YugiohDB

By Graham Burek

April 26, 2016

Page 2

Table of Contents

Table of CONteNtS ..o 2
EXECULIVE SUMMATNY ...t e e e e e et e e eae e e eaans 3
A1 DT Td =1 1 4
TABIES ... e 5-19
I 4140 £ TPP 20-25
VWS ...ttt e et e et e e e e e e e e et e eaaaa e 26
Stored Proceduresooooviiiiiiiiiiiiieee e 27-28
EXaMPIE REPOIESoeeiiiiieiiii ettt e e e et e e e eaa e e e eeaaeeeeena 29
ROIES ... e e e e aaaa 30-32
Implementation NOtes.............coovviiiiiiiii e eees 33
KNOWN Problems.............oooimiiiiiiic e 34

FUBUIFE ENNANCOIM OINES ...ttt et e e et e e e eee e eneensnesasnseasnannes 35

Page 3

A common complaint from serious card game players is that card
companies often do a poor job of balancing their card games.
Because of this, players create decks from a small group of cards that
are so effective that they define the playstyle of the game. This can
eventually cause the game to become stale, since everybody runs a
twist on the dominant deck. YugiohDB is a database built to help

remedy this problem.

YugiohDB is a database built to manage Yu-Gi-Oh! card game
tournaments. It serves as a centralized way to manage tournament
registration for official tournament events all over the world. It has
the structure necessary to analyze card usage so that card balancing

decisions can be made based on empirical results.

An outline of the database is presented in the following pages. Tested

on PostgreSQL 9.5.

match _id
player_1_pid

player_2_pid
tid uns

= wlnnner_m m pid, tid N
id = "
pla?ef_z_ pid = did
pid

did

player_1_pid

tid :
tournament_name vid
tournament_date
vid

venue_name

Player Table

Page 5

A table that keeps track of players that have attended/registered a
tournament.

CREATE TABLE Player

(

pid INT NOT NULL UNIQUE,

player name TEXT NOT NULL,

dob DATE NOT NULL,

PRIMARY KEY (pid)

) ;

Dependencies: pid > player name, dob

Sample Data:

Output pane
Data Output Explain Messages History
pid player_name dob
integer | text date

1 1 Billy Brake 1980-09-10
2 2|Patrick Hoban 1981-10-01
3 3 Jerry Wang 1982-02-15
4 4 Dale Bellido 1983-06-02
= 5|Chris Bowling 1983-06-27
6 € Fili Luna 1986-01-28
7 7 Ryan Spicer 1987-01-19
8 g Matt Peddle 1988-10-24
9 9 Theerasak Poonsombat 1990-01-22
10 10 Cesar Gonalez 1993-05-04
11 11 Jason Holloway 1994-06-07
12 12 Roy St. Clair 1994-09-26
13 13 Anthony Alvarado 1995-02-17
14 14 Adam Corn 1996-03-19
15 15 Sean Conway 1996-05-13
16 16 Yugi Moto 1997-03-26

Page 6

Places Table

A table that keeps track of ZIP codes and their associated states and
cities.

CREATE TABLE Places

(

ZIP INT NOT NULL UNIQUE,
state TEXT NOT NULL,

city TEXT NOT NULL,

PRIMARY KEY (ZIP)

) ;

Dependencies: ZIP - state, city

Sample Data:

Output pane
Data Output = Explain Messages His

zip state city
integer text text

1 10301/NY Staten Island

2 89044 NV Las Vegas

3 94102 CA San Francisco

Bl 60290 IL Chicago

5 77001 TX Houston

6 17101/ NJ | Newark

7 22901 RI Providence

8 44101 CH Cleveland

9 33010 FL Miami

Page 7

Venue Table

A table that keeps track of tournament locations.

