 SELECT SetID, StartTime, EndTime, (EndTime - StartTime)AS

SetDuration

 FROM Sets

 WHERE (EndTime - StartTime) = duration;

 RETURN result;

END; $body$ LANGUAGE plpgsql;

SELECT LongestSet('ref');

FETCH ALL FROM ref;

The Meadows | Marcus Zimmermann

28

MostSongs: This stored procedure returns the set or sets with the greatest number of

songs being performed.

CREATE OR REPLACE FUNCTION MostSongs(REFCURSOR) RETURNS

refcursor AS

$body$ DECLARE

 num INT := (SELECT MAX(y.SongTotal)

 FROM (SELECT s.SetID, COUNT(SongID)AS SongTotal

 FROM Sets s INNER JOIN SongsInSet sis ON s.SetID =

sis.SetID

 GROUP BY s.SetID) y);

 result REFCURSOR := $1;

BEGIN

OPEN result FOR

 SELECT s.SetID, s.StartTime, s.EndTime, COUNT(SongID)AS

SongTotal

 FROM Sets s INNER JOIN SongsInSet sis ON s.SetID =

sis.SetID

 GROUP BY s.SetID

 HAVING COUNT(s.SetID) = num;

 RETURN result;

END; $body$ LANGUAGE plpgsql;

SELECT MostSongs('ref');

FETCH ALL FROM ref;

The Meadows | Marcus Zimmermann

29

MostPlayedInstrument: This stored procedure returns the instrument or instruments

played by the greatest number of performers.

CREATE OR REPLACE FUNCTION MostPlayedInstrument(REFCURSOR)

RETURNS refcursor AS

$body$ DECLARE

 num INT := (SELECT MAX(y.HowManyCanPlay)

 FROM (SELECT i.InstrumentID, COUNT(p.PID)AS

HowManyCanPlay

 FROM Instruments i INNER JOIN KnowsHowToPlay khtp ON

i.InstrumentID = khtp.InstrumentID

 INNER JOIN Performers p ON khtp.PID = p.PID

 GROUP BY i.InstrumentID) y);

 result REFCURSOR := $1;

BEGIN

OPEN result FOR

 SELECT i.InstrumentID, i.Name, COUNT(p.PID)AS

HowManyCanPlay

 FROM Instruments i INNER JOIN KnowsHowToPlay khtp ON

i.InstrumentID = khtp.InstrumentID

 INNER JOIN Performers p ON khtp.PID = p.PID

 GROUP BY i.InstrumentID

 HAVING COUNT(p.PID) = num;

 RETURN result;

END; $body$ LANGUAGE plpgsql;

SELECT MostPlayedInstrument('ref');

FETCH ALL FROM ref;

The Meadows | Marcus Zimmermann

30

UpdateHoursCompleted: Volunteers who complete their work shift are given a full ticket

refund and free merchandise. So, as soon as they are scheduled to work a certain shift,

their HoursCompleted status is changed to yes.

CREATE OR REPLACE FUNCTION UpdateHoursCompleted() RETURNS

TRIGGER AS $$

BEGIN

 IF new.PID IS NOT NULL

 AND (SELECT HoursCompleted

 FROM Volunteers

 WHERE PID = new.PID) = 'no'

 THEN

 UPDATE Volunteers

 SET HoursCompleted = 'yes'

 WHERE PID = new.PID;

 END IF;

 RETURN new;

END; $$ LANGUAGE plpgsql;

Triggers

UpdateHoursCompleted: This trigger triggers the function UpdateHoursCompleted.

CREATE TRIGGER UpdateHoursCompleted

AFTER INSERT ON WorksDuring

FOR EACH ROW

EXECUTE PROCEDURE updateHoursCompleted();

The Meadows | Marcus Zimmermann

31

Security

Administrators: Administrators are granted the full range of capabilities on all tables

within the database.

CREATE ROLE Admin;

GRANT ALL ON ALL TABLES

IN SCHEMA PUBLIC

TO Admin;

Staff: Staff members can select, insert, and update all tables within the database.

CREATE ROLE Staff;

GRANT SELECT, INSERT, UPDATE ON ALL TABLES

IN SCHEMA PUBLIC

TO Staff;

Volunteers: Volunteers can select all tables within the database.

CREATE ROLE Volunteers;

GRANT SELECT ON ALL TABLES

IN SCHEMA PUBLIC

TO Volunteers;

The Meadows | Marcus Zimmermann

32

Implementation Notes

Songs are meticulously entered into the Songs table in the order in

which they are performed. This allows us to recursively select all songs that

come after one song in a set.

Known Problems and Future Enhancements

Songs are not easily moved in the databse. This is because SongID is

a serial, autoincrementing integer. A future enhancement might be the

ability to insert, update, and delete SongIDs while automatically changing

all SongIDs that come after by an increment of one. This would allow for

the order in which songs were entered to remain as it should.

While it is possible to see what job a staff member or volunteer is

assigned to, it is not clear as to which venue the job is being done at. This is

because the same job can be done at muliple venues.

For future implementations of the database, it may be beneficial to

add more information about each venue. For example, information about

available food stands, merchandice booths, emergency care centers, and

other amenities could all be incorporated.

