
XCOMdB
By Kevin Mirsky

1

Table of Contents
Executive Summary... 3
ER Diagram.. 4
Tables... 5
Views... 21
Reports.. 28
Stored Procedures... 32
Triggers.. 37
Security... 42
Implementation Notes... 48
Known Issues... 50
Future Enhancements.. 52

2

Executive Summary
In March 2015, hostile extraterrestrial activity was confirmed on Earth. In response, a secret council of
nations approved the full activation of the XCOM Project, an international joint military organization
tasked with combating the alien threat.
With the aliens confirmed hostile, the organization conducts routine combat operations to thwart alien
attacks and missions. Since XCOM is tasked with the protection of the entire planet, it is critical they
operate multiple bases and have teams ready to go at all times.

The purpose of this database is to assist XCOM in the assignment and deployment of
soldiers towards counter-alien operations. The database tracks all agents of XCOM
(including soldiers), strike teams of soldiers, and XCOM bases. It also tracks alien events
and the deployment of strike teams to events. This will allow the Commander to quickly
assess the situation and rapidly deploy teams with the most information at hand.

This is imperative to the success of the XCOM project as a team can make or break a
mission. Providing this information to the Commander will ensure the greatest success of
future missions and the survival of humanity as a whole.

3

ER Diagram

4

Tables

5

Regions
The region table lists all regions used to
approximate the location of Bases and alien
Events.

Create Statement:
CREATE TABLE Regions (

RID serial UNIQUE NOT NULL,
regionName text,

PRIMARY KEY(RID)
);

Functional Dependencies:
RID → regionName

6

Bases
This table lists all bases currently operated by
XCOM.

Create Statement:
CREATE TABLE Bases (

BID serial UNIQUE NOT NULL,
baseName text,
RID integer references

Regions(RID) NOT NULL,
PRIMARY KEY(BID)
);

Functional Dependencies:
BID → baseName, RID

7

ThreatLevels
This table lists the levels of threats used to
evaluate alien events

Create Statement:
CREATE TABLE ThreatLevels (

threatLevel serial UNIQUE NOT NULL,
threatName text,

PRIMARY KEY(threatLevel)
);

Functional Dependencies:
threatLevel → threatName

8

Events
This table lists the alien events recorded by
XCOM which should be responded to.

Create Statement:
CREATE TABLE Events (

EID serial UNIQUE NOT NULL,
codeName text,
RID integer references

Regions(RID),
threatLevel integer references

threatLevels(threatLevel),
eventDesc text,
isActive boolean NOT NULL,
timeDetected timestamp,

PRIMARY KEY(EID)
);

9

Functional Dependencies:
EID → codeName, RID, threatLevel,
eventDesc, isActive, timeDetected

Continued...

Events

10

Nations
This table lists all the nations from which XCOM
agents are recruited from.

Create Statement:
CREATE TABLE Nations (

nationCode text UNIQUE NOT NULL,
nationName text NOT NULL,

PRIMARY KEY(nationCode)
);

Functional Dependencies:
nationCode → nationName

11

AgentStatuses
This table lists all the statuses (such as Active,
MIA, KIA) for agents of XCOM.

Create Statement:
CREATE TABLE AgentStatuses (

statusCode serial UNIQUE NOT NULL,
statusName text,

PRIMARY KEY(statusCode)
);

Functional Dependencies:
statusCode → statusName

12

Agents
This table lists all employees of XCOM, which
are referred to as “Agents”

Create Statement:
CREATE TABLE Agents (

AID serial UNIQUE NOT NULL,
firstName text,
lastName text,
DOB date,
nationOfOrigin text references

Nations(nationCode),
statusCode integer references

AgentStatuses(statusCode) NOT NULL DEFAULT 1,
baseAssignment integer references Bases(BID),
PRIMARY KEY(AID)
);

13

Functional Dependencies:
AID → firstName, lastName, DOB,
nationOfOrigin, statusCode,
baseAssignment

Continued...

Agents

14

Ranks
This table lists all the ranks given to XCOM
soldiers.

Create Statement:
CREATE TABLE Ranks (

RID serial UNIQUE NOT NULL,
rankName text,
PRIMARY KEY(RID)
);

Functional Dependencies:
RID → rankName

15

Classes
This table lists all the skill classes XCOM
soldiers can classified in.

Create Statement:
CREATE TABLE Classes (

CID serial UNIQUE NOT NULL,
className text,
PRIMARY KEY(CID)
);

Functional Dependencies:
CID → className

16

Striketeams
This table lists the teams XCOM soldiers can be
organized into.

