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Axiomatic Semantics

Axiomatic semantics describe the meaning/effect of programs 
through logic and reasoning about their construction and 
constraints, allowing proofs.


Thanks to

• Robert Floyd (1967)


• C.A.R. Hoare (1969)


• Edsger Dijkstra (1978)



3

Axiomatic Semantics

Axiomatic semantics describe the meaning/effect of programs 
through logic and reasoning about their construction and 
constraints, allowing proofs.


Thanks to

• Robert Floyd (1967)	 	 	 graph algorithms (SSSP), parsing,


		 	 	 	 	 	 	 	 language design 


• C.A.R. Hoare (1969)	 	 	 language design, quicksort, 

		 	 	 	 	 	 	 	 communicating sequential processes


• Edsger Dijkstra (1978)	 	 structured programming, semaphors,

		 	 	 	 	 	 	 	 graph algorithms (shortest path)



4

Axiomatic Semantics

Sir Charles Anthony Richard Hoare (C.A.R. Hoare)


“There are two ways of constructing a software design: 

One way is to make it so simple that there are obviously no 
deficiencies, and the other way is to make it so complicated that 
there are no obvious deficiencies.”
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An Aside

Brian Kernighan


“Debugging is twice as hard as writing the code in the first place. 
Therefore, if you write the code as cleverly as possible, you are, by 
definition, not smart enough to debug it.”
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Axiomatic Semantics

Sir Charles Anthony Richard Hoare (C.A.R. Hoare)


“Hoare semantics” (aka “Hoare logic”) provide the basis for a 
theory of the partial correctness of programs. 


With this, we can develop formal methods of program verification.


To do so, we’ll need to cover the three fundamental requirements 
that a programming language must support: 


Sequence	 	 e.g., assignments, expressions, compound statements


Alternation	 e.g., if - then, case, BNE


Repetition		 e.g., while, repeat, for, recursion
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What is a Theory?

A theory is a framework for proving properties about a domain.


For us, that domain is computer programs.


Such properties are called theorems, and theorems have proofs.


Components of a theory:


• Grammar	 	 	 defines well-formed formulae (BNF is one example.)


• Axioms	 	 	 	 formulae asserted to be true


• Inference Rules		 ways to prove new theorems from previously-proved ones.
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Inference Rules

An inference rule is written


It expresses that if f1, f2, … fn are theorems — that is, they are proven 
well-formed formulae (WFF) — then we can infer that f0 is another 
theorem.


That’s nice, but how do we know? 

How can we actually prove things?


Let’s look at famous inference rule: Modus Ponens.


f1,  f2, … fn


f0
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A Famous Inference Rule

Modus Ponens


Modus Ponens (“the mode that affirms”) can be read:

if 

	 	 we have p (meaning, p is true) and 

	 	 p implies q 

then 

	 	 we can infer that q is true.

end if


The implication/conditional operator (⇒) is like a contract: 

if p then q.

p,  p ⇒ q


q
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Inference Rule vs. Propositional Connective

Modus Ponens


Modus Ponens (“the mode that affirms”) can be read:

if 

	 	 we have p (meaning, p is true) and 

	 	 p implies q 

then 

	 	 we can infer that q is true.

end if


The implication/conditional operator (⇒) is like a contract: 

if p then q.


Let’s review this in Propositional logic.

p,  p ⇒ q


q
Inference Rule

Propositional

Connective
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Propositional Logic

Truth Tables


p q⇒ 

0 0

0 1

1 0

1 1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


(propositional connectors)
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Truth Tables


p q p∧q⇒

0 0  0

0 1  0

1 0  0

1 1  1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Propositional Logic
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Truth Tables


p q p∧q p∨q⇒

0 0  0   0

0 1  0   1

1 0  0   1

1 1  1   1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p⇒

0 0  0   0  1

0 1  0   1  1

1 0  0   1  0

1 1  1   1  0


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Do we need more?  (Do we even need all of these?)

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p⇒

0 0  0   0  1

0 1  0   1  1

1 0  0   1  0

1 1  1   1  0


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Do we need more? No.  (Do we even need all of these? No.)


p∨q = ¬(¬p∧¬q)

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q

0 0  0   0  1

0 1  0   1  1

1 0  0   1  0

1 1  1   1  0


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q

0 0  0   0  1   1

0 1  0   1  1   1

1 0  0   1  0

1 1  1   1  0


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

These are vacuously true because p is false and 
false can imply anything because it’s an invalid 
premise.


Also, we take “if p then q” to be false only 
when p is true and q is false.

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q

0 0  0   0  1   1

0 1  0   1  1   1

1 0  0   1  0   0

1 1  1   1  0


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

This is false because p is true and q is 
false, and “true implies false” is false.

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q

0 0  0   0  1   1

0 1  0   1  1   1

1 0  0   1  0   0

1 1  1   1  0   1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

This is true because p is true and q is 
true, and “true implies true” is true.

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q ¬p∨q

0 0  0   0  1   1

0 1  0   1  1   1

1 0  0   1  0   0

1 1  1   1  0   1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q ¬p∨q

0 0  0   0  1   1    1

0 1  0   1  1   1    1

1 0  0   1  0   0    0

1 1  1   1  0   1    1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.

These two columns are the same.

Both are implication.

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0  0   0  1   1    1

0 1  0   1  1   1    1

1 0  0   1  0   0    0

1 1  1   1  0   1    1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.


A tautology is logical statement that is always true regardless of the 
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0  0   0  1   1    1     1

0 1  0   1  1   1    1     1

1 0  0   1  0   0    0     1

1 1  1   1  0   1    1     1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.


A tautology is logical statement that is always true regardless of the 
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

}

Propositional Logic

Tautology
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Truth Tables


p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0  0   0  1   1    1     1

0 1  0   1  1   1    1     1

1 0  0   1  0   0    0     1

1 1  1   1  0   1    1     1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.


A tautology is logical statement that is always true regardless of the 
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

What’s the opposite 
of a tautology, where 
the statement is 
always false?

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0  0   0  1   1    1     1

0 1  0   1  1   1    1     1

1 0  0   1  0   0    0     1

1 1  1   1  0   1    1     1


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.


A tautology is logical statement that is always true regardless of the 
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

What’s the opposite 
of a tautology, where 
the statement is 
always false?

A contradiction.

Propositional Logic
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Truth Tables


p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)       p∧¬p

0 0  0   0  1   1    1     1            0

0 1  0   1  1   1    1     1            0

1 0  0   1  0   0    0     1            0

1 1  1   1  0   1    1     1            0


Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.


Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.


A tautology is logical statement that is always true regardless of the 
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

Propositional Logic

A contradiction

Contradictions 
cannot exist.
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Back to that Famous Inference Rule

Propositional Logic for Modus Ponens


p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0  0   0  1   1    1     1

0 1  0   1  1   1    1     1

1 0  0   1  0   0    0     1

1 1  1   1  0   1    1     1


Modus Ponens


can be written “if p and p ⇒ q then q”, which can be written


                              ( p   ∧  (p ⇒ q) )  ⇒ q 

p,  p ⇒ q


q
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A Famous Inference Rule

Propositional Logic for Modus Ponens


p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q) p∧(p⇒q)

0 0  0   0  1   1    1     1        0

0 1  0   1  1   1    1     1        0

1 0  0   1  0   0    0     1        0

1 1  1   1  0   1    1     1        1


Modus Ponens


can be written “if p and p ⇒ q then q”, which can be written


                              ( p   ∧  (p ⇒ q) )  ⇒ q 

p,  p ⇒ q


q
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A Famous Inference Rule

Propositional Logic for Modus Ponens


p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q) p∧(p⇒q)(p∧(p⇒q))⇒q

0 0  0   0  1   1    1     1        0        1

0 1  0   1  1   1    1     1        0        1

1 0  0   1  0   0    0     1        0        1

1 1  1   1  0   1    1     1        1        1


Modus Ponens


can be written “if p and p ⇒ q then q”, which can be written


                              ( p   ∧  (p ⇒ q) )  ⇒ q 

p,  p ⇒ q


q
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A Famous Inference Rule

Propositional Logic for Modus Ponens


p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q) p∧(p⇒q)(p∧(p⇒q))⇒q

0 0  0   0  1   1    1     1        0        1

0 1  0   1  1   1    1     1        0        1

1 0  0   1  0   0    0     1        0        1

1 1  1   1  0   1    1     1        1        1


Modus Ponens


can be written “if p and p ⇒ q then q”, which can be written


                              ( p   ∧  (p ⇒ q) )  ⇒ q 

p,  p ⇒ q


q

Tautology. Woot!
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Inference Rules for Axiomatic Semantics

With Modus Ponens proved and used as the basis for inference rules, 
we need to move from Propositional logic to Predicate logic.