CREATE TABLE Venue

(

vid INT NOT NULL UNIQUE,

venue name TEXT NOT NULL,

address 1 TEXT NOT NULL,

address 2 TEXT,

address_3 TEXT,

ZIP INT NOT NULL references Places (ZIP),
PRIMARY KEY (vid)

) ;

Dependencies: vid 2> venue_name, address_1, 2, 3, ZIP

Sample Data:

Output pane
Data Output | Explain Messages History
vid venue_name address_1 address_2 address_3 zip
integer text text text text integer
1 1 Get There Games 1759 Victory Blwvd <NULL> <NULL> 10301
2 2 Alexis Park Resort 375 E. Harmon Ave. <NULL> <NULL> 89044
3 3 Florida International Uniwversity 3000 N.E. 1513t St. Wolf University Center <NULL> 33010
4 4 Top Cut Comics Chicago 6390 S. Archer Ave. <NULL> <NULL> 60290
5 5 Greenspoint Mall 12300 North Freeway <NULL> <NULL> 77001

SideDeck Table

A representative table for a side deck.

CREATE TABLE SideDeck

(
sdid INT NOT NULL UNIQUE,
PRIMARY KEY (sdid)

) ;

Dependencies: sdid >

Sample Data:

Output pane

Data Qutput E
sdid
integer

1

N oW N =

0 s M

Page 8

Page 9

Deck Table

A representative table for a deck.

CREATE TABLE Deck

(
did INT NOT NULL UNIQUE,

sdid INT NOT NULL references SideDeck (sdid),
deck name TEXT,
PRIMARY KEY (did)

) ;

Dependencies: did > sdid, deck_name

Sample Data:

Qutput pane
!

Data Output = Explain Messages History

did sdid deck_name
integer integer text

1 1 2 Blue-Eyes Turbo

2 2 1/Artifact Monarchs
3 3 S <NULL>

4 4 4 Dark Magic Deck

5 5 2 <NULL>

Tournament Table

A table that keeps track of tournaments.

CREATE TABLE Tournament

(

tid INT NOT NULL UNIQUE,

tournament name TEXT NOT NULL,

tournament date DATE NOT NULL CHECK (tournament date

vid INT NOT NULL references Venue (vid),

PRIMARY KEY (tid)

) ;

Dependencies: tid 2> tournament_name, date, vid

Sample Data:

Output pane

N b WN -

Data Qutput Explain Messages History

tid tournament_name
integer text

1 YCS Regional Qualifier Chicago
2 EVO 2016

3/ LLDS 2016

4 Ultimate Duelist Series

5 TCG World Champiconship

tournament_date vid
date integer

2016-09-20
016-07-15

016-11-01

NN NM
(PO I R SRR

Page 10

> now()),

Page 11

Duel Table

A table that keeps track of all the duels a player has in a tournament.

CREATE TABLE Duel

(
match id INT NOT NULL UNIQUE,

player 1 pid INT NOT NULL references Player (pid),
player 2 pid INT NOT NULL references Player (pid),
tid INT NOT NULL references Tournament (tid),

winner num INT NOT NULL CHECK (winner num IN(0,1,2)),
PRIMARY KEY (match id)

) ;

Dependencies: match_id - player_1_pid, player_2_pid, tid, winner_num

Sample Data:

Output pane

Data Qutput @ Explain Messages History
match_id player_1_pid player_2_ pid tid winner_num
integer integer integer integer integer

1 16 4 1

1 16

o -

=N O O

14
11 15

EN O WU A WNE
1 v s W M
]

3o W R s

Page 12

Registration Table

A table that keeps track of what tournaments every player is
registered for.

CREATE TABLE Registration

(
pid INT NOT NULL references Player (pid),

tid INT NOT NULL references Tournament (tid),
PRIMARY KEY (pid, tid)

) ;

Dependencies: (pid,tid) >

Sample Data:

Output pane
Data Qutput @ Explain
pid tid

integer integer
1

LN TR S I

RN O N ok WN -
MNOR

= W Mo

Runs Table

A table that keeps track of the decks players run in a given

tournament.

CREATE TABLE Runs

(

pid INT NOT NULL references Player (pid),

tid INT NOT NULL references Tournament (tid),
did INT NOT NULL references Deck (did),
PRIMARY KEY (pid, tid)

) ;

Dependencies: (pid,tid) > did

Sample Data:

Output pane

0N N e WN =

Data Output

pid

Explain

tid

Messages

did

integer integer integer

S T S B S R

(U BT B R)

Page 13

Page 14

Card Table

A table that contains basic information common to all YuGiOh cards.

