
The development of Erlang

Joe Armstrong

Computer Science Laboratory

Ericsson Telecom AB

joe@cslab.ericsson.se

Abstract

This paper describes the development of the programming
language Erlang during the period 1985-1997.

Erlang is a concurrent programming language designed
for programming large-scale distributed soft real-time con-
trol applications.

The design of Erlang was heavily inuenced by ideas from
the logic and functional programming communities. Other
sources of inspiration came from languages such as Chill and
Ada which are used in industry for programming control
systems.

1 Introduction

This paper describes the development of the Erlang pro-
gramming language. Erlang is a language which draws heav-
ily from various traditions in the logic, functional and real-
time control programming communities.

Our goal was to make a language which could be used
for building large soft real-time control systems. By large I
mean systems with possibly millions of lines of code. By a
soft real-time system I mean a system which does not fail
catastrophically if a real-time deadline is missed.

Erlang was developed by the author and his colleagues
at the Ericsson Computer Science Laboratory. Ericsson is
currently the world's largest supplier of telecoms systems
and the world's leading manufacturer of mobile phones.

Ericsson's agship product is a telephone exchange called
the AXE10 which is programmed in a proprietary language
called PLEX. A typical AXE10 system has over 5 million
lines of PLEX. The AXE10 is speci�ed to have a \down
time" of less than 3 minutes per year - such requirements
are common in the telecoms industry.

The programming languages which are used for building
such systems have to deal with a range of problems not usu-
ally encountered in traditional batch or interactive computer
systems. For example, one requirement is that the system
should be in \continuous" operation - this means we must
do software upgrades without stopping the system. It also
implies the use of fault-tolerant processors and a software
architecture which protects the integrity of the system from
various classes of programmer error.

Erlang grew out of a series of experiments which we per-
formed to see if we could �nd better ways of programming
telecoms systems. Our criterion for success was that we
could program telecoms systems with less e�ort and fewer
errors than could be done using conventional technology.

This paper starts with a brief discussion of the various
milestones which the language went through. This is fol-
lowed by sections describing the language, �nally future di-
rections of research are mentioned.

2 Milestones

� Early experiments

Being a telecoms laboratory we were in the fortunate
position of always having hardware to play with. The
lab had a Ericsson MD110 (which is a small telephone
exchange) which had been modi�ed so it could be
controlled by a conventional Unix machine. We pro-
grammed POTS1 in as many programming languages
as we could lay our hands on.

The main conclusion [5] was that declarative language
programs for POTS were a lot shorter and easier to
understand than imperative language programs. Un-
fortunately the declarative languages lacked features
for concurrency control and had poor error handling
facilities.

We concluded that we would like something like Pro-
log with added facilities for concurrency and improved
error handling. No such language existed at the time.

� 1986 - 1989 The Prolog interpreter

Having decided that we liked Prolog for programming
POTS we started a series of experiments call LOTS
(Lots of POTS) to program not only POTS but also
an extremely large number of di�erent telephony fea-
tures in Prolog. Before long I had programmed a large
subset of PABX features in Prolog. To do so I wrote
a Prolog meta-interpretor which added the notion of
a process to Prolog and which added facilities for ad-
vanced error detection and recovery. This work is de-
scribed in [1].

� The Bollmora group

Using the results of the work with the Prolog interpre-
tor we were able to attract the curiosity and interest of
a group of engineers2 who were responsible for a future
software architecture of the Ericsson MD110.

1POTS stands for Plain Old Telephony Service, that is, subscriber
A calls subscriber B and they chat for a while.

2Who worked in Bollmora, Stockholm.

This group thought that they could use our results as
a vehicle for investigating their own software architec-
tures. This began a period of collaboration which led
to the development of Erlang as a fully edged lan-
guage and to a new range of Ericsson products.

During the period 1986-1988 members of the computer
science lab worked closely with the Bollmora group,
meeting once or twice a week. During this time the
Prolog interpretor (and the language which it de�ned)
changed rapidly. The language grew and evolved and
somewhere along the line acquired a name, Erlang,
named in honor of the Danish mathematician Agner
Krarup Erlang (1878{1929) whose name is associated
with the telecoms industry.