The complexity of proving programs correct cannot be handled with 
truth tables because we need to accommodate ideas like any, all, or 
some. Also, we need variables and functions. This leads us to . . .


First Order Logic

• variables

• domains

• named constants

• relations (>, <, etc.)

• functions (math operations)

• logical operators

• quantifiers (for-all “∀” and there-exists “∃”)


Now we can reason about program correctness.
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A Program as State Transitions

We will define dynamic semantics on state transitions.

A state is a mapping of variables to their values.

Executing a program can be viewed as a sequence of state 
transitions.
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We will define dynamic semantics on state transitions.

A state is a mapping of variables to their values.

Executing a program can be viewed as a sequence of state 
transitions.

{ }x=2

y=3

Precondition

A Program as State Transitions
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We will define dynamic semantics on state transitions.

A state is a mapping of variables to their values.

Executing a program can be viewed as a sequence of state 
transitions.

{ }x=2

y=3

Precondition

x:=x+1
Statement

A Program as State Transitions
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We will define dynamic semantics on state transitions.

A state is a mapping of variables to their values.

Executing a program can be viewed as a sequence of state 
transitions.

{ }x=2

y=3

Precondition

x:=x+1
Statement

{ }?

Postcondition

A Program as State Transitions
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We will define dynamic semantics on state transitions.

A state is a mapping of variables to their values.

Executing a program can be viewed as a sequence of state 
transitions.

{ }x=2

y=3

Precondition

x:=x+1
Statement

{ }x=3

y=3

Postcondition

Valid.

Beginning in a state satisfying the precondition, the instructions


will result  in a state satisfying the postcondition… if they terminate.

Reasoning About State Transitions
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We will define dynamic semantics on state transitions.

A state is a mapping of variables to their values.

Executing a program can be viewed as a sequence of state 
transitions.

{ }x=2

y=3

Precondition

x:=x+2
Statement

{ }x=3

y=3

Postcondition

Not Valid.

Beginning in a state satisfying the precondition, the instructions


will not result  in a state satisfying the postcondition.

Reasoning About State Transitions
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We will define dynamic semantics on state transitions.

A state is a mapping of variables to their values.

Executing a program can be viewed as a sequence of state 
transitions.

{ }x=2

y=3

Precondition

if	x>3	then	y:=y+1
Statement

{ }x=2

y=3

Postcondition

?

Reasoning About State Transitions
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We will define dynamic semantics on state transitions.

A state is a mapping of variables to their values.

Executing a program can be viewed as a sequence of state 
transitions.

{ }x=2

y=3

Precondition

if	x>3	then	y:=y+1
Statement

{ }x=2

y=3

Postcondition

Valid.

Beginning in a state satisfying the precondition, the instructions


will result  in a state satisfying the postcondition… if they terminate.

Reasoning About State Transitions
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In general, we write {P} S {Q} to represent these three objects.

This is a “Hoare Triple”. It means…


“S, starting in any state satisfying P, will satisfy Q on termination.”

Precondition

P

Statement

S

Postcondition

Q

Reasoning About State Transitions
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Correctness

There been a lot of talk of termination in the past few slides.


{P} S {Q}


Total Correctness

• S, started in any state satisfying P, will terminate in a state satisfying Q.

• This requires that we prove termination, which can be difficult or 

possibly impossible.


Partial Correctness

• S, started in any state satisfying P, will — if it terminates — result in a state 

satisfying Q.

• Now we do not have to prove termination. But we can only call it 

partially correct.
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A Fun Aside

What’s that about proving termination being possibly impossible?


	 	 	 	   Surely, I must be joking.


Imagine the following program:

halts(p,i) = function {

  if program p halts on input i

    return TRUE

  else

    return FALSE

  endif 

}
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A Fun Aside

What’s that about proving termination being possibly impossible?


	 	 	 	   Surely, I must be joking.


Imagine the following programs:

halts(p,i) = function {

  if program p halts on input i

    return TRUE

  else

    return FALSE

  endif 

}

trouble(p) = function {

  if not halts(p,p)

    return TRUE

  else

    loop forever

  endif 

}

This halts and returns true if the 
passed-in program does not halt 
when applied to itself, and it loops 
forever (i.e., does not halt) otherwise.


Trouble indeed.



44

A Fun Aside

What’s that about proving termination being possibly impossible?


	 	 	 	   Surely, I must be joking.


Imagine the following programs:


What happens when we call trouble(trouble)?

halts(p,i) = function {

  if program p halts on input i

    return TRUE

  else

    return FALSE

  endif 

}

trouble(p) = function {

  if not halts(p,p)

    return TRUE

  else

    loop forever

  endif 

}
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A Fun Aside

What’s that about proving termination being possibly impossible?


	 	 	 	   Surely, I must be joking.


Imagine the following programs:


What happens when we call trouble(trouble) ?

It evaluates halts(trouble,trouble)

halts(p,i) = function {

  if program p halts on input i

    return TRUE

  else

    return FALSE

  endif 

}

trouble(p) = function {

  if not halts(p,p)

    return TRUE

  else

    loop forever

  endif 

}
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A Fun Aside

What’s that about proving termination being possibly impossible?


	 	 	 	   Surely, I must be joking?


Imagine the following programs:


What happens when we call trouble(trouble) ?

It evaluates halts(trouble,trouble)  There are two possibilities:

(1) it returns TRUE.	 Not TRUE is FALSE so loop forever, meaning do not halt.

halts(p,i) = function {

  if program p halts on input i

    return TRUE

  else

    return FALSE

  endif 

}

trouble(p) = function {

  if not halts(p,p)

    return TRUE

  else

    loop forever

  endif 

}
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A Fun Aside

What’s that about proving termination being possibly impossible?


	 	 	 	   Surely, I must be joking?


Imagine the following programs:


What happens when we call trouble(trouble) ?

It evaluates halts(trouble,trouble)  There are two possibilities:

(1) it returns TRUE.	 Not TRUE is FALSE so loop forever, meaning do not halt.

(2) it returns FALSE.	 Not FALSE is TRUE so return TRUE, meaning it halts.


What?

halts(p,i) = function {

  if program p halts on input i

    return TRUE

  else

    return FALSE

  endif 

}

trouble(p) = function {

  if not halts(p,p)

    return TRUE

  else

    loop forever

  endif 

}
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A Fun Aside

What’s that about proving termination being possibly impossible?


	 	 	 	   Surely, I must be joking…


Imagine the following programs:


What happens when we call trouble(trouble) ?

It evaluates halts(trouble,trouble)  There are two possibilities:

(1) it returns TRUE.	 Not TRUE is FALSE so loop forever, meaning do not halt.

(2) it returns FALSE.	 Not FALSE is TRUE so return TRUE, meaning it halts.

In other words, if halts(trouble,trouble) halts then it doesn’t, and if 
halts(trouble,trouble) doesn’t halt then it does. It halts and loops at the same time.

halts(p,i) = function {

  if program p halts on input i

    return TRUE

  else

    return FALSE

  endif 

}

trouble(p) = function {

  if not halts(p,p)

    return TRUE

  else

    loop forever

  endif 

}
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A Fun Aside

What’s that about proving termination being possibly impossible?


	 	 	 	   I’m not joking. And don’t call me Shirley.


Imagine the following programs:


What happens when we call trouble(trouble) ?

It evaluates halts(trouble,trouble)  There are two possibilities:

(1) it returns TRUE.	 Not TRUE is FALSE so loop forever, meaning do not halt.

(2) it returns FALSE.	 Not FALSE is TRUE so return TRUE, meaning it halts.

In other words, if halts(trouble,trouble) halts then it doesn’t, and if 
halts(trouble,trouble) doesn’t halt then it does. It halts and loops at the same time.

halts() is a contradiction. Contradictions cannot exist. Therefore, by our own 
reasoning,  halts() cannot exist and promptly vanishes in a puff of logic.

halts(p,i) = function {

  if program p halts on input i

    return TRUE

  else

    return FALSE

  endif 

}

trouble(p) = function {

  if not halts(p,p)

    return TRUE

  else

    loop forever

  endif 

}
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A Fun Aside

What’s that about proving termination being possibly impossible?