CREATE TABLE Card

(

cid INT NOT NULL UNIQUE,

card name TEXT NOT NULL UNIQUE,
flavor text TEXT NOT NULL,

legality TEXT NOT NULL CHECK(legality IN('unrestricted', 'semi-
limited','limited’', 'forbidden')),

PRIMARY KEY (cid)
)

Dependencies: cid 2> card_name, flavor_text, legality

Sample Data:

QOutput pane

Data Output = Explain Messages History

cid card_name flavor_text legality
integer text text text
i Blue-E;'es White Dragon This legendary dragon is a powerful engine of destruction. Virtually invincible, very few have fiunrestricted
2 2 Black Luster Scldier This card can only be Special Summoned by removing 1 LIGHT and 1 DAR on in limited
3 3 Eclipse Wyvern If this card is sent to the G anish 1 Level 7 or higher LIGHT o ragon-Type mons’unrestricted
4 4 Maiden with Eyes of Blue When this card is targeted r a k: You can negate the atta & f you do, change the biunrestricted
5 S Flamvell Guard A Flamvell guardian who commands fire with his will. His magma-hot barrier protects his troops f:unrestricted
6 6 5 daman of Revealing Light|You n Special Summon this card £ your hand, then if this cards DEF is higher than the attac/unrestricted
7 T Mystical Space Typhocn Destroy 1 Spell or Trap Card on the Field. unrestricted

SideDeck Card Table

Page 15

A table that keeps track of what cards are in what side deck.

CREATE TABLE SideDeck Card

(

sdid INT NOT NULL references SideDeck (sdid),
cid INT NOT NULL references Card(cid),

gty INT NOT NULL CHECK(qgty IN(1,2,3)),
PRIMARY KEY (sdid,cid)

) ;

Dependencies: (sdid,cid) > qty

Sample Data:

Output pane

PN A WN =

Data Output

sdid

integer integer integer

1

NN ST N TR S R S

Explain

cid

1
29
22
25
11

=

6

Messages

qty

R e =

Page 16

Deck Card Table

A table that keeps track of what cards are in what deck.

CREATE TABLE Deck Card

(
did INT NOT NULL references Deck(did),

cid INT NOT NULL references Card(cid),
gty INT NOT NULL CHECK(gty IN(1,2,3)),
PRIMARY KEY (did,cid)

) ;

Dependencies: (did,cid) > qty

Sample Data:

Output pane

Data Output | Explain Messages
did cid gty
integer integer integer

1 1 2

ISR W N e
ST S I S S =
=
[\

Page 17

MonsterCard Table

A table that keeps track of specific information about monster cards.

CREATE TABLE MonsterCard

(

cid INT NOT NULL references Card(cid),
star level INT NOT NULL,
hasEffect BOOLEAN NOT NULL,
attack INT NOT NULL,
defense INT NOT NULL,
attribute TEXT NOT NULL,
monster type TEXT NOT NULL,
PRIMARY KEY (cid)

) ;

Dependencies: cid - star_level, hasEffect, attack, defense, attribute,
monster_type

Sample Data:

QOutput pane
Data Output = Explain Messages History
ad star_level haseffect attack defense attribute monster_type
integer integer | boolean integer integer text text
1 1 8 f 3000 2500 LIGHT Dragon
2 2 glt 3000 2500 DARK Warrior
3 3 it 1600 0 LIGHT Dragon
B} 4 1t 0 0 LIGHT Spellcaster
5 5 2 f 100 2000 FIRE Dragon
6 8 gt 0 2400 LIGHT Warrior
7 11 3t 1300 0 |DARK Machine

Page 18

SpellCard Table

A table that keeps track of specific information about spell cards.

CREATE TABLE SpellCard

(
cid INT NOT NULL references Card(cid),

spell type TEXT NOT NULL,
PRIMARY KEY (cid)

) ;

Dependencies: cid - spell_type

Sample Data:

Qutput pane

Data Output = Explain Messa
cid spell_type

19 Quick-Play

integer text

1 7 Quick-Play
2 g Normal

3 9 Normal

4 17 Quick-Play
5 18 Normal

6

7

27 Normal

TrapCard Table

Page 19

A table that keeps track of specific information about trap cards.