� The jam machine

By about 1988 is was clear that Erlang as it was now
called was a good language for prototyping telephone
exchanges [10]. It was a strange mixture, with declar-
ative features (inherited from Prolog), multi-tasking
and concurrency (inherited from EriPascal and Ada)
and an original combination of error handling mecha-
nisms.

Erlang was, however, far too slow to be used for prod-
uct development. The Bollmora group did some mea-
surements and decided that for product development
they needed a system that was 40 times faster than
the Prolog interpretor.

This requirement lead to the development of a number
of di�erent abstract machines and compilation tech-
niques used for implementing Erlang. A cross compiler
from Erlang to Strand [7] was developed. After a num-
ber of experiments the JAM [4] machine was invented.
This was based on the Warren Abstract Machine with
added primitives for concurrency and exception han-
dling.

By this time the Erlang e�ort had grown to three peo-
ple. Mike Williams wrote a byte code emulator for
JAM code, I wrote the compiler and Robert Virding
wrote the support libraries.

While we only ever distributed one version of the sys-
tem to external users, internally there were several
competing Erlang \engines" where we experimented
with di�erent implementation techniques.

The resulting JAM implementation was delivered to
the Bollmora group in 1989. Fortunately it was 70
times faster than the original Prolog interpretor - un-
fortunately they had now revised their original esti-
mates and wanted a machine that was 280 times faster
than the original.

� Adding distribution

During the period 1989-1994 the Erlang \group" ex-
panded (there has never been a formal group). Claes
Vikstr�om joined the group in 1990 and added distribu-
tion to the language. The original language had been
designed with \hooks" for adding distribution - but
this was never actually done until Claes implemented
it.

The Bollmora group had now decided to go ahead
and build a new PABX in Erlang. Erlang wasn't fast

enough but it was generally thought that the perfor-
mance problems could be solved. In 1992 they started
development of a product called the \Mobility Server".
In 1995 this was launched and became part of the
\Consono" product range. At the time of writing the
Mobility Server is marketed in 12 countries. Among
other things it is used to control the DECT mobile
phone in the European Parliament in Strasbourg.

� Fight for acceptance

During the period 1992-1996 it was by no means clear
that Erlang was suitable for programming large-scale
industrial products. While we were very successful in
a number of small projects, Erlang programming and
programmers still represented a very small percentage
of the programming e�ort at Ericsson.

The Mobility server project continued and we attracted
several new small projects. During this time we were
involved in massive \guerilla marketing" activities. I
don't think there was a single person in Ericsson who
ever came out of Bjarne's3 o�ce without a copy of the
Erlang manual under their arm!

� The beam

Performance has always been a major problem. In
1992 Bogumil Hausman started work on the BEAM.4

The BEAM compiles Erlang to C which can then be
compiled with a conventional C compiler. The BEAM
can also compile to threaded code which can be freely
intermixed with compiled code.

Compiled code is faster but takes up more space than
threaded code. In a large embedded system with mil-
lions of lines of code, the volume of object code can be
a major problem.

Infrequently used and non-performance critical parts
of the system can be compiled to threaded code while
performance critical parts of the system can be com-
piled to native code. There are performance tools
which we can use to analyse the system and �nd out
which parts of the system need to be native code com-
piled.

The BEAM is described in [6]. In many applications
the BEAM is comparable with C in performance terms.
The BEAM replaced the JAM as the principle system
for new product development in 1997.

� Erlang Systems

Up to 1995 most users were \enthusiasts" and Erlang
spread internally within Ericsson by \word of mouth".
We didn't �nd new users, they found us.

As the language spread we needed to produce training
material and hold courses to train new users. Initially,
all courses were held at the Computer Science Lab by
members of the Erlang \group". While holding such
courses was great fun, demand soon far outstripped
supply.

In April 1993 a new company \Erlang Systems" was
formed to handle sales, marketing, education and con-
sulting of Erlang. We had been in the fortunate posi-
tion of having supervised a number of Master degree

3Boss of the computer science lab.
4Bogdans's Erlang Abstract machine.

students in computer science at the University of Up-
psala. Having completed a Masters degree many of
these students were employed by Erlang Systems.

