@mﬁ@w‘

One of the most common types of data processing is
referred to as “transaction processing”. Most
| individuals have used “transaction

|
1 #3 IN A SERIES I processing” at one time or another,

even though they might not have
recognized or referred to it as such. Here are a few
common examples of “transaction processing”:

- Withdrawing money from an ATM machine

- Making a hotel, car, or airline reservation

- Making a credit card purchase

- Using a home banking application to transfer
funds between bank accounts

- Order entry performed by a call center clerk
from a catalog sale customer

If we examine these examples in detail, we can
compile a list of characteristics that will help us
understand transaction processing and be able to
identify transaction processing in general.

Let’s use the ATM example above since most people
are familiar with it. Let's examine an ATM
withdrawal from the customer’s perspective. While
at the ATM, it appears as though you are the only
one interacting with the bank’s computers. But in
reality, the bank may have hundreds or possibly
thousands of ATM terminals available for use. So the
bank’s computer systems have to be ready for the
possibility of potentially thousands of customers
wanting to concurrently do banking at one of their
ATM terminals. Next, if you think about what you
can do at an ATM, you realize that there are a
relatively small number of actions that can be
requested. For example, you can make a deposit,
make a withdrawal, transfer funds, or request a
balance. Anything beyond these few actions requires
that you see a teller in the bank. And these actions
are the same for any of the potentially thousands of
customers wanting to use the bank’s ATMs. So, at
this point, we have identified a couple of key
characteristics of transaction processing: a large
number of users and a relatively small number of

rise Computing Insigy) i
What is Transaction Processing?

\Y

g
:

actions (or “transactions”) that the wusers
request.

Now think about the transaction you request at the
ATM. Let’s say it is a withdrawal. Do you recall any
instance when you became impatient waiting for
your cash to be dispensed? How long was it before
you became impatient? Right, not very long. So,
another important characteristic of transaction
processing is that the request (or transaction) needs
to be completed very quickly — usually within a
matter of a couple of seconds (or less) or else the
end user becomes impatient and begins to suspect
something is wrong. The fact that the transactions
are predefined (deposit, withdraw, transfer, etc.)
and that every bank customer is repeatedly using
the same ones helps make it possible to process
transactions quickly, even though we cannot
accurately predict the volume or sequence of the
transactions that will be entered.

And finally, when you request a withdrawal
transaction, you expect that the request will be
processed against the current value in your account.
That is, you are expecting the current account
balance to be accurate and that it reflects all prior
account activity (deposits and withdrawals). (More
on this below)

Now let’s look at the ATM transaction processing
requests from the bank’s perspective. To manage
the potentially large number of incoming requests,
each of which can come from any customer, the
bank’s computers need to be able to access the data
representing any of the customer’s account
information. This data is stored in databases and/or
files that are shared — that is, all of the bank’s
customers need access to the same files and/or
databases. But customers cannot get to all of the
data within those files and/or databases — they can
only “see” and affect their own account information.
The banking applications and transaction processing
software (commonly called a “transaction server” or
“application server”) are responsible for making sure
the integrity of the data is maintained. So, customer

© 2012 Angelo F. Corridori

http://idcp.marist.edu

Page 1 of 2



A cannot affect customer B’s data and vice versa.
This is both a security and a data integrity concern.
Further, any possible “collisions” need to be
detected and managed. For example, suppose two
people named on a single bank account went to two
different ATMs and each entered a transaction at
exactly the same time. If one transaction was for a
deposit and the other was for a withdrawal, what
would happen to the data representing the bank
account balance? The transaction processing
software needs to ensure that one transaction
doesn’t overlay the other causing data corruption.
The two transactions can be processed serially, but
they cannot be processed simultaneously. This is
accomplished using “locks” or “semaphores” and is
the responsibility of the application and transaction
server software.

If you read the computer science literature regarding
transaction servers and transaction processing, you
will find the acronym “ACID”. It represents the four
properties that a transaction server must have to do
transaction processing. ACID stands for Atomicity,
Consistency, Isolation, and Durability. In the
paragraph above, we discussed an example of a
transaction server that managed data integrity and
ensured that data remains “consistent” under all
circumstances. The data is always taken from one
consistent state to another. The other ACID
properties are equally important. Atomicity refers to
the update process — the update(s) for a transaction
must all occur or none of them can occur. That is, an
“all” or “nothing” approach to updates is used. If
some part of a transaction fails, the entire
transaction fails and the data is left unchanged.
Isolation refers to the property that ensures that
changes from a transaction that is not yet complete,
cannot be seen by other transactions. In general,
transactions are not aware of other transactions that
are running concurrently. Durability refers to the
property that ensures that once a change is made to
the data (i.e. committed), that change is “durable”
or persistent no matter what error or failure occurs
afterwards — the results of the completed
transaction cannot be lost. The ACID properties are

covered in more detail in most computer science
texts.

Transaction processing is generally not CPU
intensive. That is, it usually involves little “number
crunching” (think about the update to a bank
account as a result of a deposit or withdrawal — the
update is done with just one add or subtract
instruction). But it can, and usually does, involve a
lot of I/O (to authenticate the customer, bring into
memory the customer information, etc.). An
application workload that involves little CPU
processing and lots of I/O is an ideal match for an
enterprise server’ with a robust /O subsystem.
Consequently you will often times find transaction
processing systems running on an enterprise server
and thus the enterprise server “owning” or
managing the key data for the business.

So there you have it. Transaction processing involves
a handful of predefined requests coming from a
potentially large number of end users and each of
those requests (transactions) must be processed
quickly while maintaining data integrity for all of the
shared data. From a data processing perspective,
transactions represent a discrete unit of processing
(or unit of work) to the application. From a business
perspective, a computer transaction usually
corresponds directly to a business transaction (buy,
sell, deposit, reserve, etc.). Or it may even
correspond to a collection of business transactions
(for example, reserving a hotel, flight, and car all at
once for a trip). It is not unusual for businesses to
process millions of transactions per day so another
business characteristic of a transaction is that is
must be extremely cost effective. The cost to run any
transaction needs to be measured in pennies or
fractions thereof, not nickels and dimes.

We will explore other aspects of Enterprise
Computing in subsequent articles.

! See ECINo. 5

© 2012 Angelo F. Corridori

http://idcp.marist.edu

Page 2 of 2