CREATE TABLE TrapCard

(

cid INT NOT NULL references Card(cid),
trap type TEXT NOT NULL,
PRIMARY KEY (cid)

) ;

Dependencies: cid - trap_type

Sample Data:

Output pane

ad

N e WN =

Data Qutput Explan Me

trap_type

integer text

n > -
10 Normal
20 Counter

I
2
21 Normal
3

Page 20

CheckLegality Trigger

A trigger that checks if a new card placed in Deck_Card or
SideDeck_Card has an acceptable value.

CREATE OR REPLACE FUNCTION checkLegality() RETURNS trigger AS
$5
DECLARE
currentRecord text;,
BEGIN

FOR currentRecord IN SELECT legality FROM Card WHERE NEW.cid
= Card.cid LOOP

IF currentRecord = 'forbidden' THEN

RAISE NOTICE 'Cid % is a forbidden card and cant be
used. ' ,NEW.cid,

RETURN NULL,
END IF;
END LOOP,
RETURN NEW,
END,

$$ LANGUAGE plpgsqgl;,

Page 21

Check Deck Size Trigger

A trigger that checks if a new card can be placed in or removed from
Deck_Card.

CREATE OR REPLACE FUNCTION check deck size() RETURNS trigger AS
$S
DECLARE

--deckID integer;

totalCards integer := 0;

currentRecord record;

BEGIN
--deckID := NEW.did;

FOR currentRecord IN SELECT Deck Card.qty FROM Deck Card
WHERE NEW.did = Deck_Card.did LOOP

totalCards := totalCards + currentRecord.qty;
END LOOP;
IF totalCards > 15 THEN

RAISE NOTICE 'The new deck is too big. It has % cards.',
totalCards;

RETURN NULL;
ELSIF totalCards < 10 THEN

RAISE NOTICE 'The new deck is too small. It has $%
cards.', totalCards;

RETURN NULL;
ELSE

RETURN NEW;

Page 22

END IF;
END ;
$$ LANGUAGE plpgsql;

Page 23

Check Side Deck Size Trigger

A trigger that checks if a new card to be placed in SideDeck_Card has
an acceptable value.

CREATE OR REPLACE FUNCTION check side deck size() RETURNS
trigger AS

$9

DECLARE
--deckID integer;,
totalCards integer := 0;

currentRecord record,

BEGIN
-—-deckID := NEW.did;

FOR currentRecord IN SELECT SideDeck Card.qty FROM
SideDeck Card WHERE NEW.sdid = SideDeck Card.sdid LOOP

totalCards := totalCards + currentRecord.qty,
END LOOP,
IF totalCards > 5 THEN

RAISE NOTICE 'The new side deck is too big. It has %
cards.', totalCards;,

RETURN NULL;
ELSE
RETURN NEW;
END IF;
END;

$$ LANGUAGE plpgsqgl;,

Page 24

Check Dueling Players Trigger

A trigger that checks to make sure that players are registered for a
tournament they duel in, and are not dueling themselves.

CREATE OR REPLACE FUNCTION check dueling players() RETURNS
trigger AS

$$
BEGIN
IF NEW.player 1 pid = NEW.player 2 pid THEN
RAISE NOTICE 'A player cannot duel his or herself!’;
RETURN NULL,

ELSIF NEW.player 1 pid NOT IN(SELECT pid FROM Registration
WHERE NEW.tid = Registration.tid) THEN

RAISE NOTICE 'Player 1 is not registered for that
tournament. ',

RETURN NULL;

ELSIF NEW.player 2 pid NOT IN(SELECT pid FROM Registration
WHERE NEW.tid = Registration.tid) THEN

RAISE NOTICE 'Player 2 is not registered for that
tournament. ',

RETURN NULL,
ELSE
RETURN NEW;
END IF;
END;

$$ LANGUAGE plpgsqgl;,

Page 25

Check Card Type Monster Trigger

A trigger that checks if a card is already a spell or trap card before
adding it as a monster card.