Mike Williams moved from the Computer Science Lab-
oratory to manage Erlang Systems and had soon built
up a strong team of consultants and impressive train-
ing facilities. In 1996 over 500 Ericsson programmers
attended courses at Erlang Systems.

Erlang consulting is one of the most important factors
that have led to the spread of Erlang within Ericsson.
In the �rst Erlang projects there was very close contact
between the developers and the users. We knew every
user and could provide individual help and tuition -
this doesn't scale.

Now, when we start a new project, we always try to
get at least two Erlang Systems consultants working
on the project. They provide a vital link between the
users and developers of Erlang. This is a signi�cant
factor in the success of new projects.

It is also interesting to note that the skill level required
for an entry-level industrial programmer has increased
in recent years. A good degree in computer science is
now a pre-condition for working with state of the art
software technology. The days of the amateur hacker
are fast disappearing.

� The tools

The current Erlang system comes with an extensive
toolkit. As well as the obvious software tools (yacc,
lex look-a-likes etc.) there is a wide range of tools
which are useful for building telecoms applications.

These include things like cross-compilers for interfac-
ing Erlang to foreign language applications, an ASN.1
interface compiler, an SNMP tool-kit, a HTTP-server
etc.

Many of the new users of Erlang are not initially at-
tracted by the language but rather by the set of tools
which comes with the language. For example, it is
extremely easy to build an SNMP application using
the Erlang SNMP toolkit. The SNMP toolkit, for ex-
ample, contains a MIB compiler, and set of default
methods which allows a non-expert user to build an
SNMP agent in a matter of hours. Doing this in a
conventional language is much more di�cult.

Many of the �rst versions of the tools were written by
students as part of their Master thesis work.

� Mnesia

Many real-time applications need access to data over
long periods of time. For example, in a telephone
exchange subscriber data must be stored for many
years and must be accessible within a few millisec-
onds. Charging data (telephone bills) must be kept
and never lost.

Mnesia [9] is a real-time distributed database designed
for programming telecoms applications in Erlang. Am-
nesia is written entirely in Erlang.

� OTP

On 1 January 1996 a new Ericsson division was created
to support applications written in Erlang. Our users
want a lot more than just a programming language.

For example, some users want not only the language
but also the operating systems and the hardware plat-
form to be delivered in one package.

The OTP (Open Telecom Platform) division can pro-
vide Ericsson users with anything from a simple Erlang
system which runs on a PC to an embedded system
complete with hardware. The division has the goal
of providing prospective users with a turn-key system
which they can turn on and start programming from
day one of a project. Standard OTP software comes
with extensive libraries which solve common applica-
tion problems.

Another goal of the OTP division was to transfer re-
sponsibility for the maintenance and support of the
Erlang system from the Computer Science Laboratory
to a mainstream Ericsson division.

3 Erlang in 14 Examples

The previous sections described the development of Erlang.
The following sections describe Erlang through a number of
small examples.

3.1 Sequential Erlang

Example 1 - Factorial

All functions are de�ned in modules, for example, factorial
can be written:

-module(math).
-export([fac/1]).

fac(N) when N > 0 -> N * fac(N-1);
fac(0) -> 1.

The annotation -export([fac/1]) means the function
fac with one argument is from the module. Only exported
functions can be called from outside the module.

Once a module has been loaded into the system the query
evaluator can be used for function evaluation:

> math:fac(25).
15511210043330985984000000

Example 2 - Binary Tree

lookup(Key, {Key, Val, _, _}) ->
{ok, Val};

lookup(Key,{Key1,Val,S,B}) when Key<Key1 ->
lookup(Key, S);

lookup(Key, {Key1,Val,S,B}) ->
lookup(Key, B);

lookup(Key, nil) ->
not_found.

Here the tuple {Key,Val,S,B} represents a node of a
binary tree. Tuples store �xed numbers of arguments.

Example 3 - Append

append([H|T], L) -> [H|append(T, L)];
append([], L) -> L.

The notation [H|T] when occurring in a function head
denotes a pattern matching operation on a list. H is the �rst
element of the list, T is the remainder of the list. When
occurring on the right hand side of a production it denotes
a list constructor.

