
YugiohDB

By Graham Burek

April 26, 2016

Page 2

Table of Contents

Table of contents ... 2

Executive Summary ... 3

E/R Diagram ... 4

Tables .. 5-19

Triggers .. 20-25

Views .. 26

Stored Procedures .. 27-28

Example Reports .. 29

Roles .. 30-32

Implementation Notes... 33

Known Problems .. 34

Future Enhancements .. 35

Page 3

A common complaint from serious card game players is that card

companies often do a poor job of balancing their card games.

Because of this, players create decks from a small group of cards that

are so effective that they define the playstyle of the game. This can

eventually cause the game to become stale, since everybody runs a

twist on the dominant deck. YugiohDB is a database built to help

remedy this problem.

YugiohDB is a database built to manage Yu-Gi-Oh! card game

tournaments. It serves as a centralized way to manage tournament

registration for official tournament events all over the world. It has

the structure necessary to analyze card usage so that card balancing

decisions can be made based on empirical results.

An outline of the database is presented in the following pages. Tested

on PostgreSQL 9.5.

Page 4

Page 5

Player Table

A table that keeps track of players that have attended/registered a

tournament.

CREATE TABLE Player

(

pid INT NOT NULL UNIQUE,

player_name TEXT NOT NULL,

dob DATE NOT NULL,

PRIMARY KEY(pid)

);

Dependencies: pid  player_name, dob

Sample Data:

Page 6

Places Table

A table that keeps track of ZIP codes and their associated states and

cities.

CREATE TABLE Places

(

ZIP INT NOT NULL UNIQUE,

state TEXT NOT NULL,

city TEXT NOT NULL,

PRIMARY KEY(ZIP)

);

Dependencies: ZIP  state, city

Sample Data:

Page 7

Venue Table

A table that keeps track of tournament locations.

CREATE TABLE Venue

(

vid INT NOT NULL UNIQUE,

venue_name TEXT NOT NULL,

address_1 TEXT NOT NULL,

address_2 TEXT,

address_3 TEXT,

ZIP INT NOT NULL references Places(ZIP),

PRIMARY KEY(vid)

);

Dependencies: vid  venue_name, address_1, 2, 3, ZIP

Sample Data:

Page 8

SideDeck Table

A representative table for a side deck.

CREATE TABLE SideDeck

(

sdid INT NOT NULL UNIQUE,

PRIMARY KEY(sdid)

);

Dependencies: sdid 

Sample Data:

Page 9

Deck Table

A representative table for a deck.

CREATE TABLE Deck

(

did INT NOT NULL UNIQUE,

sdid INT NOT NULL references SideDeck(sdid),

deck_name TEXT,

PRIMARY KEY(did)

);

Dependencies: did  sdid, deck_name

Sample Data:

Page 10

Tournament Table

A table that keeps track of tournaments.

CREATE TABLE Tournament

(

tid INT NOT NULL UNIQUE,

tournament_name TEXT NOT NULL,

tournament_date DATE NOT NULL CHECK(tournament_date > now()),

vid INT NOT NULL references Venue(vid),

PRIMARY KEY(tid)

);

Dependencies: tid  tournament_name, date, vid

Sample Data:

Page 11

Duel Table

A table that keeps track of all the duels a player has in a tournament.

CREATE TABLE Duel

(

match_id INT NOT NULL UNIQUE,

player_1_pid INT NOT NULL references Player(pid),

player_2_pid INT NOT NULL references Player(pid),

tid INT NOT NULL references Tournament(tid),

winner_num INT NOT NULL CHECK(winner_num IN(0,1,2)),

PRIMARY KEY(match_id)

);

Dependencies: match_id  player_1_pid, player_2_pid, tid, winner_num

Sample Data:

Page 12

Registration Table

A table that keeps track of what tournaments every player is

registered for.