CREATE OR REPLACE FUNCTION check card type monster () RETURNS
trigger AS

$9
DECLARE
multitypeCards integer,
BEGIN
SELECT count (*) INTO multitypeCards FROM SpellCard, TrapCard
WHERE NEW.cid = SpellCard.cid
OR NEW.cid = TrapCard.cid;

--RAISE NOTICE 'multitype cards: %', multitypeCards,
IF multitypeCards > 0 THEN
RAISE NOTICE 'Card is already a trap or spell.’';,
RETURN NULL,
ELSE
RETURN NEW,
END IF;
END;,
SS LANGUAGE plpgsqgl;

NOTE: Two very similar triggers perform the same
functionality for monster cards and trap cards, and were
omitted.

Page 26

Monster/Spell/TrapCardView Views

Views that consolidate all monster/spell/trap card information.

CREATE VIEW MonsterCardView AS

SELECT
Card.cid,card name, flavor text,6legality, star level, hasEffect, att
ack,defense,attribute, monster type

FROM Card, MonsterCard

WHERE MonsterCard.cid = Card.cid;,

CREATE VIEW SpellCardView AS
SELECT Card.cid,card name,flavor text,6legality,6 spell type
FROM Card, SpellCard
WHERE SpellCard.cid = Card.cid;

CREATE VIEW TrapCardView AS
SELECT Card.cid,card name,flavor text,legality, trap type
FROM Card, TrapCard

WHERE TrapCard.cid = Card.cid;

Page 27

Stored Procedure
getCardsinDeck(integer)

Given a deck’s did, the procedure returns what cards are in the deck.

CREATE OR REPLACE FUNCTION getCardsInDeck (integer) RETURNS
TABLE (card name TEXT, qty INTEGER) AS

$$
DECLARE

deckID ALIAS FOR S$1;
BEGIN

RETURN QUERY

SELECT Card.card name, Deck Card.qty

FROM Card, Deck, Deck Card

WHERE Card.cid = Deck Card.cid

AND Deck.did = Deck Card.did

AND Deck.did = deckID,
END,

$$ LANGUAGE plpgsqgl;,

NOTE: One very similar procedure performs the same
functionality for side decks.

Page 28

Stored Procedure
getTournaments(integer)

Given a player’s pid, the procedure returns what tournaments the
players have signed up for.

CREATE OR REPLACE FUNCTION getTournaments (integer) RETURNS
TABLE (tournament name TEXT) AS

$$
DECLARE
playerID ALIAS FOR $1;

BEGIN
RETURN QUERY
SELECT Tournament. tournament name
FROM Tournament, Player, Registration
WHERE Tournament.tid = Registration. tid
AND Player.pid = Registration.pid
AND Player.pid = playerID;

END;

$$ LANGUAGE plpgsqgl;,

Example Reports

Page 29

Sample report for balancing—see what cards are most used in

professional decks.

SELECT card name, count(card name) AS occurences

FROM Deck, Card, Deck Card

WHERE Deck.did = Deck Card.did

AND Deck Card.cid = Card.cid

GROUP BY card_name

ORDER BY occurences DESC;,

Sample report for running tournament—see all the players that

have registered for a tournament.

SELECT player name

FROM Player, Registration,Tournament

WHERE Player.pid =
AND Tournament. tid

AND Tournament. tid

Registration.pid

Registration. tid

<<insert tid here>>

Roles

Page 30

The database currently supports three kinds of roles: Admin, Checklin,
and Judge.

CREATE ROLE CheckIn/,

CREATE ROLE Admin;

CREATE ROLE Judge,

Admin: Has administrative power over the entire database.

GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT

SELECT,
SELECT,
SELECT,
SELECT,
SELECT,
SELECT,
SELECT,
SELECT,
SELECT,
SELECT,
SELECT,
SELECT,
SELECT,
SELECT,
SELECT,

INSERT,
INSERT,
INSERT,
INSERT,
INSERT,
INSERT,
INSERT,
INSERT,
INSERT,
INSERT,
INSERT,
INSERT,
INSERT,
INSERT,
INSERT,

UPDATE,
UPDATE,
UPDATE,
UPDATE,
UPDATE,
UPDATE,
UPDATE,
UPDATE,
UPDATE,
UPDATE,
UPDATE,
UPDATE,
UPDATE,
UPDATE,
UPDATE,

DELETE
DELETE
DELETE
DELETE
DELETE
DELETE
DELETE
DELETE
DELETE
DELETE
DELETE
DELETE
DELETE
DELETE

DELETE

ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON

Duel TO Admin;,

Player TO Admin;,
Registration TO Admin;
Tournament TO Admin,
Places TO Admin;

Runs TO Admin;
SideDeck TO Admin;,
SideDeck Card TO Admin;
Venue TO Admin;,

Deck TO Admin;,

Deck Card TO Admin;
Card TO Admin,
MonsterCard TO Admin;
SpellCard TO Admin/,
TrapCard TO Admin;

Page 31

Checkin: Has the power to add, remove, or register players for a

given tournament.

REVOKE
REVOKRE
REVOKE
REVOKE
REVOKRE
REVOKE
REVOKE
REVOKE
REVOKE
REVOKE
REVOKE
REVOKE
REVOKE
REVOKE
REVOKE

PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES

GRANT SELECT, INSERT,

GRANT SELECT, INSERT,

ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON

ON

Duel FROM CheckIn,

Player FROM ChecklIn/,
Registration FROM CheckIn;,
Tournament FROM CheckIn;,
Places FROM CheckIn/,

Runs FROM CheckIn,
SideDeck FROM CheckIn;,
SideDeck Card FROM CheckIn;
Venue FROM ChecklIn/,

Deck FROM CheckIn,

Deck Card FROM ChecklIn;
Card FROM CheckIn;,
MonsterCard FROM CheckIn;
SpellCard FROM CheckIn,
TrapCard FROM CheckIn,

UPDATE, DELETE ON Registration TO CheckIn/,

UPDATE, DELETE ON Player TO CheckIn;

GRANT SELECT ON Tournament TO CheckIn;

Page 32

Judge: Has the final say about the outcome of a duel. Can

disqualify a player for cheating or poor conduct.

REVOKE
REVOKRE
REVOKE
REVOKE
REVOKRE
REVOKE
REVOKE
REVOKE
REVOKE
REVOKE
REVOKE
REVOKE
REVOKE
REVOKE
REVOKE

GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT

GRANT

GRANT

PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES
PRIVILEGES

ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON

Duel FROM Judge,

Player FROM Judge,
Registration FROM Judge;,
Tournament FROM Judge;,
Places FROM Judge,

Runs FROM Judge;,
SideDeck FROM Judge;,
SideDeck Card FROM Judge,
Venue FROM Judge;,

Deck FROM Judge;,

Deck Card FROM Judge,
Card FROM Judge,
MonsterCard FROM Judge;,
SpellCard FROM Judge,
TrapCard FROM Judge,

SELECT, INSERT, UPDATE, DELETE ON Duel TO Judge,
SELECT, DELETE ON Player TO Judge,
SELECT ON Registration TO Judge,
SELECT, DELETE ON Runs TO Judge,
SELECT ON SideDeck TO Judge,
SELECT ON SideDeck Card TO Judge,
SELECT ON Deck TO Judge,

SELECT ON Deck Card TO Judge,

SELECT ON Card TO Judge,

Page 33

Implementation Noftes

For simplicity, decks and side decks in the database were
defined as being between 10 and 15 and 0 and 5 cards
respectively. In official YuGiOh rules, decks consist of 40-60
cards, and side decks are 0-15 cards.

The SideDeck table is necessary, even though it is only a primary
key. It is needed as a way to refer to the group of 15 cards that it
is made of.

Page 34

Known Problems

Another view might be helpful to make tournament info easier to
access.

Page 35

Future Enhancements

Account for Pendulum-type monsters (both spell and monster
types).

Create trigger that flags cards with an extremely high deck
inclusion rate.

