
4/25/12 10:06 AMWhy Erlang? | SMYCK

Page 1 of 5http://smyck.net/2012/04/22/why-erlang/

Why Erlang?

The chance that you are reading this blog post on a device with a multicore cpu is in-
creasing on a daily basis which is why everybody is talking about concurrency now.
Concurrency for our web applications and API backends means that we’d like our htop
to look like this:

I’ve recently been to a really awesome ruby conference and three or four talks out of 21
were about concurrency. The ruby community is quite open and so many possibilities
were discussed: Using threads, using different ruby runtimes to circumvent the GIL, us-
ing more processes, using the actor model via libraries like Celluloid or even using
Akka through JRuby.

While the actor model seems to be a good fit for building concurrent network applica-
tions it often suffers from problems if the runtime it is implemented in has no “native”
support for it. There are implementations for Ruby, Python and Java but they all have to
jump through several hoops to get the job done and are not necessarily yielding the best
performance. This is one of many reasons why Erlang would be a much better choice
but first, lets talk about this actor model for a bit to understand why it is such a good fit.

http://railsberry.com/
https://en.wikipedia.org/wiki/Global_Interpreter_Lock
https://en.wikipedia.org/wiki/Actor_model
http://celluloid.io/
http://akka.io/


4/25/12 10:06 AMWhy Erlang? | SMYCK

Page 2 of 5http://smyck.net/2012/04/22/why-erlang/

The Actor Model

There is this nice quote from wikipedia which offers a first glimpse:

»The Actor model adopts the philosophy that everything is an actor. This is
similar to the everything is an object philosophy used by some object-oriented
programming languages, but differs in that object-oriented software is typical-
ly executed sequentially, while the Actor model is inherently concurrent.«

While there are some resemblances between actors and objects, like modularity, encap-
sulation and message passing, the main feature of actors is that they are being run at the
same time.

Strictly using message passing for sharing state with other actors which run in parallel
enables asynchronous communication, meaning that the sender does not have to wait
for a response from the receiver.

Another big difference to the OOP world is that in the actor model there is no global
state and therefore also no shared memory between actors. In languages like Java, Ruby
and Python there is always global state and threads have access to shared memory. This
is often a cause for trouble in the form of deadlocks or race conditions and is maybe the
biggest pain of using threads.

In the actor model each actor has its own internal state and is only sharing it via mes-
sages. Thereby it is acting as a serializer for access to its state and effectively preventing
deadlocks and race conditions.

It might be also worth noting that the actor model especially makes sense for functional
languages as they embrace the concept of immutable data.

There is a lot more to read about actors but I would say these are the most important
bits to know. In general the actor model makes designing and implementing concurrent
applications a lot easier. Compared to threads there is no need of managing the access to
information with mutexes, locks or semaphores or other complex abstractions.

Ok, so what about Erlang?



4/25/12 10:06 AMWhy Erlang? | SMYCK

Page 3 of 5http://smyck.net/2012/04/22/why-erlang/

First let me tell you that for years I have been a passionate Ruby developer. I really like
the language and community a lot. From time to time though I felt I was hitting some
invisible walls when it came to network applications like web apps, web servers, prox-
ies etc. Basically everything that had to handle a lot of requests and/or did non trivial
tasks.

I had Erlang on my radar for quite some time but coming from my ivory tower with a
ruby rooftop it took several attempts to convince me that it was worth a try. Conceptual-
ly it already made a lot of sense to me and I’m sure that most people who read about Er-
lang will agree. I have to admit that I was mostly appalled by the weird syntax so much
that it stopped me from trying. This was a big mistake though and a large part of my
motivation to write this blog post is about telling you that you should try out Erlang as
soon as possible.

Anyway, first lets describe Erlang in one line:

Erlang is a functional language, implementing the actor model for concurrency.

Its a language which was developed by Ericsson for their carrier grade telecom switches
and the design goals were to create a language that would allow to design fault tolerant,
highly available and concurrently running systems.

You can read all about it on wikipedia or this awesome website: http://learnyou-
someerlang.com/ – They do a much better job describing the language.

Case study for Erlang at Wooga

This post is about getting you to try it and I will do that by telling a story about Erlang
at Wooga.