CREATE TABLE Registration

(

pid INT NOT NULL references Player(pid),

tid INT NOT NULL references Tournament(tid),

PRIMARY KEY(pid,tid)

);

Dependencies: (pid,tid) 

Sample Data:

Page 13

Runs Table

A table that keeps track of the decks players run in a given

tournament.

CREATE TABLE Runs

(

pid INT NOT NULL references Player(pid),

tid INT NOT NULL references Tournament(tid),

did INT NOT NULL references Deck(did),

PRIMARY KEY(pid,tid)

);

Dependencies: (pid,tid)  did

Sample Data:

Page 14

Card Table

A table that contains basic information common to all YuGiOh cards.

CREATE TABLE Card

(

cid INT NOT NULL UNIQUE,

card_name TEXT NOT NULL UNIQUE,

flavor_text TEXT NOT NULL,

legality TEXT NOT NULL CHECK(legality IN('unrestricted','semi-

limited','limited','forbidden')),

PRIMARY KEY(cid)

);

Dependencies: cid  card_name, flavor_text, legality

Sample Data:

Page 15

SideDeck_Card Table

A table that keeps track of what cards are in what side deck.

CREATE TABLE SideDeck_Card

(

sdid INT NOT NULL references SideDeck(sdid),

cid INT NOT NULL references Card(cid),

qty INT NOT NULL CHECK(qty IN(1,2,3)),

PRIMARY KEY(sdid,cid)

);

Dependencies: (sdid,cid)  qty

Sample Data:

Page 16

Deck_Card Table

A table that keeps track of what cards are in what deck.

CREATE TABLE Deck_Card

(

did INT NOT NULL references Deck(did),

cid INT NOT NULL references Card(cid),

qty INT NOT NULL CHECK(qty IN(1,2,3)),

PRIMARY KEY(did,cid)

);

Dependencies: (did,cid)  qty

Sample Data:

Page 17

MonsterCard Table

A table that keeps track of specific information about monster cards.

CREATE TABLE MonsterCard

(

cid INT NOT NULL references Card(cid),

star_level INT NOT NULL,

hasEffect BOOLEAN NOT NULL,

attack INT NOT NULL,

defense INT NOT NULL,

attribute TEXT NOT NULL,

monster_type TEXT NOT NULL,

PRIMARY KEY(cid)

);

Dependencies: cid  star_level, hasEffect, attack, defense, attribute,

monster_type

Sample Data:

Page 18

SpellCard Table

A table that keeps track of specific information about spell cards.

CREATE TABLE SpellCard

(

cid INT NOT NULL references Card(cid),

spell_type TEXT NOT NULL,

PRIMARY KEY(cid)

);

Dependencies: cid  spell_type

Sample Data:

Page 19

TrapCard Table

A table that keeps track of specific information about trap cards.

CREATE TABLE TrapCard

(

cid INT NOT NULL references Card(cid),

trap_type TEXT NOT NULL,

PRIMARY KEY(cid)

);

Dependencies: cid  trap_type

Sample Data:

Page 20

CheckLegality Trigger

A trigger that checks if a new card placed in Deck_Card or

SideDeck_Card has an acceptable value.

CREATE OR REPLACE FUNCTION checkLegality() RETURNS trigger AS

$$

DECLARE

 currentRecord text;

BEGIN

 FOR currentRecord IN SELECT legality FROM Card WHERE NEW.cid

= Card.cid LOOP

 IF currentRecord = 'forbidden' THEN

 RAISE NOTICE 'Cid % is a forbidden card and cant be

used.',NEW.cid;

 RETURN NULL;

 END IF;

 END LOOP;

 RETURN NEW;

END;

$$ LANGUAGE plpgsql;

Page 21

Check_Deck_Size Trigger

A trigger that checks if a new card can be placed in or removed from

Deck_Card.

