A

Parallel
Programming
Primer

Dy
Alan G. Labouseur
alan@|_abouseur.com

mailto:alan@Labouseur.com
mailto:alan@Labouseur.com

A

Parallel
Programming
Primer

Dy
Alan G. Labouseur
alan@|_abouseur.com

mailto:alan@Labouseur.com
mailto:alan@Labouseur.com

A
Parallel
Programming

Primer
Dy

Alan G. Labouseur
alan@|_abouseur.com

mailto:alan@Labouseur.com
mailto:alan@Labouseur.com

A
Parallel
Programming

Primer
Dy

L Alan G. Labouseur
 alan@l abouseur.com

Mission Brief:
1.History
2.Data Parallel
3.Task Parallel
4.Yesterday
5.Today

6. Tomorrow

mailto:alan@Labouseur.com
mailto:alan@Labouseur.com

History

Early Parallel Programming

—

1984 - DeWitt's Gamma Database Machine

e Many processors, many disks
e Shared-nothing architecture

e Three keys to parallelism:

1. Coordinated scheduling

2. Parallel hash algorithms for
relational operators

3. Tables are horizontally
partitioned/declustered

e Three declustering strategies

VAX 11/780

THE ORIGINAL UNIT

OF ONE.

Data Parallel

Round-Robin Declustering

Data Heap

Data Parallel

Round-Robin Declustering

Data Heap

HHEEEEEEEEE
-

Node 0 Node | Node 2

Data Parallel

Hashed Declustering

Data Heap

(Goofy) Hash function: Even or Odd

Data Parallel
Hashed Declustering

Data Heap

vt
* (Goofy) Hash function: Even or Odd R

Node 0 Node | Node 2

Data Parallel

Range Table

Condition

Node

id<=5

0

id>5 andid <= 10

Sharded Declustering
Data Heap
Node 0 Node |

id> 10

2

Node 2

e NO! Distributing the data is only half the battle.

e Bad News: Moore’s Law is leveling out.
» CPU cores aren’t getting much faster.

» Thus limiting our capabilities on a single-CPU

e Good News: We're getting more cores every day.

» Intel i7 Ivy Bridge microprocessor

- dual-core (2 real / 4 virtual)

- quad-core (4 real / 8 virtual)

Task (Function) Parallel

Seee

Sees

Single-core Quad-core

All we need is programming language
support.

A Family History

ALGOL 1960s
Pasclal, C 1970s
C£+ 1980s
Java,]gelphi 1990s

|

CH 2000s

A Family History

ALGOL [960s
Pasclal, C 1970s
C-ll-+ 1980s
Java,]l)elphi 1990s

|

CH 2000s

e C++ /Java / C

» Shared-state
concurrency

» Encapsulation is not
complete

- Thread scheduling
does not obey
encapsulation rules 4 =
regardless of how you
write your objects.

- Most code is unsafe for
scaling up or out.

e C++ /Java / C

» Concurrency is in the

plumbing
- Developers are
responsible for BANG
determinism... HEAD
- by adding locks, HERE

semaphores, monitors,
which cause race
conditions and

deadlock.

» Thread safety a
programmer problem.

Yesterday

e C++ /Java / C

» Refactoring is
complicated and error-
prone.

- Needs IDE to help out
» Mutable State

- Side effects

- Heisenbugs

» Difficult to parallelize.

Another Family History

ALGOL 1960s
Pasclal, C 1970s
C£+ 1980s
Java, Il)elphi 1990s

|

CH 2000s

LISP

|

ML

|

Erlang

|

Haskell

|

F#, Scala

Another Family History

ALGOL 1960s
Pasclal, C 1970s
C£+ 1980s
Java, Il)elphi 1990s

|

CH 2000s

LISP

|

ML

|

Erlang

|

Haskell

|

F#, Scala

lToday

e C++ /Java / C Erlang / Scala
» Shared-state » Shared-nothing
concurrency concurrency
» Encapsulation is not » Encapsulation of state
complete and behavior is complete
- Thread scheduling - Actors are completely
does not obey isolated, only
encapsulation rules communicating with
regardless of how you messages.

write yo@ur objects.

- Most code is unsafe for - Most code is safe for
scaling up or out. scaling up and out.

lToday

e C++ /Java / C

» Concurrency is in the
plumbing

- Developers are
responsible for
determinism...

- by adding locks,
semaphaores, monitors,
which cause race
conditions and

deadlock:

» Thread safety a
programmer problem.

 Erlang / Scala

» Actors hoist the
concurrency abstraction
from the plumbing to the
workflow.

- Developers are
responsible workflow...

- by passing immutable
messages to non-
blocking asynchronous
actors.

» Thread safety is a
runtime feature.

e C++ /Java / C Erlang / Scala

» Refactoring is » Type inference makes
complicated and error- much refactoring instant
prone. and error-free.

- Needs IDE todelp out - No IDE help, it's in the
language

» Mutable State » Immutable State
- “Side effects - No side effects
- Heisenbugs - Fewer bugs

» Difficult to parallelize. » Easier to parallelize within

the limits noted by Amdahl and Gustafson).

 Erlang in the world

Mobile, Xerox, Jane Street, Google, Apple,

Basho, Ericsson, Heroku, InfoQ, and many
others, especially in Europe.

» Amazon, Facebook, British Telecom, T- [A
E

RLANG
e Scala in the world

» Twitter, LinkedIn, FourSquare, Siemens,
Sony Pictures, Tumblr, UBS, Morgan ’ scala

Stanley, Capital I1Q, Google, HP, eBay,
zeebox, Heroku, and many more.

Tomorrow

e Go out and learn Erlang.
B |

Programming

ao TP

INACTION

E 1 Software for i
r a.n Concurrent World

Seven Languages
in Seven Weeks
 Gooutand learn Scala. | e

Guide to
A comprehensive step-by-step guide _m Lear nlng
o Programming
Programming in Lan guages
Programming
cala Scal
Toeide Muldts Core Comglexaty
.. on e Java Virtuad Machine
Second Edition
Bruce A.Tate
Edited by Jacquelyn Carter
Martin Odersky
. Lex Spoon Vienkea! Seabraamaandam
artima Bill Venners St by (et 4 Sy