Wooga makes social games with millions of daily active users. The games constantly
talk to the servers to transform and persist the users game state. Some of our game back-
ends are developed in Ruby and that worked really well so far. Ruby, like I said, is a re-
ally nice programming language and although it is certainly not the fastest, you can
squeeze a lot of performance out of it when you know what you are doing.

http://en.wikipedia.org/wiki/Erlang_(programming_language)
http://learnyousomeerlang.com/
http://www.wooga.com/


4/25/12 10:06 AMWhy Erlang? | SMYCK

Page 4 of 5http://smyck.net/2012/04/22/why-erlang/

Our biggest game in terms of users, revenue and backend complexity runs on about 80
to 200 application servers though. It handles about 5000-7000 requests per second and
almost all of them are changing the game state of the user. I’d say the amount of appli-
cation servers is still reasonable for the amount of load but its certainly not the most im-
pressive number.

Then some day a new backend had to be built for a game with similar complexity and
my colleague Paolo suggested to use Erlang this time as he thought it would be a really
great fit for us. We hired an experienced Erlang developer (Knut) and together they im-
plemented the backend. By now this game has approximately 50% of the users of the
other game and the number of application servers they need is: 1!

They run the backend on two or three servers for redundancy purposes but it could per-
fectly run on one. Even if it would actually need four it would still be drastically more
efficient and performant that the other backend(s).

Now of course they also knew about all the mistakes we have made in previous games
and its not alone Erlang alone that gave them so much better performance but rather
they could implement the backend in a unique way which is really easy with the actor
model and rather hard everywhere else.

Basically they’ve build a stateful web server which means that each user who is playing
the game is represented by an actor inside of the Erlang VM. The user starts playing and
an actor with the users game state is spawned. All subsequent requests for the time the
user is playing are going directly to this actor. Since the game state is held in the actors
own memory all requests, which would otherwise hit the database, can be processed
and answered extremely quickly.

If the actor crashes, all the other actors are not being harmed since there is no shared /
global state. When the user stops playing, the actor will save the game state to a persis-
tent data store and terminate making it easy for the garbage collection. Since the data is
immutable it is always possible to revert to the game state before the transformation
started in case something goes wrong.

It is really awesome and there is a lot more to tell about it. Fortunately Knut and Paolo
have spoken on a couple of conferences about it and shared their slides so you can get

http://twitter.com/#!/hungryblank
http://twitter.com/#!/knutin


4/25/12 10:06 AMWhy Erlang? | SMYCK

Page 5 of 5http://smyck.net/2012/04/22/why-erlang/

some more insights:

* http://www.slideshare.net/wooga/erlang-factory-sanfran
* http://www.slideshare.net/hungryblank/getting-real-with-erlang

More Erlang at Wooga

After Paolo’s and Knut’s success the Erlang virus spread inside of the company. We
have started new game backends in Erlang and built smaller additional services with it.
Personally I can confirm that the more you learn about Erlang the more it makes sense
and feels right. It made me even feel a little bit sorry for those at the Ruby conference
who were struggling with different runtimes and libraries to introduce the level of con-
currency and ease of development that Erlang delivers in one package. A package that
has been in production use for more than 20 years.

The hard part of learning new languages is to find a reasonably sized project to start
with. Learning just by reading books is always slow as you forget most of what you
read when you don’t play around with it. Apart from the weird syntax which I don’t
find that weird anymore, not having an actual project to try Erlang was the biggest
show stopper for me. So I encourage you to pick a small little project and play around
with Erlang. I think you will not regret it.

I hope I will find the time for a follow up blog post about how I learned Erlang and
about getting started in it soon. In the meantime go to learnyousomeerlang.com and get
started on your own. Trust me – this site is better than any book about Erlang which
you can buy right now.

PS: Thanks to Elise Huard for proof reading! If you have feedback, drawings of an ivory
tower with a ruby rooftop to make this blog post more colorful or any other contribu-
tions send it right away!

http://www.slideshare.net/wooga/erlang-factory-sanfran
http://www.slideshare.net/hungryblank/getting-real-with-erlang
http://learnyousomeerlang.com/
http://twitter.com/#!/elise_huard