CREATE OR REPLACE FUNCTION check_deck_size() RETURNS trigger AS

$$

DECLARE

 --deckID integer;

 totalCards integer := 0;

 currentRecord record;

BEGIN

 --deckID := NEW.did;

 FOR currentRecord IN SELECT Deck_Card.qty FROM Deck_Card

WHERE NEW.did = Deck_Card.did LOOP

 totalCards := totalCards + currentRecord.qty;

 END LOOP;

 IF totalCards > 15 THEN

 RAISE NOTICE 'The new deck is too big. It has % cards.',

totalCards;

 RETURN NULL;

 ELSIF totalCards < 10 THEN

 RAISE NOTICE 'The new deck is too small. It has %

cards.', totalCards;

 RETURN NULL;

 ELSE

 RETURN NEW;

Page 22

 END IF;

END;

$$ LANGUAGE plpgsql;

Page 23

Check_Side_Deck_Size Trigger

A trigger that checks if a new card to be placed in SideDeck_Card has

an acceptable value.

CREATE OR REPLACE FUNCTION check_side_deck_size() RETURNS

trigger AS

$$

DECLARE

 --deckID integer;

 totalCards integer := 0;

 currentRecord record;

BEGIN

 --deckID := NEW.did;

 FOR currentRecord IN SELECT SideDeck_Card.qty FROM

SideDeck_Card WHERE NEW.sdid = SideDeck_Card.sdid LOOP

 totalCards := totalCards + currentRecord.qty;

 END LOOP;

 IF totalCards > 5 THEN

 RAISE NOTICE 'The new side deck is too big. It has %

cards.', totalCards;

 RETURN NULL;

 ELSE

 RETURN NEW;

 END IF;

END;

$$ LANGUAGE plpgsql;

Page 24

Check_Dueling_Players Trigger

A trigger that checks to make sure that players are registered for a

tournament they duel in, and are not dueling themselves.

CREATE OR REPLACE FUNCTION check_dueling_players() RETURNS

trigger AS

$$

BEGIN

 IF NEW.player_1_pid = NEW.player_2_pid THEN

 RAISE NOTICE 'A player cannot duel his or herself!';

 RETURN NULL;

 ELSIF NEW.player_1_pid NOT IN(SELECT pid FROM Registration

WHERE NEW.tid = Registration.tid) THEN

 RAISE NOTICE 'Player 1 is not registered for that

tournament.';

 RETURN NULL;

 ELSIF NEW.player_2_pid NOT IN(SELECT pid FROM Registration

WHERE NEW.tid = Registration.tid) THEN

 RAISE NOTICE 'Player 2 is not registered for that

tournament.';

 RETURN NULL;

 ELSE

 RETURN NEW;

 END IF;

END;

$$ LANGUAGE plpgsql;

Page 25

Check_Card_Type_Monster Trigger

A trigger that checks if a card is already a spell or trap card before

adding it as a monster card.

CREATE OR REPLACE FUNCTION check_card_type_monster() RETURNS

trigger AS

$$

DECLARE

 multitypeCards integer;

BEGIN

 SELECT count(*) INTO multitypeCards FROM SpellCard, TrapCard

 WHERE NEW.cid = SpellCard.cid

 OR NEW.cid = TrapCard.cid;

 --RAISE NOTICE 'multitype cards: %', multitypeCards;

 IF multitypeCards > 0 THEN

 RAISE NOTICE 'Card is already a trap or spell.';

 RETURN NULL;

 ELSE

 RETURN NEW;

 END IF;

END;

$$ LANGUAGE plpgsql;

 NOTE: Two very similar triggers perform the same

functionality for monster cards and trap cards, and were

omitted.

Page 26

Monster/Spell/TrapCardView Views

Views that consolidate all monster/spell/trap card information.