	 	 	 	   I’m not joking. And don’t call me Shirley.


Imagine the following programs:


We might rename trouble() to paradox() and then call paradox(paradox) to be even 
more clear about what’s going on.


There’s an interesting blog post at https://lacker.io/math/2022/02/24/godels-incompleteness-in-
bash.html that gives a similar example using bash scripts. It also connects the halting 
problem to Gödel’s incompleteness theorems, which is very cool.

halts(p,i) = function {

  if program p halts on input i

    return TRUE

  else

    return FALSE

  endif 

}

paradox(p) = function {

  if not halts(p,p)

    return TRUE

  else

    loop forever

  endif 

}

https://lacker.io/math/2022/02/24/godels-incompleteness-in-bash.html
https://lacker.io/math/2022/02/24/godels-incompleteness-in-bash.html
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In general, we write {P} S {Q} to represent these three objects.

This is a “Hoare Triple”. It means…


“S, starting in any state satisfying P, will satisfy Q on termination.”


We want to prove statements and eventually programs correct.

Precondition

P

Statement

S

Postcondition

Q

Back to State Transitions
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We want to prove statements and eventually programs correct. 


{x=1}  x:=x+1  {x=2, y=3}

{ }x=1

Precondition

x:=x	+	1
Statement

{ }x=2

y=3

Postcondition

Reasoning About State Transitions
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We want to prove statements and eventually programs correct. 


{x=1}  x:=x+1  {x=2, y=3}	 	 	 	 Valid?

Reasoning About State Transitions
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We want to prove statements and eventually programs correct. 


{x=1}  x:=x+1  {x=2, y=3}	 	 	 	 Not valid. 

	 	 	 	 	 	 	 	 	 	 	 	 The precondition says nothing

	 	 	 	 	 	 	 	 	 	 	 	 about y so we cannot assert

	 	 	 	 	 	 	 	 	 	 	 	 anything about y in the

	 	 	 	 	 	 	 	 	 	 	 	 postcondition.

Reasoning About State Transitions
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We want to prove statements and eventually programs correct. 


{x=1}  x:=x+1  {x=2, y=3}	 	 	 	 Not valid. 

{x=y+1}  x:=x+1  {x=y}	 	 	 	 	 Valid?

Reasoning About State Transitions
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We want to prove statements and eventually programs correct. 


{x=1}  x:=x+1  {x=2, y=3}	 	 	 	 Not valid. 

{x=y+1}  x:=x+1  {x=y}	 	 	 	 	 Not Valid. 

	 	 	 	 	 	 	 	 	 	 	 	 x > y in the precondition, then

	 	 	 	 	 	 	 	 	 	 	 	 x gets incremented, so x

	 	 	 	 	 	 	 	 	 	 	 	 cannot be equal to y in the

	 	 	 	 	 	 	 	 	 	 	 	 postcondition.

Reasoning About State Transitions
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We want to prove statements and eventually programs correct. 


{x=1}  x:=x+1  {x=2, y=3}	 	 	 	 Not valid. 

{x=y+1}  x:=x+1  {x=y}	 	 	 	 	 Not Valid. 

{x=y+1}  y:=y+1  {x=y}	 	 	 	 	 Valid?

Reasoning About State Transitions
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We want to prove statements and eventually programs correct. 


{x=1}  x:=x+1  {x=2, y=3}	 	 	 	 Not valid. 

{x=y+1}  x:=x+1  {x=y}	 	 	 	 	 Not Valid. 

{x=y+1}  y:=y+1  {x=y}	 	 	 	 	 Valid.

{x>y}  if x>3 then x:=x+1  {x>y}	 	 Valid?

Reasoning About State Transitions
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We want to prove statements and eventually programs correct. 


{x=1}  x:=x+1  {x=2, y=3}	 	 	 	 Not valid. 

{x=y+1}  x:=x+1  {x=y}	 	 	 	 	 Not Valid. 

{x=y+1}  y:=y+1  {x=y}	 	 	 	 	 Valid.

{x>y}  if x>3 then x:=x+1  {x>y}	 	 Valid.

{x=10}  while x>0 do x:=x+1 {x=2}	 Valid?

Reasoning About State Transitions
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We want to prove statements and eventually programs correct. 


{x=1}  x:=x+1  {x=2, y=3}	 	 	 	 Not valid. 

{x=y+1}  x:=x+1  {x=y}	 	 	 	 	 Not Valid. 

{x=y+1}  y:=y+1  {x=y}	 	 	 	 	 Valid.

{x>y}  if x>3 then x:=x+1  {x>y}	 	 Valid.

{x=10}  while x>0 do x:=x+1 {x=2}	 Valid? One the one hand, the 


statement cannot be partially 
correct because if it somehow  
terminates the post-condition 
will not be satisfied. But it will 
never terminate, so in that 
sense the statement is 
vacuously true. It’s annoying, 
and borderline ridiculous.


Reasoning About State Transitions

Partial Correctness

• S, started in any state satisfying P, 

will — if it terminates — result in a 
state satisfying Q.
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We want to prove statements and eventually programs correct. 


{x=1}  x:=x+1  {x=2, y=3}	 	 	 	 Not valid. 

{x=y+1}  x:=x+1  {x=y}	 	 	 	 	 Not Valid. 

{x=y+1}  y:=y+1  {x=y}	 	 	 	 	 Valid.

{x>y}  if x>3 then x:=x+1  {x>y}	 	 Valid.

{x=10}  while x>0 do x:=x+1 {x=2}	 Vacuous and annoying.


{x=10} x:=x-3 {x=7}		 	 	 	 	 Valid.

{x>10} x:=x-3 {x>7} 		 	 	 	 	 Valid.

{x>10} x:=x-3 {x>2} 	 	 	 	 	 Valid.

{x>10, y=2} x:=x-3 {x>7} 	 	 	 	 Valid.

{x=10} x:=x-3 {x=8}		 	 	 	 	 Not valid.

{x=10} x:=x-3 {x>10}	 	 	 	 	 Not valid.

{x=10} x:=x-3 {y>2}		 	 	 	 	 Not valid.


We need to formalize our reasoning.

Reasoning About State Transitions
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What is our reasoning?


{x>10} x:=x-3 {x>7}


Why is this valid?

Reasoning About State Transitions
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What is our reasoning?


{x>10} x:=x-3 {x>7}


Why is this valid?


Make an equation of 

the instructions and 

postcondition…


x-3 > 7

Reasoning About State Transitions
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What is our reasoning?


{x>10} x:=x-3 {x>7}


Why is this valid?


Make an equation of 

the instructions and 

postcondition and solve it.


x-3 > 7

      x > 10


Then compare to

the precondition.


If the solution matches the precondition then we know the 
Hoare triple is valid.

Reasoning About State Transitions
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We’ll use a tool called substitution to facilitate this.


C [ A/B ]

“Substitute A for B in expression C.”


x[x/x] means “x for x in x” = x


x[y/x] means “y for x in x” = y


x[x/y] means “x for y in x” = x (because there is no y in x)


x[z/y]	 means “z for y in x” = x (because there is no y in x)


3・x+1 [y/x] means “y for x in 3・x+1” = 3・y+1

Substitution
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Remember the Hoare triple form:


{P} S {Q}


Given assignment statement S …


{P} x := e {Q}


… we use substitution to evaluate the validity of this triple.


Substitute Q[e/x] and compare the result to P.


{P} x := e {Q}[e/x]

Assignment Axiom
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Remember the Hoare triple form:


{P} S {Q}


Given assignment statement S …


{P} x := e {Q}


… we use substitution to evaluate the validity of this triple.


Substitute Q[e/x] and compare the result to P.

“Substitute e for x in Q and compare the result to P.”


{P} x := e {Q}[e/x]

Assignment Axiom
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Remember the Hoare triple form:


{P} S {Q}


Given assignment statement S …


{P} x := e {Q}


… we use substitution to evaluate the validity of this triple.


Substitute Q[e/x] and compare the result to P.

“Substitute e for x in Q and compare the result to P.”


{P} x := e {Q}[e/x]

Assignment Axiom
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Remember the Hoare triple form:


{P} S {Q}


Given assignment statement S …


{P} x := e {Q}


… we use substitution to evaluate the validity of this triple.

Substitute Q[e/x] and compare the result to P.


Example:	 	 {P}        S     {Q}

	 	 	 	 	 {y>0} x:=y {x>0}


Assignment Axiom
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Remember the Hoare triple form:


{P} S {Q}


Given assignment statement S …


{P} x := e {Q}


… we use substitution to evaluate the validity of this triple.

