
BASIC Session 

Chairman: Thomas Cheatham 
Speaker: Thomas E. Kurtz 

PAPER: BASIC 

Thomas E. Kurtz 
Darthmouth College 

1. Background 

1.1. Dartmouth College 

Dartmouth College is a small university dating from 1769, and dedicated "for  the educa- 
tion and instruction of Youth of the Indian Tribes in this Land in reading, writing and all 
parts of learning . . . and also of English Youth and any others" (Wheelock, 1769). The 
undergraduate student body (now nearly 4000) outnumbers all graduate students by more 
than 5 to 1, and majors predominantly in the Social Sciences and the Humanities (over 
75%). 

In 1940 a milestone event, not well remembered until recently (Loveday, 1977), took 
place at Dartmouth. Dr. George Stibitz of the Bell Telephone Laboratories demonstrated 
publicly for the first time, at the annual meeting of the American Mathematical Society, 
the remote use of a computer over a communications line. The computer was a relay cal- 
culator designed to carry out arithmetic on complex numbers. The terminal was a Model 
26 Teletype. 

Another milestone event occurred in the summer of 1956 when John McCarthy orga- 
nized at Dartmouth a summer research project on "artificial intelligence" (the first known 
use of this phrase). The computer scientists attending decided a new language was needed; 
thus was born LISP. [See the paper by McCarthy, pp. 173-185 in this volume. Ed.] 

1.2. Dartmouth Comes to Computing 

After several brief encounters, Dartmouth's liaison with computing became permanent 
and continuing in 1956 through the New England Regional Computer Center at MIT, 

HISTORY OF PROGRAMMING LANGUAGES 
Copyright © 1981 by the Association for Computing Machinery, Inc. 
Permission for reproduction in any form must be obta/ned from Academic Press, Inc. 
ISBN 0-12-745040-8 

515 



Thomas E. Kurtz 

sporting a new IBM 704 and heavily subsidized by IBM. The earliest use of this machine 
was without the aid of either an operating system or a higher level language. John Kemeny 
and I learned the Share Assembly Language (SAP), how to read memory dumps, and the 
joys of two-week tumaround (my schedule of train trips to Boston). Before the IBM 704 
was installed at MIT, we used a similar machine through the courtesy of General Electric 
at Lynn, Massachusetts. 

Disturbed by the intricacy of programming in assembly language and despairing of ever 
teaching it to our students and colleagues, John Kemeny devised DARSIMCO (DARt- 
mouth SIMplified COde). In it, the common arithmetic operations were expressed as tem- 
plates of two or three SAP instructions. Thus, to perform A + B = C, one wrote as a 
single template: 

LDA A 
FAD B 
ST0 C 

Similar templates were devised for subtraction, multiplication, division, and simple loop- 
ing. This was, then, Dartmouth's first crack at a simple computer language. Little used, 
since FORTRAN became available the following year, DARSIMCO reflected Dart- 
mouth's continuing concern for simplifying the computing process and bringing computing 
to a wider audience (Dartmouth, 1956). 

FORTRAN appeared on the MIT machine in 1957. Its acceptance was tempered by its 
alleged inefficiency in comparison with assembly language. This allegation had little effect 
on us, and we quickly dropped both SAP and its dialect DARSIMCO. One incident in 
particular comes to mind. I had a project to calculate certain statistical percentage points 
over an array of third and fourth moment values. Indoctrinated by the maxim that FOR- 
TRAN was inefficient, and that one could and should save valuable machine cycles by 
coding directly in assembly language, I did just that. After several months of trying, read- 
ing memory dumps, and trying again, I admitted failure. I had consumed about one hour of 
valuable 704 time, and untold hours of my less valuable time. I then programmed the same 
computation in FORTRAN, inefficiently, I am sure. The answers appeared. About five 
minutes of computer time were used. This lesson--that  programming in higher level lan- 
guages could save computer time as well as person time--impressed me deeply. 

1.3. Computing Comes to Dartmouth 

An LGP-30 small computer arrived at Dartmouth in June of 1959. This computer had a 
memory of 4K 30-bit words on a drum that rotated 30 times a second, and had 16 simple 
instructions. Several undergraduates were persuaded that summer to explore what could 
be done with the new toy. One student, without any prior background in computing, pre- 
pared a simple higher level language and language processor he called DART (Hargraves, 
1959). Obviously influenced by FORTRAN, but wishing to avoid scanning general arith- 
metic expressions, he required parentheses around all binary operators and their 
operands. Hardly earth-shaking, but one conclusion was inescapable: a good undergradu- 
ate student could achieve what at that time was a professional-level accomplishment, 
namely, the design and writing of a compiler. This observation was not overlooked. 