Create Statement:
CREATE TABLE Striketeams (

TID serial UNIQUE NOT NULL,
teamName text,
baseOfOperation integer references

Bases(BID),
PRIMARY KEY(TID)
);

Functional Dependencies:
TID → teamName, baseOfOperation

17

Soldiers
This table lists all XCOM agents which are classified as
soldiers for anti-alien operations.

Create Statement:
CREATE TABLE Soldiers (

AID integer references Agents(AID) UNIQUE NOT NULL,
codeName text,
rank integer references Ranks(RID) DEFAULT 1,
class integer references Classes(CID) DEFAULT 1,
TID integer references Striketeams(TID),

PRIMARY KEY(AID)
);

Functional Dependencies:
AID → codeName, rank, class, TID

18

Continued...

Soldiers

19

StriketeamDeployments
This table lists the missions striketeams are
deployed on.

Create Statement:
CREATE TABLE StriketeamDeployments (

MID serial UNIQUE NOT NULL,
TID integer references Striketeams(TID) NOT NULL,
EID integer references Events(EID) NOT NULL,
timeOfDeployment timestamp,
isDeployed boolean NOT NULL,

PRIMARY KEY(MID)
);

20

Functional Dependencies:
MID → TID, EID, timeOfDeployment,
isDeployed

Views

21

SoldierInfo
Returns all relevant info about each
soldier with readability in mind.

Create Statement:
CREATE OR REPLACE VIEW SoldierInfo AS
SELECT

Soldiers.AID,
Agents.firstName,
Agents.lastName,
Soldiers.CodeName,
Nations.nationName,
Ranks.rankName,
Classes.className,
Bases.baseName,
Striketeams.teamName,
AgentStatuses.statusName,
Agents.DOB

22

FROM Soldiers
INNER JOIN Agents ON Agents.AID = Soldiers.AID
LEFT JOIN Nations ON Nations.nationCode =

Agents.nationOfOrigin
LEFT JOIN Bases ON Bases.BID =

Agents.baseAssignment
LEFT JOIN Ranks ON Ranks.RID = Soldiers.rank
LEFT JOIN Classes ON Classes.CID = Soldiers.class
LEFT JOIN AgentStatuses ON

AgentStatuses.statusCode = Agents.statusCode
LEFT JOIN Striketeams ON Striketeams.TID =

Soldiers.TID;

Continued...

SoldierInfo

23

UnrespondedEvents
It's important that all alien events are responded to. In order to ensure none are forgotten, the view
displays all active events that have not yet had a striketeam dispatched. It also displays how much time
has passed since the Event was logged, giving the user a better idea where to focus first.

Create Statement:
CREATE OR REPLACE VIEW UnrespondedEvents AS
SELECT

Events.EID,
Events.CodeName,
Regions.RegionName,
ThreatLevels.threatName,
Events.EventDesc,
Age(now(), Events.timeDetected) as timeSinceReported

FROM Events
LEFT JOIN Regions ON Regions.RID = Events.RID
LEFT JOIN ThreatLevels ON ThreatLevels.ThreatLevel = Events.ThreatLevel

WHERE
EID NOT IN (SELECT EID FROM StriketeamDeployments)
AND isActive = True;

24

Continued...

UnrespondedEvents

25

EventHistory
It is important to review past events, as well as
XCOM’s response to them. This view displays
every logged Event alongside the records of
what team(s) responded to it.

The time it took to for the striketeam to be
deployed is calculated and displayed, where
applicable.

The data is ordered by Event date, sorted in
Descending order.

26

Create Statement:
CREATE OR REPLACE VIEW EventHistory AS
SELECT

Events.EID,
Events.CodeName,
Regions.RegionName,
ThreatLevels.threatName,
Events.EventDesc,
Events.timeDetected,
Striketeams.teamName as RespondingTeam,
Age(StriketeamDeployments.timeOfDeployment,

Events.timeDetected) as ResponseTime,
Events.isActive

FROM Events
LEFT JOIN Regions ON Regions.RID =

Events.RID
LEFT JOIN ThreatLevels ON

ThreatLevels.ThreatLevel = Events.ThreatLevel
LEFT JOIN StriketeamDeployments ON

StriketeamDeployments.EID = Events.EID
LEFT JOIN Striketeams ON Striketeams.TID =

StriketeamDeployments.TID
ORDER BY Events.timeDetected DESC;

Continued...

EventHistory

27

Reports

28

Lifetime Events by Region
It is important to know where the most alien
activity occurs. This
report creates an easy to read table that
shows the number of events
per region.