Example 4 - Sort

sort([Pivot|T]) ->
sort([X||X <- T, X < Pivot]) ++
[Pivot] ++
sort([X||X <- T, X >= Pivot]);

sort([]) -> [].

The notation [Expr || ...] introduces a list compre-
hension and ++ is the in�x append operator.

Example 5 - Adder

Lambda expressions are introduced with the syntax:

fun(...) -> end

As an example we can write:

> Adder = fun(N) -> fun(X) -> X + N end end.
#Fun
> G = Adder(10).
#Fun
> G(5).
15

3.2 Concurrent Erlang

Example 6 - An area Server

start() ->
spawn(fun() -> loop(0) end).

loop(Tot) ->
receive

{Pid, {square, X}} ->
Pid ! X*X,
loop(Tot + X*X);

{Pid, {rectangle,[X,Y]}} ->
Pid ! X*Y,
loop(Tot + X*Y);

{Pid, areas} ->
Pid ! Tot,
loop(Tot)

end.

This creates an "area server" - you can ask the server
what the area of a square or rectangle is, or, you can ask it
to return the total of all areas that it has been requested to
compute.

In the above, spawn(Fun) creates a parallel process which
evaluates the lambda expression Fun. Spawn returns a pro-
cess identi�er (Pid) which can be used to communicate with
the process.

Here Pid ! M sends the message M to the process Pid.
receive ... end is a pattern matching operation which re-
ceives a message. Send is an asynchronous non-blocking
operation.

Example 7 - An area client

Client code which uses the above server can be written:

Pid ! {self(), {square, 10}},
receive

Area ->
...

end

Example 8 - Global Server

In the above examples, the process identi�er of the server
had to made known to the client. To provide a global service
we can associate a process identi�er with a global name as
follows:

...
Pid = spawn(Fun),
register(area_server, Pid),
...
area_server ! ...

This associates the global name area_server with Pid.
Thereafter any process evaluating in the node where this
name was registered can send a message to the process with
the syntax area_server ! Msg

3.3 Distribution

Example 9 - Spawning on a remote node

Spawn can be used to create a process of a di�erent Erlang
node.

...
Pid = spawn(Fun@Node)
...
alive(Node)
...
not_alive(Node)

The primitives alive and not_alive signify a node's
willingness to participate in distributed computations. If
they have not evaluated alive they remain "anonymous"
and cannot take part in distributed computations.

3.4 Error detection

Erlang is designed for programming "robust" systems, so
there are a number of primitives for trapping errors. Error
recovery is not automatic. The programmer must design a
fault-tolerant architecture which can be implemented using
the error detection mechanisms.

Example 10 - Catch

> X = 1/0.
** exited: {badarith, divide_by_zero} **
> X = (catch 1/0).
{'EXIT',{badarith, divide_by_zero}}
> b().
X = {'EXIT',{badarith, divide_by_zero}}

catch(Expr) converts any error occurring within Expr
into a term describing the error.

Example 11 - Catch and throw

case catch f(X) of
{exception1, Why} ->
Actions;

NormalReturn ->
Actions;

end,

f(X) ->
...
Normal_return_value;

f(X) ->
...
throw({exception1, ...}).

Non-local returns can be performed with throw(Expr).
Expr is evaluated and becomes the value of the enclosing
catch.

Example 12 - Links and trapping exits

Processes can be linked together. If a process dies an error
message is sent to all processes to which it is linked.

process_flag(trap_exits, true),
P = spawn_link(Node, Fun),
receive
{'EXIT', P, Why} ->

Actions;
...

end

spawn_link(Fun) creates a parallel process which evalu-
ates Fun and creates a link between the process which per-
forms the spawn (the parent) and the newly created process
(the child).

If an exception is raised in the child process then an
error message is sent to all processes which the child process
is linked to. In our example an error in the child process
will cause an error message to be sent to the parent process.
The parent process can receive the error message and take
appropriate action.