At the same time E. T. Irons, then a graduate student at Princeton, spent the summer in 
Hanover while working on a syntax-directed compiler (Irons, 1961). Our attention was 

516 Part Xl 



Paper: BASIC 

thus drawn to the International Algebraic Language known also as ALGOL 58. A group of 
four students (Stephen Garland, Robert Hargraves, Anthony Knapp, and Jorge Llacer) 
and I began to design and construct an ALGOL 58 compiler for the LGP-30. A paper (Sa- 
melson and Bauer, 1960) discussing what is now known as bottom-up parsing, provided 
the efficient scanning algorithm needed for a slow and small computer. Shortly, 
ALGOL 60 appeared (Naur, 1960), and our effort shifted to it. 

Since the limited size of the LGP-30 precluded a full implementation of ALGOL 60, cer- 
tain of its features (arrays called by value, own arrays, strings, variable array bounds, and 
recursion) were omitted; but we did include parameters called by name, using "thunks" 
(Ingerman, 1961; Irons and Feurzeig, 1961), and integer labels. We dubbed our work 
ALGOL 30, since it was for the LGP-30 (Kurtz, 1962a, Feb., 1962b, Mar.). From this 
project emerged a small group of undergraduate students who were well equipped to per- 
form further work in the development of computer languages. For instance, one student 
(Garland) discovered that compound statements and blocks could be included in the Sa- 
melson and Bauer scanning algorithm. This simple fact was not published until some years 
later. (I have been unable to identify the source I clearly remember; the closest is Gries, 
1968.) 

The ALGOL 30 system suffered one defect that hindered its wide use as a student- 
oriented language: it was a two-pass system. The intermediate code was similar to relocat- 
able binary, but had to be punched onto paper tape. Compilations could be "batched," 
but the delays between presenting the source code tape and the final execution were too 
great to allow widespread student use. It was clear that a "load-and-go" system was 
needed. Thus was born SCALP, a Self Contained ALgol Processor (Kurtz, 1962c, Oct.). 

The design of SCALP (by undergraduates Garland and Knapp, and myself) was limited 
by having only one-third of the available 4K word memory for the compiler, another third 
for the run-time support routines (including software floating point routines), and the final 
third for the compiled user code. Several drastic decisions were made, the most severe of 
which was to limit the for-loop construct to only the while element, since one could obtain 
the step-until element as a special case. 

Two other details of SCALP are worth mentioning. The student's program was com- 
piled almost as fast as the source code paper tape could be read in. Furthermore, once in 
execution, a program could be traced and patched using the symbols of the source code. 
These two features allowed five or six student jobs to be completed in 15 minutes. Thus, 
quick turnaround and the ability to deal only with the source language were confirmed as 
essential for a student-oriented system. Hundreds of students over the next several years 
learned and used SCALP until it was replaced by BASIC (Kurtz, 1963a, Jan.). 

Another experiment in language design occurred around 1962. The language was called 
DOPE--Dartmouth Oversimplified Programming Experiment (Kemeny, 1962). Kemeny 
was assisted by student Sidney Marshall. Intended to offer a smooth transition from flow- 
charting to computer programming on the LGP-30, it expressed typical flowchart opera- 
tions as two or three operand commands. For example, the assignment C = A + B ap- 
peared as 

and Z = SIN(X) as 

7+ABC 

i0 SIN X Z 

BASIC Session 517 



Thomas E. Kurtz 

Only one arithmetic operation per line was allowed. Variables could be single letters or 
letter-digit combinations, a harbinger of BASIC. The letters E through H were reserved 
for vectors, each allowing components numbered 1 through 16. In addition to the four 
main arithmetic operations (+, - ,  -, /), the commands included four functions (SQR, 
EXP, LOG, SIN), a jump (T), and a three-way branch (C)--shades of FORTRAN! Loops 
began with Z and ended with E, and allowed only unit step sizes. Input-output commands 
included an input (J), input and print a label (A), print a number (P), and print a new line 
(N). 

Though not a success in itself, DOPE presaged BASIC. DOPE provided default vec- 
tors, default printing formats, and general input formats. Line numbers doubled as jump 
targets. Uppercase letters and lowercase letters could be used interchangeably. 

While no one of these language projects (DARSIMCO, DART, ALGOL 30, SCALP, 
DOPE) was an unqualified success in its own right, they all were influenced by our goal to 
simplify the user interface. They taught us something about language design. And they 
confirmed that programming talent was available as we prepared for our next computing 
venture. 

2. Rationale for BASIC 

2.1. Goals of the Project 

Dartmouth students are interested mainly in subjects outside the sciences--only about 
25% major in science or engineering. While science students will learn computing natu- 
rally and well, the nonscience group produces most of the decision makers of business and 
government. We wondered, "How can sensible decisions about computing and its use be 
made by persons essentially ignorant of it?" This question begged the conclusion that non- 
science students should be taught computing. The hard question was thus not "whether"  
but "how."  It seemed to us inescapable that to learn about computing one must deal with 
it directly; that is, one must actually write programs. Merely lecturing about computing 
would not work. But having large numbers of nonscience students learn to write programs 
in assembly language, or even FORTRAN or ALGOL, was clearly out of the question. 
The majority would balk at the seemingly pointless detail. What could we do? 