29

Query:
SELECT Regions.RegionName, count(Events.RID) as
LifetimeEvents
FROM Regions

INNER JOIN Events ON Regions.RID =
Events.RID
GROUP BY Regions.RegionName
ORDER BY LifetimeEvents DESC;

Ready Soldiers by Class
This query retrieves the number of combat
ready soldiers for each class. This way XCOM
can know what skillsets they are lacking and
optimize the training of new troops.

30

Query:
SELECT Classes.ClassName,
count(activeSoldiers.class) as NumSoldiers
FROM Classes

LEFT JOIN (
SELECT Soldiers.Class
FROM Soldiers
WHERE Soldiers.AID IN

(
SELECT Agents.AID
FROM Agents
WHERE

Agents.statusCode = 1
)

)
 AS ActiveSoldiers

ON ActiveSoldiers.class = Classes.CID
GROUP BY Classes.ClassName
ORDER BY numSoldiers DESC;

Time since last event per Region
Gets time since last event per region. Allows
XCOM to see what regions have been
hit most recently and can also help see what
regions may be "overdue" for hostilities.

The table displays the regions which have had
an attack most recently first.

31

Query:
SELECT Regions.RegionName,
Min(Age(Events.TimeDetected)) as TimeSinceLast
FROM Regions

LEFT JOIN Events ON Regions.RID = Events.RID
GROUP BY Regions.RegionName
ORDER BY TimeSinceLast ASC;

Stored Procedures

32

rebaseTeam()
Many times a striketeam will be relocated to
another base. This can be tedious if updated
manually, as each member has to be moved.
This has the potential for error. Instead, this
function can take a TeamID and a BaseID, and it
will relocate each team member to the given
base.

The team will then be marked as operating from
that base as well.

33

Create Statement:
CREATE OR REPLACE FUNCTION rebaseTeam(int, int)
RETURNS void AS
$rebaseTeam$

DECLARE
teamID int := $1;
baseID int := $2;

BEGIN
UPDATE Striketeams
SET baseOfOperation = baseID
WHERE TID = teamID;
UPDATE Agents
SET baseAssignment = baseID
WHERE AID IN (SELECT AID

FROM Soldiers
WHERE TID = teamID

);
END; $rebaseTeam$ LANGUAGE plpgsql;

rebaseTeam() Results
rebaseTeam(1, 8)

34

completeMission()
When a team returns from a mission, the event
should typically be resolved. Using this
function, it will set the striketeam’s
deployment as no longer deployed, and then
mark the event as over. Simply enter the MID
for the mission as an argument.

35

Create Statement:
CREATE OR REPLACE FUNCTION completeMission(int)
RETURNS void AS
$completeMission$

DECLARE
missionID int := $1;

BEGIN
UPDATE StriketeamDeployments
SET isDeployed = FALSE
WHERE MID = missionID;
UPDATE Events
SET isActive = FALSE
WHERE EID in

(
SELECT EID
FROM StriketeamDeployments
WHERE MID = missionID

);
END

$completeMission$ LANGUAGE plpgsql;

completeMission() Results
completeMission(1)

36

Triggers

37

autoMoveToTeamLocation
A soldier needs to be with their teammates to
function as a team. Effectively, a soldier should
always be in the same base as the team. This
function will automatically relocate a soldier to
the proper base when assigned a new team.

Create Statement:
CREATE OR REPLACE FUNCTION moveToTeam()
RETURNS TRIGGER AS
$moveToTeam$

DECLARE
baseAgent int := NULL;
baseTeam int := NULL;
newTeam int := NULL;

BEGIN

38

SELECT
Striketeams.baseOfOperation

INTO baseTeam
FROM Striketeams
WHERE Striketeams.TID = NEW.TID;
SELECT

Agents.baseAssignment
INTO baseAgent
FROM Agents
WHERE Agents.AID = NEW.AID;
IF (baseTeam != baseAgent) THEN

UPDATE Agents
SET baseAssignment = baseTeam
WHERE Agents.AID = NEW.AID;

END IF;
RETURN NEW;

END;
$moveToTeam$ LANGUAGE plpgsql;

CREATE TRIGGER autoMoveToTeamLocation
BEFORE INSERT OR UPDATE OF TID ON Soldiers
FOR EACH ROW
EXECUTE PROCEDURE moveToTeam();

UPDATE SOLDIERS
SET TID = 1
WHERE AID = 1;

39

autoMoveToTeamLocation

check_if_active
A striketeam cannot be deployed on a mission
when it is already deployed on another mission.
This trigger checks to see if the team a user is
trying to deploy is already deployed. If so, it
raises an exception. Otherwise, it allows the
insert to proceed as normal.