Substitute Q[e/x] and compare the result to P.


Example:	 	 {P}        S     {Q}

	 	 	 	 	 {y>0} x:=y {x>0}

	 	 	 	 	 {y>0} x:=y {x>0} [y/x] 	 // substitute y for x in {x>0}

Assignment Axiom
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Remember the Hoare triple form:


{P} S {Q}


Given assignment statement S …


{P} x := e {Q}


… we use substitution to evaluate the validity of this triple.

Substitute Q[e/x] and compare the result to P.


Example:	 	 {P}        S     {Q}

	 	 	 	 	 {y>0} x:=y {x>0}

	 	 	 	 	 {y>0} x:=y {x>0} [y/x] 	 // substitute y for x in {x>0}


	 	 	 	 	 {y>0} x:=y {y>0}

Assignment Axiom
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Remember the Hoare triple form:


{P} S {Q}


Given assignment statement S …


{P} x := e {Q}


… we use substitution to evaluate the validity of this triple.

Substitute Q[e/x] and compare the result to P.


Example:	 	 {P}        S     {Q}

	 	 	 	 	 {y>0} x:=y {x>0}

	 	 	 	 	 {y>0} x:=y {x>0} [y/x] 	 // substitute y for x in {x>0}


	 	 	 	 	 {y>0} x:=y {y>0}		 	 // compare {new Q} to {P}

Assignment Axiom

Valid.
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Remember the Hoare triple form:


{P} S {Q}


Given assignment statement S …


{P} x := e {Q}


… we use substitution to evaluate the validity of this triple.

Substitute Q[e/x] and compare the result to P.


Example:	 	 {P}             S       {Q}

	 	 	 	 	 {y>z-2} x:=x+1 {y>z-2}

	 	 	 	 	 {y>z-2} x:=x+1 {y>z-2} [x+1/x]

Assignment Axiom

“Substitute x+1 for x in y>z-2.”
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Remember the Hoare triple form:


{P} S {Q}


Given assignment statement S …


{P} x := e {Q}


… we use substitution to evaluate the validity of this triple.

Substitute Q[e/x] and compare the result to P.


Example:	 	 {P}             S       {Q}

	 	 	 	 	 {y>z-2} x:=x+1 {y>z-2}

	 	 	 	 	 {y>z-2} x:=x+1 {y>z-2} [x+1/x]

	 	 	 	 	 {y>z-2} x:=x+1 {y>z-2}  // No change. There is no x in y>z-2.

Assignment Axiom

Valid. Not interesting. But valid.
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Remember the Hoare triple form:


{P} S {Q}


Given assignment statement S …


{P} x := e {Q}


… we use substitution to evaluate the validity of this triple.

Substitute Q[e/x] and compare the result to P.


Example:	 	 {P}               S       {Q}

	 	 	 	 	 {2+2=5} x:=x+1 {2+2=5}

Assignment Axiom

?
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Remember the Hoare triple form:


{P} S {Q}


Given assignment statement S …


{P} x := e {Q}


… we use substitution to evaluate the validity of this triple.

Substitute Q[e/x] and compare the result to P.


Example:	 	 {P}               S       {Q}

	 	 	 	 	 {2+2=5} x:=x+1 {2+2=5}

Assignment Axiom

Vacuously valid because false implies anything.

x
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Remember the Hoare triple form:


{P} S {Q}


Given assignment statement S …


{P} x := e {Q}


… we use substitution to evaluate the validity of this triple.

Substitute Q[e/x] and compare the result to P.


Example:	 	 {P}              S       {Q}

	 	 	 	 	 {x+1>0} x:=x+1 {x>0}

	 	 	 	 	 {x+1>0} x:=x+1 {x>0} [x+1/x]

Assignment Axiom
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Remember the Hoare triple form:


{P} S {Q}


Given assignment statement S …


{P} x := e {Q}


… we use substitution to evaluate the validity of this triple.

Substitute Q[e/x] and compare the result to P.


Example:	 	 {P}              S       {Q}

	 	 	 	 	 {x+1>0} x:=x+1 {x>0}

	 	 	 	 	 {x+1>0} x:=x+1 {x>0} [x+1/x]

Assignment Axiom

“Substitute x+1 for x in x>0.”
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Remember the Hoare triple form:


{P} S {Q}


Given assignment statement S …


{P} x := e {Q}


… we use substitution to evaluate the validity of this triple.

Substitute Q[e/x] and compare the result to P.


Example:	 	 {P}              S       {Q}

	 	 	 	 	 {x+1>0} x:=x+1 {x>0}

	 	 	 	 	 {x+1>0} x:=x+1 {x>0} [x+1/x]

	 	 	 	 	 {x+1>0} x:=x+1 {x+1>0}

Assignment Axiom

Valid.
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Remember the Hoare triple form:


{P} S {Q}


Given assignment statement S …


{P} x := e {Q}


… we use substitution to evaluate the validity of this triple.

Substitute Q[e/x] and compare the result to P.


Example:	 	 {P}               S        {Q}

	 	 	 	 	 {x=y+1}  x:=x+1  {x=y}

	 	 	 	 	 {x=y+1}  x:=x+1  {x=y} [x+1/x]

	 	 	 	 	 {x=y+1}  x:=x+1  {x+1=y}

Assignment Axiom

Not Valid.
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Remember the Hoare triple form:


{P} S {Q}


Given assignment statement S …


{P} x := e {Q}


… we use substitution to evaluate the validity of this triple.

Substitute Q[e/x] and compare the result to P.


Example:	 	 {P}            S      {Q}

	 	 	 	 	 {x=10} x:=x-3 {x>10}

	 	 	 	 	 {x=10} x:=x-3 {x>10} [x-3/x]

	 	 	 	 	 {x=10} x:=x-3 {x-3>10}

Assignment Axiom

Not Valid.
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Sometimes we want to compute the precondition.


{ ? } sum := 2・x + 1 {sum ≥ 1}


Here are a few valid values for x: 	 	 10, 7, 1, 0, 2112, 42

Here are a few invalid values for x:		 -2,  -8675309,  -5150


What is the minimum valid value for x?

We’ll call this the Weakest Precondition.

Computing the Precondition
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Sometimes we want to compute the preconditions.


{ ? } sum := 2・x + 1 {sum ≥ 1}


Here are a few valid values for x: 	 	 10, 7, 1, 0, 2112, 42

Here are a few invalid values for x:		 -2,  -8675309,  -5150


What is the minimum valid value for x?

We’ll call this the Weakest Precondition.


Set up an equation using the assignment axiom and then solve it.

	 	 	 	 	 	     {sum ≥ 1} [2・x + 1 / sum]


	 	 	 	 2・x + 1 	 ≥ 1

	 	 	 	 	 2・x 	 ≥ 0

	 	 	 	 	 	 x 	 ≥ 0/2

	 	 	 	 	 	 x 	 ≥ 0

Computing the Weakest Precondition
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Sometimes we want to compute the preconditions.


{ x 	≥ 0 } sum := 2・x + 1 {sum ≥ 1}


Here are a few valid values for x: 	 	 10, 7, 1, 0, 2112, 42

Here are a few invalid values for x:		 -2,  -8675309,  -5150


What is the minimum valid value for x?

We’ll call this the Weakest Precondition.


Set up an equation using the assignment axiom and then solve it.

	 	 	 	 	 	     {sum ≥ 1} [2・x + 1 / sum]


	 	 	 	 2・x + 1 	 ≥ 1

	 	 	 	 	 2・x 	 ≥ 0

	 	 	 	 	 	 x 	 ≥ 0/2

	 	 	 	 	 	 x 	 ≥ 0

Computing the Weakest Precondition

Weakest Precondition
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Sometimes we want to compute the preconditions.


{ x 	≥ 0 } sum := 2・x + 1 {sum ≥ 1}


Here are a few valid values for x: 	 	 10, 7, 1, 0, 2112, 42

Here are a few invalid values for x:		 -2,  -8675309,  -5150


What is the minimum valid value for x?

We’ll call this the Weakest Precondition.


Set up an equation using the assignment axiom and then solve it.