CREATE VIEW MonsterCardView AS

 SELECT

Card.cid,card_name,flavor_text,legality,star_level,hasEffect,att

ack,defense,attribute,monster_type

 FROM Card, MonsterCard

 WHERE MonsterCard.cid = Card.cid;

CREATE VIEW SpellCardView AS

 SELECT Card.cid,card_name,flavor_text,legality,spell_type

 FROM Card, SpellCard

 WHERE SpellCard.cid = Card.cid;

CREATE VIEW TrapCardView AS

 SELECT Card.cid,card_name,flavor_text,legality,trap_type

 FROM Card, TrapCard

 WHERE TrapCard.cid = Card.cid;

Page 27

Stored Procedure

getCardsInDeck(integer)

Given a deck’s did, the procedure returns what cards are in the deck.

 CREATE OR REPLACE FUNCTION getCardsInDeck(integer) RETURNS

TABLE(card_name TEXT, qty INTEGER) AS

$$

DECLARE

 deckID ALIAS FOR $1;

BEGIN

 RETURN QUERY

 SELECT Card.card_name, Deck_Card.qty

 FROM Card, Deck, Deck_Card

 WHERE Card.cid = Deck_Card.cid

 AND Deck.did = Deck_Card.did

 AND Deck.did = deckID;

END;

$$ LANGUAGE plpgsql;

 NOTE: One very similar procedure performs the same

functionality for side decks.

Page 28

Stored Procedure

getTournaments(integer)

Given a player’s pid, the procedure returns what tournaments the

players have signed up for.

 CREATE OR REPLACE FUNCTION getTournaments(integer) RETURNS

TABLE(tournament_name TEXT) AS

$$

DECLARE

 playerID ALIAS FOR $1;

BEGIN

 RETURN QUERY

 SELECT Tournament.tournament_name

 FROM Tournament, Player, Registration

 WHERE Tournament.tid = Registration.tid

 AND Player.pid = Registration.pid

 AND Player.pid = playerID;

END;

$$ LANGUAGE plpgsql;

Page 29

Example Reports

 Sample report for balancing—see what cards are most used in

professional decks.

 SELECT card_name, count(card_name) AS occurences

FROM Deck, Card, Deck_Card

WHERE Deck.did = Deck_Card.did

AND Deck_Card.cid = Card.cid

GROUP BY card_name

ORDER BY occurences DESC;

 Sample report for running tournament—see all the players that

have registered for a tournament.

SELECT player_name

FROM Player, Registration,Tournament

WHERE Player.pid = Registration.pid

AND Tournament.tid = Registration.tid

AND Tournament.tid = <<insert tid here>>

Page 30

Roles

The database currently supports three kinds of roles: Admin, CheckIn,

and Judge.

CREATE ROLE CheckIn;

CREATE ROLE Admin;

CREATE ROLE Judge;

 Admin: Has administrative power over the entire database.

GRANT SELECT, INSERT, UPDATE, DELETE ON Duel TO Admin;

GRANT SELECT, INSERT, UPDATE, DELETE ON Player TO Admin;

GRANT SELECT, INSERT, UPDATE, DELETE ON Registration TO Admin;

GRANT SELECT, INSERT, UPDATE, DELETE ON Tournament TO Admin;

GRANT SELECT, INSERT, UPDATE, DELETE ON Places TO Admin;

GRANT SELECT, INSERT, UPDATE, DELETE ON Runs TO Admin;

GRANT SELECT, INSERT, UPDATE, DELETE ON SideDeck TO Admin;

GRANT SELECT, INSERT, UPDATE, DELETE ON SideDeck_Card TO Admin;

GRANT SELECT, INSERT, UPDATE, DELETE ON Venue TO Admin;

GRANT SELECT, INSERT, UPDATE, DELETE ON Deck TO Admin;

GRANT SELECT, INSERT, UPDATE, DELETE ON Deck_Card TO Admin;

GRANT SELECT, INSERT, UPDATE, DELETE ON Card TO Admin;

GRANT SELECT, INSERT, UPDATE, DELETE ON MonsterCard TO Admin;

GRANT SELECT, INSERT, UPDATE, DELETE ON SpellCard TO Admin;

GRANT SELECT, INSERT, UPDATE, DELETE ON TrapCard TO Admin;

Page 31

 CheckIn: Has the power to add, remove, or register players for a

given tournament.