Create Statement:
CREATE OR REPLACE FUNCTION checkIfActive()
RETURNS TRIGGER AS
$checkIfActive$

40

BEGIN
IF (NEW.isDeployed = TRUE) THEN

IF EXISTS
(

SELECT
StriketeamDeployments.isDeployed

FROM StriketeamDeployments
WHERE

StriketeamDeployments.TID = NEW.TID AND isDeployed
= TRUE

)
THEN

RAISE EXCEPTION 'Cannot
deploy a team that is already deployed!';

RETURN NULL;
END IF;

END IF;
RETURN NEW;

END
$checkIfActive$ LANGUAGE plpgsql;

CREATE TRIGGER check_if_active
BEFORE INSERT ON StriketeamDeployments
FOR EACH ROW
EXECUTE PROCEDURE checkIfActive();

INSERT INTO StriketeamDeployments (EID, TID, timeOfDeployment, isDeployed)
VALUES

(5, 1, '2017-04-20 08:12:32', TRUE);

41

check_if_active

Security

42

Admin
The admin role is given to trusted XCOM IT
technicians whose main responsibility is
overseeing the functionality of the database.
This means they have full access to the
database in order to maintain it.

43

Create Statement:
CREATE ROLE admin;
GRANT SELECT, INSERT, UPDATE, DELETE

ON ALL TABLES IN SCHEMA PUBLIC
TO admin;

Commander
The Commander is the appointed leader of
XCOM and oversees ALL of its functions, from
recruitment to event response.

The main purpose of this database is to assist
him/her in their operation of XCOM.
As such, he has almost complete control over
the database.

However, there is little reason to give the
Commander the ability to DELETE records on
most tables, as this should not be required in
day-to-day operation. This should only be
necessary on Striketeams to remove a team.

Should the need arise, an Admin can be called
upon by the Commander.

44

Create Statement:
CREATE ROLE Commander;
GRANT SELECT, INSERT, UPDATE

ON ALL TABLES IN SCHEMA PUBLIC
TO Commander;
GRANT DELETE

ON Striketeams
TO Commander;

Officer
Officers, or soldiers in combat leadership
positions, are allowed to access information
about other soldiers for the purposes of
putting together striketeams.

However, since the decision is ultimately up to
the Commander, they can make no
modifications.

45

Create Statement:
CREATE ROLE Officer;
GRANT SELECT ON

Agents,
Nations,
AgentStatuses,
Soldiers,
Striketeams,
Bases,
Regions,
Ranks,
Classes

TO Officer;

Dispatch
24/7, certain agents are assigned to monitor for alien events. When one is
detected, they must be able to log it into the database. This role gives those
agents that power.

Create Statement:
CREATE ROLE Dispatch;
GRANT SELECT ON

threatLevels,
Regions,
Events

TO Dispatch;
GRANT INSERT, UPDATE

ON Events
TO Dispatch;

46

HR
The Commander has more important things to
than input the data of all incoming Agents.
Therefore, some agents are in charge of the
processing of incoming Agents. Thus, they
must have the ability to perform the required
operations.

47

Create Statement:
CREATE ROLE HR;
GRANT SELECT ON

Nations,
Agents,
AgentStatuses,
Bases,
Regions,
Soldiers,
Classes,
Ranks

TO HR;
GRANT INSERT, UPDATE

ON Agents, Soldiers
TO HR;

Implementation
Notes

48

Implementation Notes

49

-- The primary purpose of this database is the coordination of the
military operations of XCOM. Non-combat staff can be placed in the
system, but there is no administrative capabilities on them besides
their current status.

-- The provided sample data does not include enough non-combat staff
to populate all bases. In reality, there should be agents at every base.
However, those were omitted in order to provide a clearer picture of
the main purpose of the database.

Known Issues

50

Known Issues
-- In the UnrespondedEvents view, the
timeSinceReported values display seconds
to an obnoxiously long decimal. This is
because the Age() function computes
from midnight instead the current time,
requiring a calculation instead to avoid,
resulting in the decimals.

-- Agents with statuses that should
prevent them from serving (such as KIA,
retired, etc.) are not prevented from
being enrolled in teams.

-- A soldier can be moved to different
base from their team, leaving the team
fragmented. Ideally, they should be
dropped from the team or have the team
moved with them.

51

Future
Enhancements

52

Future Enhancements

53

-- Map Nations to Regions and use that in
place of Regions for Events to better
pinpoint location.

-- Add more checks and policies for
Soldiers who have been wounded or no
longer serving XCOM.

-- Implement more checks on
updated/inserted data to avoid erroneous
input

-- Create Table for Skyrangers (Troop
Transport Jets) to coordinate
Striketeam Deployments. If there are no
Skyrangers available at the base, a
Striketeam cannot deploy to an event.

-- Expand database to cover the other
branches of XCOM staff, such as
Engineering and Science departments