	 	 	 	 	 	     {sum ≥ 1} [2・x + 1 / sum]


	 	 	 	 2・x + 1 	 ≥ 1

	 	 	 	 	 2・x 	 ≥ 0

	 	 	 	 	 	 x 	 ≥ 0/2

	 	 	 	 	 	 x 	 ≥ 0

Computing the Weakest Liberal Precondition

Actually, it’s the 

Weakest Liberal Precondition 
(WLP) because we’re not making 
any assertions about termination.
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{ ? }  x := x - 3  {x ≥ 0}


Set up an equation using the assignment axiom …


{P} x := e {Q}

Q[e/x]


	 	 	 	 	 	    	 	  {x ≥ 0} [x - 3 / x]

… and solve it.


	 	 	 	 	   x - 3	 ≥ 0

	 	 	 	 	 	   x	 ≥ 3

Computing the Weakest Liberal Precondition

Weakest Liberal Precondition

(WLP)
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{ ? }  a := b/2 - 1  {a < 10}


Set up an equation using the assignment axiom …


{P} x := e {Q}

Q[e/x]


	 	 	 	 	 	    	 	  {a < 10} [b/2 - 1 / a]

… and solve it.


	 	 	 	 	       b/2 - 1	< 10

	 	 	 	 	            b/2 	< 11

	 	 	 	 	                b 	< 22    		 	 WLP


{ b < 22 }  a := b/2 - 1  {a < 10}

Valid

Computing the Weakest Liberal Precondition

WLP
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{ ? }  x := 2・y - 3  {x > 25}


Set up an equation using the assignment axiom …


{P} x := e {Q}

Q[e/x]


	 	 	 	 	 	    	 	  {x > 25} [2・y - 3 / x]

… and solve it.


	 	 	 	           2・y - 3	> 25

	 	 	 	                 2・y	> 28

	 	 	 	                     y	 > 14   	 	 	 WLP


{ y	 > 14 }  x := 2・y - 3  {x > 25}

Valid

Computing the Weakest Liberal Precondition

WLP
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We recently computed the WLP for this:


{ x	≥ 3 }  x := x - 3  {x ≥ 0}


What if the we were given this ?


{ x	≥ 5 }  x := x - 3  {x ≥ 0}


Is it still valid?

Stronger Preconditions
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Is this valid?

{ x	≥ 5 }  x := x - 3  { x ≥ 0 }


Compute the WLP using the Assignment Axiom…

{P} x := e {Q}[e/x]


	 	 	 	 	 	    	 	  {x ≥ 0} [x - 3 / x]

	 	 	 	 	   x - 3	 ≥ 0

	 	 	 	 	 	   x	 ≥ 3


On the one hand, x ≥ 5 ≠ x ≥ 3 so it seems bad.

Stronger Preconditions

Bad?
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Is this valid?

{ x	≥ 5 }  x := x - 3  { x ≥ 0 }


Compute the WLP using the Assignment Axiom…

{P} x := e {Q}[e/x]


	 	 	 	 	 	    	 	  {x ≥ 0} [x - 3 / x]

	 	 	 	 	   x - 3	 ≥ 0

	 	 	 	 	 	   x	 ≥ 3


On the one hand, x ≥ 5 ≠ x ≥ 3 so it seems bad.


On the other hand, if x ≥ 5 then it’s also true that x ≥ 3.


In other words, x ≥ 5 is a stronger precondition than x ≥ 3. 

1 2 3 4 5 6 7 8 9-9 -8 -7 -6 -5 -4 -3 -2 -1

Stronger Preconditions

?
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Is this valid?

{ x	≥ 5 }  x := x - 3  { x ≥ 0 }


Compute the WLP using the Assignment Axiom…

{P} x := e {Q}[e/x]


	 	 	 	 	 	    	 	  {x ≥ 0} [x - 3 / x]

	 	 	 	 	   x - 3	 ≥ 0

	 	 	 	 	 	   x	 ≥ 3


On the one hand, x ≥ 5 ≠ x ≥ 3 so it seems bad.


On the other hand, if x ≥ 5 then it’s also true that x ≥ 3.


In other words, x ≥ 5 is a stronger precondition than x ≥ 3. 

It’s valid. We are allowed to strengthen preconditions, to have 
given preconditions that are stronger than the WLP.

1 2 3 4 5 6 7 8 9-9 -8 -7 -6 -5 -4 -3 -2 -1

Stronger Preconditions

Good!
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The (inference) Rule of Consequence allows us to have . . .


Stronger Preconditions


{ x	≥ 5 }  x := x - 3  {x ≥ 0}

WLP is x ≥ 3


The given precondition (P) x ≥ 5 is a stronger precondition 

than the computed WLP (Pʹ) x ≥ 3


because x ≥ 5 ⇒ x ≥ 3

Rule of Consequence

P ⇒ Pʹ,  {P} S {Q}


{Pʹ} S {Q}
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What about this?

{ x	≥ 3 }  x := x - 3  { x ≥ -1 }


We can use the Assignment Axiom backwards 


[x/e]{P}  x := e {Q}


to compute the postcondition:

	 	 	 	 	 	    	 	  [x / x - 3]{x ≥ 3}

	 	 	 	 	 	    	 	  [x / x - 3]{x-3 ≥ 0}


	 	 	 	 	 	   x	 ≥ 0	


Again, x ≥ -1 ≠ x ≥ 0… but it’s true that if x ≥ 0 then x ≥ -1.


In other words, x ≥ -1 is a weaker postcondition than x ≥ 0.

1 2 3 4 5 6 7 8 9-9 -8 -7 -6 -5 -4 -3 -2 -1

Weaker Postconditions

*	This	is	an	advanced	technique.	Do	not	attempt	this	while	under	the	influence	of	mind-altering	substances.

*

?
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What about this?

{ x	≥ 3 }  x := x - 3  { x ≥ -1 }


We can use the Assignment Axiom backwards 


[x/e]{P}  x := e {Q}


to compute the postcondition:

	 	 	 	 	 	    	 	  [x / x - 3]{x ≥ 3}

	 	 	 	 	 	    	 	  [x / x - 3]{x-3 ≥ 0}


	 	 	 	 	 	   x	 ≥ 0	


Again, x ≥ -1 ≠ x ≥ 0… but it’s true that if x ≥ 0 then x ≥ -1.


In other words, x ≥ -1 is a weaker postcondition than x ≥ 0.

It’s valid. We are allowed to weaken postconditions, to have given 
postconditions that are weaker than the computed one.

1 2 3 4 5 6 7 8 9-9 -8 -7 -6 -5 -4 -3 -2 -1

Weaker Postconditions

!
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The (inference) Rule of Consequence allows us to have . . .


Stronger Preconditions


and


Weaker Postconditions


{ x	≥ 3 }  x := x - 3  {x ≥ -1}

WLP is x ≥ 0


The given postcondition (Q) x ≥ -1 is a weaker postcondition 

than the computed one (Qʹ) x ≥ 0


because x ≥ 0 ⇒ x ≥ -1

Rule of Consequence

P ⇒ Pʹ,  {P} S {Q}


{Pʹ} S {Q}

{P} S {Q}, Qʹ ⇒ Q


{P} S {Qʹ}
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The (inference) Rule of Consequence allows us to have . . .


Stronger Preconditions


and


Weaker Postconditions


at


the same time


{ x	≥ 3 }  x := x - 3  {x ≥ 0}

x ≥ 5 ⇒ x ≥ 0

x ≥ 0 ⇒ x ≥ -1


{ x	≥ 5 }  x := x - 3  {x ≥ -1}


Rule of Consequence

P ⇒ Pʹ,  {P} S {Q}


{Pʹ} S {Q}

{P} S {Q}, Qʹ ⇒ Q


{P} S {Qʹ}

P ⇒ Pʹ,  {P} S {Q},  Qʹ ⇒ Q


{Pʹ} S {Qʹ}

⇒

⇒
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Reasoning about Small Programs 

Keeping in mind our ability to strengthen preconditions and weaken 
postconditions, we can use weakest liberal preconditions to prove 
programs correct.


How?
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Reasoning about Small Programs 

Keeping in mind our ability to strengthen preconditions and weaken 
postconditions, we can use weakest liberal preconditions to prove 
programs correct.


How? By chaining them together.


Consider a program as a sequence of statements S1, S2, S3, … Sn 

composed together.


For each statement Si in the program, we take its postcondition (Q) 
and compute its weakest liberal precondition (WLP). If the 
computed WLP matches the precondition for Si for then Si is proved 
partially correct.


Si : if WPL(Q) = P then Si is partially correct.

(Of course, we’ll take into account that we can strengthen preconditions 


and weaken postconditions thanks to the Rule of Consequence.)
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Reasoning about Small Programs by Chaining WLPs

Let’s consider a two-statement program:


{P1} S1 {Q1}


{P2} S2 {Q2}


P1 is the starting state.