Example 13 - Unde�ned processes

If we call Mod:Func(Arg1,..Argn) and this function cannot
be located in the system, then Mod:Func behaves as if it had
been de�ned as follows:

Mod:Func(Arg1, ..., Argn) ->
error_handler:undefined_function(Mod, Func,

[Arg1, .. Argn])

The function undefined_function can be de�ned by the
user or the system default can be used. It is usually de�ned
something like:

undefined_function(Mod, Func, Args) ->
case code:ensure_loaded(Mod) of
{module, Mod} ->
case is_exported(Mod, Func, length(Args)) of
true ->
apply(Mod, Func, Args);
false ->
exit({undef,{Mod,Func,Args}})

end;
{module, Other} ->
exit({undef,{Mod,Func,Args}});
{interpret, Mod} ->
int:eval(Mod, Func, Args);
Other ->
exit({undef,{Mod,Func,Args}})

end.

3.5 Hot code replacement

Example 14 - Code replacement

Erlang is designed for "non-stop" systems. We need to be
able to replace code and data without stopping the system.
This example shows how we can change code in a server,
without stopping the server.

loop(Data, F) ->
receive

{request, Pid, Q} ->
{Reply, Data1} = F(Q, Data),
Pid ! Reply,
loop(Data1, F);

{change_code, F1} ->
loop(Data, F1)

end

The above code represents a server. Data represent the
local state of the server. F is a lambda expression which
determines the behaviour of the server. To change the code
in the server we send it the message {change_code, F1}
The garbage collector will remove the old function.

4 Higher Order Processes

Most large Erlang systems are programmed by re-using code
from a number of programming patterns which we call be-
haviours. This is a processes whose behaviour will be deter-
mined by a lambda expression at run-time.

As an example of a behaviour we show how a simple
client-server model can be programmed. Firstly the code
for the generic part of the client-server:

Generic Client Server

-module(cs).

-export([start/3, rpc/2, loop/2]).

start(Name, Data, Fun) ->
register(Name,

spawn(fun() ->
loop(Data, Fun)

end)).

rpc(Name, Q) ->
Tag = ref(),
Name ! {query, self(), Tag, Q},
receive

{Tag, Reply} -> Reply
end.

loop(Data, Fun) ->

receive
{query, Pid, Tag, Q} ->
{Reply, Data1} = Fun(Q, Data),
Pid ! {Tag, Reply},
loop(Data1, Fun)

end.

The above code provides skeleton code for a client-server.
We can parameterise it by instantiating the variable Fun
with a lambda expression which gives the server its desired
behaviour.

For example, a Key-Value dictionary server can be made
as follows:

A key-Value Server

-module(kv).

start() -> cs:start(keydb, [], fun handler/2).

add(Key, Val) -> cs:rpc(keydb, {add,Key,Val}).
lookup(Key) -> cs:rpc(keydb, {lookup,Key}).

handler({add, Key, Val}, Data) ->
{ok, add(Key,Val,Data)};

handler({lookup, Key}, Data) ->
{find(Key, Data), Data}.

add(Key,Val,[{Key,_}|T]) ->
[{Key,Val}|T];

add(Key,Val,[H|T]) ->
[H|add(Key,Val,T)];

add(Key,Val,[]) ->
[{Key,Val}].

find(Key,[{Key,Val}|_]) ->
{found, Val};

find(Key,[H|T]) ->
find(Key, T);

find(Key,[]) ->
error.

In sequential programming a small number of higher or-
der functions (map, fold, zip etc.) provide a library of func-
tions which the programmer can re-use in a number of dif-
ferent contexts. Note there is a limited set of such functions.
Too many or too abstract functions would not help.

In concurrent programming we have found that most
concurrent programs can be built from a small number of
higher order processes (such as the client-server) example.
In a given application between 5 and 10 such higher-order
processes seems to capture 95 % of the concurrency mecha-
nisms.

Interestingly the generic part of the higher-order process
is often not well-typed, but the functions which parameterise
the process are.

5 Enter The Type System

Erlang has a dynamic type system which was inherited from
Prolog. All types are checked at run-time. Nonsense ex-
pressions (for example 1 + true) are not type-checked at
compile time but result in run-time exceptions.

In 1995 Phil Wadler decided that Erlang needed a type
system, and promptly informed us that he was making one.

After he had started work on the project he realised that he
needed some money and some help. He got his money, and
we got a type system.

