@mﬁ@w‘

“Batch processing” has a long history and is very
pervasive and very important in most Enterprise
I Computing1 environments. However, it

|
1 #4 N A SERIES I is still somewhat of a foreign concept to

those that have not used an enterprise
server’. A personal computer and distributed
computers do not have a direct counterpart to batch
processing. This article explores “batch processing”
and its characteristics.

Batch processing was so named because in the early
days of commercial computing, programmers would
bring their programs (in the form of punched cards)
to the computer to be run. The collection of
programs from multiple programmers would be
stacked together and run through a card reader so
that the computer could serially process the “batch”
of programs. The programs would run unattended
and do whatever they were designed to do. The
programmers that submitted them would eventually
see the output from their program, usually in the
form of a print out. Once the processing of the batch
of programs was complete, another batch would be
collected and the cycle would repeat.

Computers have evolved substantially from those
early days, but batch processing still continues to
serve a useful purpose for businesses that have
processing needs that match its characteristics. From
the brief description above we can see that batch
processing involves:
- the unattended running of a program or
programs
- the collection of program input data collected
over some period of time
- the output from running the programs is not
needed immediately

If you are familiar with transaction processing® and
its user submitted input and sub-second response

! See ECI No. 1
2See ECINo. 5
*See ECI No. 3

rise Computing Insigy) i

\Y

g
:

times for output, these characteristics may ¢
foreign to you. But actually, there are several
business processes that exactly match these
characteristics. A classic example is business billing.
All businesses bill for their products or services.
Think of an electric utility or a credit card provider.
Each sends a customer bill monthly that must be
printed and mailed (or e-mailed). It would be a
waste of a person’s time to manually enter a
transaction that generated each bill, one at a time.
Instead, a program can be started that reads all the
data associated with each customer’s activity during
the time period of interest (e.g. a month) and then
produce a bill as output. The customer input (e.g.
utility usage) is collected during the billing period.
The input to the program may be sorted prior to
processing so as to produce the customer bills in a
particular order (perhaps by zip code if they are to
be mailed). There is no need for human intervention
or monitoring of this bill generation processing. And,
immediate results or output is not crucial. If it takes
several hours or days to generate the bills for all of
the customers, the billing program can simply be
started prior to the time the bills need to be ready.

There are many other examples of business
processes that can be effectively accomplished using
batch processing. These include:

- computer programs that need to go through a
“compile, bind, execute” cycle many times
during development and test of a program

- the printing of customized “junk” mail
advertising

- the conversion of a large number of files from
one format to another

- the movement of a large number of files from
one device to another to prepare data for data
mining

- the entry of orders for a business’ products
that have been mailed in

- the printing of standard reports or statements

While there is no direct counterpart to batch
processing on a personal computer, there are some

© 2012 Angelo F. Corridori

http://idcp.marist.edu

Page 1 of 3

common personal computer activities that you may
be familiar with that exhibit some of the
characteristics of batch processing. Virus scanning
and the wholesale processing of graphic images are
two examples. In the case of a virus scanning
program, the processing can be scheduled to run
periodically and it runs unattended, processing a
large number of files. The virus scanner is looking for
a virus in the data or programs that have been
collected over some time period (i.e. since its last
scan). The program output (the virus scan report) is
not needed immediately and in fact takes a
considerable time to complete. And, other “more
important” work (your use of a word processor for
example) can proceed while the virus scanner runs in
the “background”.

If you are familiar with the UNIX operating system,
processes run using “at” or “cron” are somewhat
analogous to batch processing on an enterprise
server.

The unit of work in a batch processing environment
on an enterprise server is the JOB — one or more
programs that are run to accomplish some business
purpose. Each portion of the JOB that runs a
program is called a JOB “step”. If some input data
needs to be sorted by a sort program before another
program is run to print bills, a two-step JOB would
be defined in which the first step runs the sort
program and the second step runs the program that
prints the bills (using the sorted output file from the
first step as input to the second step).

A JOB is defined using Job Control Language (JCL)
statements. The JCL statements are used to describe
certain attributes of the JOB. For example, the JCL
statements describe what datasets are needed as
input by the programs that will be run, what output
will be generated (disk files, tape files, printed
output, etc.), the JOB priority (although this has
become less important with the advent of a
sophisticated workload manager), and other
attributes.

Batch JOBs can be run on an “as needed” basis or
even more likely batch JOBs can be scheduled to run
at a particular time since their output is usually tied
to a particular business schedule (e.g. end of day,
end of month, end of quarter, etc.). JOBs can be
manually submitted by a person to run at a
particular time, but most enterprises use JOB
scheduling software that is designed to
automatically submit JOBs based on a schedule. A
large enterprise may have thousands of JOBs defined
to run on their enterprise server. Some of these JOBs
may be totally independent of each other and some
of the JOBs may be related in terms of achieving a
business objective. An example of a relationship is
one JOB creating an output file that is used as input
by another JOB. Consequently, a JOB may be part of
a larger work effort (a “network” of JOBs) that can
also be managed by a JOB scheduling program. In
this case, the JOB scheduling program can manage
any dependencies between the JOBs. For example,
in addition to scheduling the first JOB in the network
to run at a certain time, it can also recognize if a
failure occurs and avoid starting a JOB that is
dependent on the successful completion of a
predecessor JOB.

Besides directly supporting many business
processes, batch processing provides benefits from
an Information Technology perspective as well.

- Since JOBs run unattended, it reduces the
possibility that computing resources are tied
up, but not actually being used.

- Since batch work can be scheduled, it can be
used to shift the time for processing the batch
work to a time when the compute resources
are not busy. Historically, this would be late at
night (e.g. after midnight). Some businesses
would even shut down the on line transaction
oriented workloads and use the computer
resources to run batch workloads exclusively.
This resulted in a “batch window” during which
all the batch work for the day had to be
completed before the on line work was
restarted the next day. With more businesses
becoming global in nature and with the advent
of the internet, this practice is becoming less

© 2012 Angelo F. Corridori

http://idcp.marist.edu

Page 2 of 3

prevalent. And time shifting of batch workload
is becoming less of a benefit as compute
resources are routinely being used around the
clock.

- A collection of batch work allows for the
effective sharing of computer resources among
many users and programs with the operating
system managing any contention.

- And finally, batch work can be thought of as
“background” or “filler” work that uses
compute resources when they are not needed
by more important work (e.g. on line
transaction processing). By helping to maintain
a high overall rate of compute resource
utilization, it helps make better use of the
enterprise server.

So, while batch processing lacks the immediacy of
results provided by transaction processing, what it
lacks in immediacy, it more than makes up for in
efficiency, and therefore, cost effectiveness.

We will explore other aspects of Enterprise
Computing in subsequent articles.

© 2012 Angelo F. Corridori http://idcp.marist.edu

Page 3 of 3