Q2 is the finishing state.


What is the intermediate state?
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Reasoning about Small Programs by Chaining WLPs

Let’s consider a two-statement program:


{P1} S1 {Q1}


{P2} S2 {Q2}


P1 is the starting state.

Q2 is the finishing state.


What is the intermediate state?

{ }P1 { }? { }Q2

S1 S2
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Reasoning about Small Programs by Chaining WLPs

Let’s consider a two-statement program:


{P1} S1 {Q1}


{P2} S2 {Q2}


P1 is the starting state.

Q2 is the finishing state.


The intermediate state is P2 = Q1.

{ }P1 { }Q1:=P2 { }Q2

S1 S2
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Sequential Composition

Formalizing our two-statement program…


{P} S1 {I}


{I} S2 {Q}


… leads to the Sequential Composition rule

{ }P { }I { }Q

S1 S2

Sequence


Alternation


Repetition

{P} S1 {I}, {I} S2 {Q}


{P} S1; S2 {Q}
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Sequential Composition

We can chain WLPs from the bottom-up to 
reason about the correctness of small programs.

Calculate the WLP of S2’s postcondition to get S2’s precondition.

{ }P { }I { }Q

S1 S2

{P} S1 {I}, {I} S2 {Q}


{P} S1; S2 {Q}

Sequence


Alternation


Repetition



105

Sequential Composition

We can chain WLPs from the bottom-up to 
reason about the correctness of small programs.

Calculate the WLP of S2’s postcondition to get S2’s precondition.

Assign that (the intermediate state) to S1’s postcondition.

{ }P { }I { }Q

S1 S2

{P} S1 {I}, {I} S2 {Q}


{P} S1; S2 {Q}

Sequence


Alternation


Repetition
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Sequential Composition

We can chain WLPs from the bottom-up to 
reason about the correctness of small programs.

Calculate the WLP of S2’s postcondition to get S2’s precondition.

Assign that (the intermediate state) to S1’s postcondition.

Calculate the WLP of S1’s postcondition to get S1’s precondition.

{ }P { }I { }Q

S1 S2

{P} S1 {I}, {I} S2 {Q}


{P} S1; S2 {Q}

Sequence


Alternation


Repetition
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Sequential Composition

We can chain WLPs from the bottom-up to 
reason about the correctness of small programs.

Calculate the WLP of S2’s postcondition to get S2’s precondition.

Assign that (the intermediate state) to S1’s postcondition.

Calculate the WLP of S1’s postcondition to get S1’s precondition.

Compare to what’s given to judge correctness of the program.

{ }P { }I { }Q

S1 S2

{P} S1 {I}, {I} S2 {Q}


{P} S1; S2 {Q}

Sequence


Alternation


Repetition
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Sequential Composition

Consider this program:


{ x	> y }  x := x - 1; y := y - 1  { x > y }


helpfully rewritten as:


{ x	> y }  x := x - 1 { WLP }


{ WLP } y := y - 1  { x > y }


{P} S1 {I}

{I} S2 {Q}
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Sequential Composition

Consider this program:


{ x	> y }  x := x - 1; y := y - 1  { x > y }


helpfully rewritten as:


{ x	> y }  x := x - 1 { WLP }


{ WLP } y := y - 1  { x > y }


WLP = { x > y }[y - 1 / y]


= { x > y - 1 }


{P} S1 {I}

{I} S2 {Q}

Start at the end

and work back 

to the beginning.
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Sequential Composition

Consider this program:


{ x	> y }  x := x - 1; y := y - 1  { x > y }


helpfully rewritten as:


{ x	> y }  x := x - 1 { WLP }


{ x > y - 1 } y := y - 1  { x > y }


WLP = { x > y }[y - 1 / y]


= { x > y - 1 }


{P} S1 {I}

{I} S2 {Q}
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Sequential Composition

Consider this program:


{ x	> y }  x := x - 1; y := y - 1  { x > y }


helpfully rewritten as:


{ x	> y }  x := x - 1 { x > y - 1 }


{ x > y - 1 } y := y - 1  { x > y }


Propagate the intermediate state up to the prior statement in sequence.

{P} S1 {I}

{I} S2 {Q}
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Sequential Composition

Consider this program:


{ x	> y }  x := x - 1; y := y - 1  { x > y }


helpfully rewritten as:


{ x	> y }  x := x - 1 { x > y - 1 }


{ x > y - 1 } y := y - 1  { x > y }


{P} = { x > y - 1}[x - 1 / x]


= { x - 1 > y - 1 }


{P} S1 {I}

{I} S2 {Q}
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Sequential Composition

Consider this program:


{ x	> y }  x := x - 1; y := y - 1  { x > y }


helpfully rewritten as:


{ x - 1 > y - 1 }  x := x - 1 { x > y - 1 }


{ x > y - 1 } y := y - 1  { x > y }


{P} = { x > y - 1}[x - 1 / x]


= { x - 1 > y - 1 }


{P} S1 {I}

{I} S2 {Q}
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Sequential Composition

Consider this program:


{ x	> y }  x := x - 1; y := y - 1  { x > y }


helpfully rewritten as:


{ x - 1 > y - 1 }  x := x - 1 { x > y - 1 }


{ x > y - 1 } y := y - 1  { x > y }


{P} = { x > y - 1}[x - 1 / x]


= { x - 1 > y - 1 }


Compare computed WLP to original {P}:    x > y ≟ x-1 > y-1

{P} S1 {I}

{I} S2 {Q}
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Sequential Composition

Wait, can we show  (x > y) = (x-1 > y-1) ?  Yes.


Also:	 	 x-1 > y-1

       	   x-1+1 > y-1+1

                       x > y
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Sequential Composition

Consider this program:


{ x	> y }  x := x - 1; y := y - 1  { x > y }


helpfully rewritten as:


{ x - 1 > y - 1 }  x := x - 1 { x > y - 1 }


{ x > y - 1 } y := y - 1  { x > y }


{P} = { x > y - 1}[x - 1 / x]


= { x - 1 > y - 1 }


Compare computed WLP to original {P}:    x > y = x-1 > y-1  so we 
have proved this sequence of statements (program) partially correct.

{P} S1 {I}

{I} S2 {Q}



117

Sequential Composition

What is the WLP {P} that will make this program correct?


{P}  y = 3・x + 1; x := y + 3  {x < 10}


Rewrite as…

{P}  y = 3・x + 1 {I}


{I} x := y + 3  { x < 10 }


… and solve from the bottom-up.
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Sequential Composition

What is the WLP {P} that will make this program correct?


{P}  y = 3・x + 1; x := y + 3  {x < 10}


Rewrite as…

{P}  y = 3・x + 1 {I}


{I} x := y + 3  { x < 10 }


… and solve from the bottom-up.


I =  { x < 10 }[y + 3 / x]

         y + 3 < 10


              y < 7
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Sequential Composition

What is the WLP {P} that will make this program correct?


{P}  y = 3・x + 1; x := y + 3  {x < 10}


Rewrite as…

{P}  y = 3・x + 1 {y < 7}


{y < 7} x := y + 3  { x < 10 }


… and solve from the bottom-up.
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Sequential Composition

What is the WLP {P} that will make this program correct?


{P}  y = 3・x + 1; x := y + 3  {x < 10}


Rewrite as…

{P}  y = 3・x + 1 {y < 7}


{y < 7} x := y + 3  { x < 10 }


… and solve from the bottom-up.


P =  { y < 7 }[3・x + 1 / y]


         3・x + 1 < 7

               3・x < 6

                     x < 2
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Sequential Composition

What is the WLP {P} that will make this program correct?


{P}  y = 3・x + 1; x := y + 3  {x < 10}


Rewrite as…

{x < 2}  y = 3・x + 1 {y < 7}


{y < 7} x := y + 3  { x < 10 }


x < 2 is the WLP {P} that makes this program partially correct.


{x < 2}  y = 3・x + 1; x := y + 3  {x < 10}
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Sequential Composition

Is this program (partially) correct?


{B > 6}  J = 2・B + 007 ;  B  := J - 17  { B > 5 }


Rewrite:

{B > 6}  J = 2・B + 007  {I}


{I} B  := J - 17  { B > 5 }
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Sequential Composition

Is this program (partially) correct?