At the time of writing a Haskell prototype of the type
checker [8] is being evaluated and the type checker itself is
being re-written in Erlang.

We are evaluating the type system by type checking all
the libraries in the standard Erlang distribution. This work
is not complete, but we can make certain observations about
the type system.

The �rst point to note is that the type checker is totally
free-standing from the Erlang system itself. No changes have
been made to Erlang to accommodate the type system.

A consequence of this is that the user is free to compile
and run programs which the type checker says are not well-
typed. This is in contrast to say Haskell, or ML where a
type-incorrect program cannot be compiled or run.

Many programs behave correctly despite the fact they
are not well-typed. This is especially true of \systems soft-
ware" - for example, the programs in the kernel of the Erlang
run-time which are responsible for IO and distribution per-
form highly complex generic operations on arbitrary data
structures.

In the Erlang type system a user can declare a type. For
example:

-type fac(int()) -> int().

fac(N) when N > 0 -> N * fac(N-1);
fac(0) -> 1.

If a type is supplied it is checked by the type checker.
Types can be annotated unchecked. This means that the
type checker accepts the supplied type without analysing the
function to see if it has the type the programmer intended.

In practise this turns out to be very useful for forcing
bizarre code through the type checker. An example is the
code for the Erlang \pretty printer" The pretty printer con-
tains code like:

-unchecked([pp/1]).
-type pp(1) -> deepstring().

pp(X) then tuple(X) ->
pp_list(tuple_to_list(T));

pp(X) when list(X) ->
...

pp(X) when float(X) ->
...

pp is a function which turns any arbitrary data structure
into a deep list of characters. We tell the system that pp is
of type 1->deepstring() where 1 is the universal type.

This is a correct statement about the program but one
which cannot be inferred by the type checker.

In type checking the standard libraries we have found
the following:

� The type system has uncovered no errors. The kernel
libraries were written by Erlang "experts" - it seems
that good programmers don't make type errors. It
will be interesting to see if this remains true when we
start type checking code written by less experienced
programmers.

� Certain libraries (ordsets, dict etc.) passed the type
checker at the �rst attempt. The derived types corre-
sponded in most cases to our intuition of what the
derived types should be. Adding type declarations
(mostly for documentation purpose) was a trivial op-
eration.

Interestingly we could often remove a number of com-
ments and replace them by more precise type declara-
tions.

Thus in dict.erl we replaced comments like:

%% fetch(Key, Dict) -> Value
%% find(Key, Dict) -> {ok,Value} | error
%% store(Key, Value, Dict) -> Dict'

With type declaration:

-deftype dict(Key, Val) = [{Key, Val}].

-type fetch(Key, dict(Key, Val)) ->
Val.

-type find(Key, dict(Key, Val)) ->
ok{Val} | error.

-type store(Key, Val, dict(Key, Val)) ->
dict(Key, Val).

Which says the same thing only more precisely.

� Many modules did not type check at the �rst attempt.
We had to re-write some functions or add unchecked
annotation to force the code through the type checker.
In complex modules about 10% of the functions needed
small changes. In the vast majority of cases a small
change to the function corrected the type error. In a
minority of cases we had to resort to adding unchecked
annotations. Even in the kernel system modules we
were able to provide readable types for the majority of
functions and not resort to the unchecked annotation.

unchecked only had to be used when the Erlang func-
tions contained primitives such as apply etc. which
could not be analysed by the type checker.

� Debugging (i.e. �nding the source) of the type error
was in some cases extremely di�cult. This proved to
be very frustrating. Well-tested programs which we
believed to be correct were rejected by the type checker
- �nding exactly what was wrong was sometimes very
di�cult.

6 The future

Where is the research leading us?

� Very large systems

How can we build very large systems? The prob-
lems associated with building very large systems seem
to have more to do with software architectures than
choice of programming language. We have found that
the use of program patterns (or higher order processes)
greatly helps users structure large software systems.
It has often been speculated that the advantages of a
strong type system will be seen in very large software
systems. We intend to test this hypothesis.

� Evolving systems

As systems evolve and as we learn more we discover
better ways of programming things. Early design de-
cisions turn out to be wrong. We often wish to change
some of the major system interfaces which turned out
to be wrong.