REVOKE ALL PRIVILEGES ON Duel FROM CheckIn;

REVOKE ALL PRIVILEGES ON Player FROM CheckIn;

REVOKE ALL PRIVILEGES ON Registration FROM CheckIn;

REVOKE ALL PRIVILEGES ON Tournament FROM CheckIn;

REVOKE ALL PRIVILEGES ON Places FROM CheckIn;

REVOKE ALL PRIVILEGES ON Runs FROM CheckIn;

REVOKE ALL PRIVILEGES ON SideDeck FROM CheckIn;

REVOKE ALL PRIVILEGES ON SideDeck_Card FROM CheckIn;

REVOKE ALL PRIVILEGES ON Venue FROM CheckIn;

REVOKE ALL PRIVILEGES ON Deck FROM CheckIn;

REVOKE ALL PRIVILEGES ON Deck_Card FROM CheckIn;

REVOKE ALL PRIVILEGES ON Card FROM CheckIn;

REVOKE ALL PRIVILEGES ON MonsterCard FROM CheckIn;

REVOKE ALL PRIVILEGES ON SpellCard FROM CheckIn;

REVOKE ALL PRIVILEGES ON TrapCard FROM CheckIn;

GRANT SELECT, INSERT, UPDATE, DELETE ON Registration TO CheckIn;

GRANT SELECT, INSERT, UPDATE, DELETE ON Player TO CheckIn;

GRANT SELECT ON Tournament TO CheckIn;

Page 32

 Judge: Has the final say about the outcome of a duel. Can

disqualify a player for cheating or poor conduct.

REVOKE ALL PRIVILEGES ON Duel FROM Judge;

REVOKE ALL PRIVILEGES ON Player FROM Judge;

REVOKE ALL PRIVILEGES ON Registration FROM Judge;

REVOKE ALL PRIVILEGES ON Tournament FROM Judge;

REVOKE ALL PRIVILEGES ON Places FROM Judge;

REVOKE ALL PRIVILEGES ON Runs FROM Judge;

REVOKE ALL PRIVILEGES ON SideDeck FROM Judge;

REVOKE ALL PRIVILEGES ON SideDeck_Card FROM Judge;

REVOKE ALL PRIVILEGES ON Venue FROM Judge;

REVOKE ALL PRIVILEGES ON Deck FROM Judge;

REVOKE ALL PRIVILEGES ON Deck_Card FROM Judge;

REVOKE ALL PRIVILEGES ON Card FROM Judge;

REVOKE ALL PRIVILEGES ON MonsterCard FROM Judge;

REVOKE ALL PRIVILEGES ON SpellCard FROM Judge;

REVOKE ALL PRIVILEGES ON TrapCard FROM Judge;

GRANT SELECT, INSERT, UPDATE, DELETE ON Duel TO Judge;

GRANT SELECT, DELETE ON Player TO Judge;

GRANT SELECT ON Registration TO Judge;

GRANT SELECT, DELETE ON Runs TO Judge;

GRANT SELECT ON SideDeck TO Judge;

GRANT SELECT ON SideDeck_Card TO Judge;

GRANT SELECT ON Deck TO Judge;

GRANT SELECT ON Deck_Card TO Judge;

GRANT SELECT ON Card TO Judge;

Page 33

Implementation Notes

 For simplicity, decks and side decks in the database were

defined as being between 10 and 15 and 0 and 5 cards

respectively. In official YuGiOh rules, decks consist of 40-60

cards, and side decks are 0-15 cards.

 The SideDeck table is necessary, even though it is only a primary

key. It is needed as a way to refer to the group of 15 cards that it

is made of.

Page 34

Known Problems

 Another view might be helpful to make tournament info easier to

access.

Page 35

Future Enhancements

 Account for Pendulum-type monsters (both spell and monster

types).

 Create trigger that flags cards with an extremely high deck

inclusion rate.