{B > 6}  J = 2・B + 007 ;  B  := J - 17  { B > 5 }


Rewrite:

{B > 6}  J = 2・B + 007  {I}


{I} B  := J - 17  { B > 5 }


{B > 5}[J - 17 / B}

J - 17 > 5


          J > 22



124

Sequential Composition

Is this program (partially) correct?


{B > 6}  J = 2・B + 007 ;  B  := J - 17  { B > 5 }


Rewrite:

{B > 6}  J = 2・B + 007  {J > 22}


{J > 22} B  := J - 17  { B > 5 }



125

Sequential Composition

Is this program (partially) correct?


{B > 6}  J = 2・B + 007 ;  B  := J - 17  { B > 5 }


Rewrite:

{B > 6}  J = 2・B + 007  {J > 22}


{J > 22} B  := J - 17  { B > 5 }


{J > 22}[2・B + 007 / J}

2・B + 007 > 22

          2・B > 15

                 B > 7.5
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Sequential Composition

Is this program (partially) correct?


{B > 6}  J = 2・B + 007 ;  B  := J - 17  { B > 5 }


Rewrite:

{B > 7.5}  J = 2・B + 007  {J > 22}


{J > 22} B  := J - 17  { B > 5 }


We calculated the WLP for the entire program to be B > 7.5

The given initial precondition is B > 6.


So is this program (partially) correct or not?
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Sequential Composition

Is this program (partially) correct?


{B > 6}  J = 2・B + 007 ;  B  := J - 17  { B > 5 }


Rewrite:

{B > 7.5}  J = 2・B + 007  {J > 22}


{J > 22} B  := J - 17  { B > 5 }


We calculated the WLP for the entire program to be B > 7.5

The given initial precondition is B > 6.


So is this program (partially) correct or not?

Is the given precondition stronger than the WLP?
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Sequential Composition

Is this program (partially) correct?


{B > 6}  J = 2・B + 007 ;  B  := J - 17  { B > 5 }


Rewrite:

{B > 7.5}  J = 2・B + 007  {J > 22}


{J > 22} B  := J - 17  { B > 5 }


We calculated the WLP for the entire program to be B > 7.5

The given initial precondition is B > 6.


So is this program (partially) correct or not? 		 	 NO!

Is the given precondition stronger than the WLP?	 NO!

B > 6  ⇏  B > 7.5

and we are not allowed to weaken preconditions.

	 	 	 	 	 	 	 	 	 	 	 Don’t believe me? Try it with B=7.
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Sequential Composition

This works for larger programs as well:


{x	<	1}

y	=	2x	+	2;

x	=	4y	–	2;

x	=	x	+	1;

{x	<	23}


Try it!
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Conditional Rule

We’ve got sequence.

Now we need alternation.


For that, there’s the Conditional Rule.


Think of it like this:


Some states in P satisfy c, causing the IF block (S1) to execute, while 
other states in P do not satisfy c, causing ELSE block (S2) to execute.


Here’s another way to visualize it.

Sequence


Alternation


Repetition

{P} {Q}

IF c THEN S1 ELSE S2 ENDIF
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Conditional Rule

We’ve got sequence.

Now we need alternation.


For that, there’s the Conditional Rule.


Think of it like              IF c THEN S1 ELSE S2 ENDIF

Sequence


Alternation


Repetition

{Q}

S1

S2

c

¬c
{P}
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Conditional Rule

We’ve got sequence.

Now we need alternation.


For that, there’s the Conditional Rule.


Think of it like              IF c THEN S1 ELSE S2 ENDIF


{P ∧ c} S1 {Q}


{P ∧ ¬c} S2 {Q}

Sequence


Alternation


Repetition

{Q}

S1

S2

c

¬c
{P}
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Conditional Rule

We’ve got sequence.

Now we need alternation.


For that, there’s the Conditional Rule.


Think of it like              IF c THEN S1 ELSE S2 ENDIF


{P ∧ c} S1 {Q}


{P ∧ ¬c} S2 {Q}

Sequence


Alternation


Repetition

{Q}

S1

S2

c

¬c
{P}
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Conditional Rule

We’ve got sequence.

Now we need alternation.


For that, there’s the Conditional Rule.

Sequence


Alternation


Repetition

{P ∧ c} S1 {Q}, {P ∧ ¬c} S2 {Q}


{P} IF c THEN S1 ELSE S2 ENDIF {Q}
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Conditional Rule

{true} IF y ≤ 0 THEN x:=1 ELSE x := y ENDIF {x > 0}


{P ∧ c} S1 {Q}, {P ∧ ¬c} S2 {Q}


{P} IF c THEN S1 ELSE S2 ENDIF {Q}

{P} {Q}{S1} {S2}{c}
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Conditional Rule

{true} IF y ≤ 0 THEN x:=1 ELSE x := y ENDIF {x > 0}


{P ∧ c} S1 {Q}, {P ∧ ¬c} S2 {Q}


{P} IF c THEN S1 ELSE S2 ENDIF {Q}

{P ∧ c} S1 {Q}


{true ∧ y ≤ 0} x:=1 {x>0}


{x>0}[1/x]

{1>0}


= {true}

but we’re looking for 


{true ∧ y ≤ 0}

Can we prove


true ∧ y ≤ 0 ⇒ true ?

{P} {Q}{S1} {S2}{c}
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Conditional Rule

{true} IF y ≤ 0 THEN x:=1 ELSE x := y ENDIF {x > 0}


{P ∧ c} S1 {Q}, {P ∧ ¬c} S2 {Q}


{P} IF c THEN S1 ELSE S2 ENDIF {Q}

{P ∧ c} S1 {Q}


{true ∧ y ≤ 0} x:=1 {x>0}


{x>0}[1/x]

{1>0}


= {true}

but we’re looking for


{true ∧ y ≤ 0}


⊢ true ∧ y ≤ 0 ⇒ true

{P} {Q}{S1} {S2}{c}

True (y≤0) True ∧ (y≤0) (True ∧ (y≤0))⇒ True

 1     0        0                     1

 1     1        1                     1



138

Conditional Rule

{true} IF y ≤ 0 THEN x:=1 ELSE x := y ENDIF {x > 0}


{P ∧ c} S1 {Q}, {P ∧ ¬c} S2 {Q}


{P} IF c THEN S1 ELSE S2 ENDIF {Q}

{P ∧ c} S1 {Q}


{true ∧ y ≤ 0} x:=1 {x>0}


{x>0}[1/x]

{1>0}


= {true}

⊢ true ∧ y ≤ 0 ⇒ true


{true ∧ y ≤ 0}


{P} {Q}{S1} {S2}{c}
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Conditional Rule

{true} IF y ≤ 0 THEN x:=1 ELSE x := y ENDIF {x > 0}


{P ∧ c} S1 {Q}, {P ∧ ¬c} S2 {Q}


{P} IF c THEN S1 ELSE S2 ENDIF {Q}

{P ∧ ¬c} S2 {Q}


{true ∧ ¬y ≤ 0} x:=y {x>0}


{x>0}[y/x]

{y>0}


 = {¬y ≤ 0}

⊢ true ∧ ¬y ≤ 0 ⇒ ¬y ≤ 0


{true ∧ ¬y ≤ 0}

{P} {Q}{S1} {S2}{c}

{P ∧ c} S1 {Q}


{true ∧ y ≤ 0} x:=1 {x>0}


{x>0}[1/x]

{1>0}


= {true}

⊢ true ∧ y ≤ 0 ⇒ true


{true ∧ y ≤ 0}
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Conditional Rule

{true} IF y ≤ 0 THEN x:=1 ELSE x := y ENDIF {x > 0}


{P ∧ c} S1 {Q}, {P ∧ ¬c} S2 {Q}


{P} IF c THEN S1 ELSE S2 ENDIF {Q}

{P ∧ ¬c} S2 {Q}


{true ∧ ¬y ≤ 0} x:=y {x>0}


{x>0}[y/x]

{y>0}


 = {¬y ≤ 0}

⊢ true ∧ ¬y ≤ 0 ⇒ ¬y ≤ 0


{true ∧ ¬y ≤ 0}

{P} {Q}{S1} {S2}{c}

{P ∧ c} S1 {Q}


{true ∧ y ≤ 0} x:=1 {x>0}


{x>0}[1/x]

{1>0}


= {true}

⊢ true ∧ y ≤ 0 ⇒ true


{true ∧ y ≤ 0}


Both paths are valid; the statement is valid.
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Skip Rule

Sometimes you just need a NOP.

{P} SKIP {P}
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While Loop Rule

With sequence and alternation done, 
all that’s left is repetition.