Project managers worry about \backwards compati-
bility" and are very reluctant to accept changes to the
standard system software. Any change to the basic
system invalidates their test procedures and can delay
introduction of a new product. While in the short-
term is is desirable to keep the system as stable as
possible, in the long-term we must allow systems to
evolve and phase out old code and design decisions.

We are interested in techniques (for example, partial
evaluation) that can simplify (or in the best case auto-
mate) the transition from an older to a newer version
of the system.

� Performance

Certain applications cannot be e�ciently programmed
in Erlang. We are considering adding imperative fea-
tures to the language to solve these problems.

7 Reections

Erlang has spread successfully from the laboratory to a num-
ber of commercial products. We can speculate as to the
reasons why this has occurred. Some of the more important
factors seem to be:

� real problems

We work on real problems. We tend to make progress
when we cannot solve a particular problem with the
existing technology. Progress has often come when a
user came with a problem which could not be solved
in Erlang.

� working within the organisation

We work within the Ericsson organisation. It is far
easier to \sell" an idea internally than to come to the
organisation from outside.

� organisational support

There is a gap between the best that a laboratory with
limited resources can produce and what is minimally
acceptable for a commercial product. Ericsson has pro-
vided �nancial support and created new jobs as neces-
sary to help �ll this gap.

� we can provide good support

Good documentation, courses, e-mail, hot-line tele-
phone support etc. are essential in passing from the
\enthusiast" to the \main-stream" phase of develop-
ment.

� lots of tools

Project managers are not interested in programming
languages. They are not interested in formal anything
and don't give a hoot about types or calculi.

They are however, interested in short \time to mar-
ket" and in writing bug-free software. The provision

of large numbers of software tools can greatly reduce
software development times and improve the quality
of the software.

These tools are speci�c to our problem domain. Thus
we have tools for making SNMP MIBs, for manipulat-
ing ASN.1 data types, for building fault-tolerant du-
plicated data-bases with hot-standby etc.

� Foreign language interfaces

Typical systems are written in several di�erent lan-
guages. Erlang is not good at everything. Large parts
of a system might use purchased software packages
written in C. E�cient integration with C is essential.

References

[1] J. L. Armstrong, S. R. Virding and M. C. Williams. Use
of Prolog for developing a new programming language.
The Practical Application of Prolog London 1 { 3 April
1992

[2] J. L. Armstrong, M. C. Williams, C. Wikstr�om and S.
R. Virding. Concurrent Programming in Erlang, 2nd
ed. Prentice Hall (1995)

[3] J. L. Armstrong. Erlang - A survey of the language and
its industrial applications. In Proceedings of the sym-
posium on industrial applications of Prolog (INAP96).
16 { 18 October 1996. Hino, Tokyo Japan.

[4] J. L. Armstrong, B. D�acker, S. R. Virding, and M.
C. Williams, Implementing a functional language for
highly parallel real time applications. 8th Int Conf. on
Software Engineering for Telecommunication Switching
Systems, Florence 30 March { 1 April 1992.

[5] B. D�acker, N. Elshiewy, P. Hedeland, C. W. Welin C.
W. and M. C. Williams. Experiments with Program-
ming Languages and Techniques for Telecommunica-
tion Applications. Sixth International Conference on
Software Engineering for Telecommunication Switching
Systems. Eindhoven, 1986.

[6] B. Hausman. Turbo Erlang: Approaching the speed of
C. In Implementations of Logic Programming Systems,
pp. 119-135, ed. Evan Tick and Giancarlo Succi, Kluwer
Academic Publishers (1994).

[7] I. Foster and S. Taylor. STRAND: New Concepts in
Parallel Processing. Prentice Hall, 1989.

[8] S. Marlow, and P. Wadler. A practical subtyping sys-
tem for Erlang. In ACM International Conference on
Functional Programming, 1997.

[9] C. Wikstr�om and H. Nilsson. Mnesia - An Industrial
DBMS with Transactions, Distribution and a Logical
Query Language. International Symposium on Coop-
erative Database Systems for Advanced Applications.
Kyoto Japan 1996

[10] K. �Odling. New technology for prototyping new ser-
vices. In Ericsson Review No. 2 1993.