We need something like


{P} WHILE c DO S ENDWHILE {Q}


Note: If you’re wondering about DO, FOR, and REPEAT loops, 
remember that we can rewrite any of those loops into a WHILE loop.

Sequence


Alternation


Repetition
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While Loop Rule

With sequence and alternation done, 
all that’s left is repetition.


We need something like


{P} WHILE c DO S ENDWHILE {Q}


The problem is that correctness proofs for arbitrary P and Q are 
undecidable in this context because there are an unknown number of 
traces through the code. (Do we enter the loop? How many times do 
we loop? Does the loop terminate?) We need more information about 
the construction of the loop. We need its invariant. 


A loop invariant is an assertion that’s . . .

• true immediately before the loop begins,

• true during the loop, and

• true immediately after the loop exits.


In other words, it does not vary, because it’s (wait for it) invariant.

Sequence


Alternation


Repetition
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Loop Invariants

A loop invariant is an assertion that’s . . .

• true immediately before the loop begins,

• true during the loop, and

• true immediately after the loop exits.


Example: Selection sort

What is the loop invariant ?

i := 0

while i < n

   i := i + 1

   find smallest item

   move to array[i]

endwhile

print i ‘items sorted’
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Loop Invariants

A loop invariant is an assertion that’s . . .

• true immediately before the loop begins,

• true during the loop, and

• true immediately after the loop exits.


Example: Selection sort

What is the loop invariant ?


The invariant is i = the number of 
items in sorted order.


• Before the loop, 0 items are sorted.

• As we iterate repeatedly through 

the loop, the first i items are in 
sorted order.


• At the end of the loop, all n=i items 
are in sorted order.


i := 0

while i < n

   i := i + 1

   find smallest item

   move to array[i]

endwhile

print i ‘items sorted’
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While Loop Rule

While this won’t do:


{P} WHILE c DO S ENDWHILE {Q}


this will:
{I ∧ c} S {I}


{I} WHILE c DO S ENDWHILE {I ∧ ¬c}
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While Loop Rule

While this won’t do:


{P} WHILE c DO S ENDWHILE {Q}


this will:


Think of it like a flow chart:

{I ∧ c} S {I}


{I} WHILE c DO S ENDWHILE {I ∧ ¬c}

c

I

false

I	∧	¬c
exit

true

I	∧	c

S

I
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While Loop Rule

While this won’t do:


{P} WHILE c DO S ENDWHILE {Q}


this will:


Think of it like a flow chart:

{I ∧ c} S {I}


{I} WHILE c DO S ENDWHILE {I ∧ ¬c}

c

I

false

I	∧	¬c
exit

true

I	∧	c

S

I
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While Loop Rule

While this won’t do:


{P} WHILE c DO S ENDWHILE {Q}


this will:


Think of it like a flow chart:

{I ∧ c} S {I}


{I} WHILE c DO S ENDWHILE {I ∧ ¬c}

c

I

false

I	∧	¬c
exit

true

I	∧	c

S

I



150

While Loop Rule

While this won’t do:


{P} WHILE c DO S ENDWHILE {Q}


this will:


Think of it like a flow chart:

{I ∧ c} S {I}


{I} WHILE c DO S ENDWHILE {I ∧ ¬c}

c

I

false

I	∧	¬c
exit

true

I	∧	c

S

I

Sequence


Alternation


Repetition
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While Loop Rule

{x ≤ 10} WHILE x < 10 DO x:=x+1 ENDWHILE {x=10}


What’s a good invariant?

{P} {Q}{S}{c}
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While Loop Rule

{x ≤ 10} WHILE x < 10 DO x:=x+1 ENDWHILE {x=10}


What’s a good invariant?

Let’s try {I} = x ≤ 10

{P} {Q}{S}{c}

{I ∧ c} S {I}


{I} WHILE c DO S ENDWHILE {I ∧ ¬c}

{x ≤ 10 ∧ x < 10} x:=x+1 {x ≤ 10}


{x ≤ 10} WHILE x < 10 DO x:=x+1 ENDWHILE {x ≤ 10 ∧ ¬x < 10}
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While Loop Rule

{x ≤ 10} WHILE x < 10 DO x:=x+1 ENDWHILE {x=10}

x < 10

x	≤	10

false
x	≤	10	∧	¬x	<	10

x	=	10

exit
true

x	≤	10	∧	x	<	10

S

x	≤	10

{x ≤ 10 ∧ x < 10} x:=x+1 {x ≤ 10}


{x ≤ 10} WHILE x < 10 DO x:=x+1 ENDWHILE {x ≤ 10 ∧ ¬x < 10}

I

I	∧	¬c
I	∧	c

I

c
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While Loop Rule

{x ≤ 10} WHILE x < 10 DO x:=x+1 ENDWHILE {x=10}


We need to prove

1. P ⇒ I

2. I ∧ ¬c ⇒ Q

3. I ∧ c ⇒ WLP(loop-body)

{x ≤ 10 ∧ x < 10} x:=x+1 {x ≤ 10}


{x ≤ 10} WHILE x < 10 DO x:=x+1 ENDWHILE {x ≤ 10 ∧ ¬x < 10}

x < 10

x	≤	10

false
x	≤	10	∧	¬x	<	10

x	=	10

exit
true

x	≤	10	∧	x	<	10

S

x	≤	10

I

I	∧	¬c
I	∧	c

I

c
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While Loop Rule

{x ≤ 10} WHILE x < 10 DO x:=x+1 ENDWHILE {x=10}


We need to prove

1. P ⇒ I

2. I ∧ ¬c ⇒ Q

3. I ∧ c ⇒ WLP(loop-body)

{x ≤ 10 ∧ x < 10} x:=x+1 {x ≤ 10}


{x ≤ 10} WHILE x < 10 DO x:=x+1 ENDWHILE {x ≤ 10 ∧ ¬x < 10}

P	= x ≤ 10

I = x ≤ 10

x ≤ 10 ⇒ x ≤ 10
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While Loop Rule

{x ≤ 10} WHILE x < 10 DO x:=x+1 ENDWHILE {x=10}


We need to prove

1. P ⇒ I

2. I ∧ ¬c ⇒ Q

3. I ∧ c ⇒ WLP(loop-body)

{x ≤ 10 ∧ x < 10} x:=x+1 {x ≤ 10}


{x ≤ 10} WHILE x < 10 DO x:=x+1 ENDWHILE {x ≤ 10 ∧ ¬x < 10}

I		 	 = x ≤ 10

c		 	 = x < 10

¬c	 	 = x ≥ 10

I ∧ ¬c	 = x ≤ 10 ∧ x ≥ 10

	 	 	 = x = 10


Q	 	 = x = 10


x = 10 ⇒ x = 10
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While Loop Rule

{x ≤ 10} WHILE x < 10 DO x:=x+1 ENDWHILE {x=10}


We need to prove

1. P ⇒ I

2. I ∧ ¬c ⇒ Q

3. I ∧ c ⇒ WLP(loop-body)

{x ≤ 10 ∧ x < 10} x:=x+1 {x ≤ 10}


{x ≤ 10} WHILE x < 10 DO x:=x+1 ENDWHILE {x ≤ 10 ∧ ¬x < 10}

loop body:

{I ∧ c} S {I}


{x ≤ 10 ∧ x < 10} x=x+1 {x ≤ 10}


	 	 	 	 {x ≤ 10}[x+1/x]

	 	 	 	 {x+1 ≤ 10}

	 	 	 	 {x ≤ 9} WLP

I ∧ c ⇒ WLP(loop-body)

{x ≤ 10 ∧ x < 10} ⇒ x ≤ 9 for integers
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While Loop Rule

{x ≤ 10} WHILE x < 10 DO x:=x+1 ENDWHILE {x=10}


We need to prove

1. P ⇒ I

2. I ∧ ¬c ⇒ Q

3. I ∧ c ⇒ WLP(loop-body)

{x ≤ 10 ∧ x < 10} x:=x+1 {x ≤ 10}


{x ≤ 10} WHILE x < 10 DO x:=x+1 ENDWHILE {x ≤ 10 ∧ ¬x < 10}

x < 10

x	≤	10

false
x	≤	10	∧	¬x	<	10

x	=	10

exit
true

x	≤	10	∧	x	<	10

S

x	≤	10

I

I	∧	¬c
I	∧	c

I

c
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Axiomatic Semantics

Sequence


Alternation


Repetition

That does it! 


Go forth and prove programs correct.