The approaches common at the time seemed inadequate for our purpose. Typical access 
to computing, requiring punched cards and involving both programming and administra- 
tive hurdles, might be acceptable to technically minded students, but certainly not to 
others. Typical introductory courses that were really baby courses in numerical methods 
would not be elected by the majority of the students in whom we were interested. Further- 
more, Dartmouth's English, foreign language, and distributive (humanities, sciences, so- 
cial sciences) requirements weighed heavily against introducing whole new courses about 
computing. 

We gradually settled on a fourfold approach. First, we would have to devise a computer 
system that would be friendly, easy to learn and use, and not require students to go out of 
their way. While we felt that our students would not accept punched cards, we did feel 
they would accept time sharing, a technique that had been demonstrated previously at 
MIT and elsewhere (Corbato e t  al. ,  1962; McCarthy e t  al. ,  1963). (Around 1960 or 1961, 

518 Part Xl 



Paper: BASIC 
i . 

after a visit to the PDP- 1 time shared computer at MIT, I can clearly recall John McCarthy 
saying, "Why don't you guys do time sharing?" Shortly afterward I said to Kemeny, " I  
think we ought to do time sharing." Kemeny responded, " O K . "  And that was that!) Com- 
puting could thus be brought to the comfort of work areas readily available to students. 
The newly developed ASCII code and inexpensive communications and terminals (Tele- 
type models 33 and 35) came along in the nick of time. And we concluded, bravely per- 
haps, that we could design and construct a time-sharing system that would be friendly and 
easy to use. We had absolutely no doubt about the easy-to-use part. As to the design and 
construction, we were willing to believe that our undergraduate students could tackle liter- 
ally any programming job we gave them. (For many years, this proved true. Only when 
the systems jobs required continuous attention for more than several terms did this ap- 
proach falter. Still, Dartmouth students over the years accomplished far more than anyone 
might have been willing either to predict in advance, or to believe by hindsight.) 

The second part of the project was to develop a new language--again, one that was 
easy to learn and use. While Kemeny instantly realized (in the spring of 1963) the need for 
designing a new language, I preferred to believe that, although existing languages such as 
FORTRAN and ALGOL were not suitable, reasonable subsets of these languages could 
be devised. This belief proved wrong. For example, the compound statement is a central 
concept in ALGOL; one cannot construct a nontrivialfor-statement without it. But the 
idea of a compound statement posed pedagogical problems; it would have to be defined 
and explained. I had even toyed with the notion (Kurtz, 1963b, May) that 

for i :=  1 step 1 until n do 
begin a := b end next i; 

which is legal ALGOL, could be written 

for i :=  1 step 1 until n do 
a : = b n e x t i ;  

With FORTRAN, a subset wouldn't make sense if it violated the IJKLMN convention. 
But how many nonscience students could appreciate the distinction betwen integer and 
non-integer variables. Other problems included remembering the punctuation in the DO 
and IF statements, and the order of the three statement numbers in the IF statement. Very 
early, then, I agreed with Kemeny that a new language was needed to meet our require- 
ments. 

The third component of the project concerned the student's initial introduction to com- 
puting. For reasons given earlier, a whole course was not practical. On the other hand, the 
principal motivation for a student to learn computing would come from applications in 
which the student might have a direct interest. Accordingly, we made plans to introduce 
computing as an adjunct to two courses: second-term calculus, and finite mathematics. 
The applications of computing came from the topics of the course. Over the years about 
85% of all Dartmouth students have taken at least one of these courses (Kemeny and 
Kurtz, 1968). 

The fourth and final element was the decision to operate the computer with open access. 
Dartmouth has a large open-stack library, and it was natural for us to carry over this phi- 
losophy into our computing operation. Achieving open access was aided by the virtual 
absence, in those days, of government-supported research at Dartmouth. We were thus 

BASIC Session 519 



Thomas E. Kurtz 

freed from the major constraint found at other  large ins t i tu t ions- - the  apparent  require- 
ment to charge students and faculty for  computer  services lest income from government  
grants be jeopardized.  

The ideas neatly summarized above did not arise overnight,  but  actually evolved gradu- 
ally over  the years since 1956, and depended in crucial ways on the nature of  Dartmouth as 
a small liberal arts university. Although Kemeny  and I, and our student programmers,  did 
most of  the work,  we were backed at all times by President John S. Dickey,  Dean of  the 
Faculty Leonard  M. Rieser, and Dean of  the Thayer  School of Engineering Myron Tribus. 
In fact,  Tribus writes (letter, 1977 November  7): 

I remember quite vividly an afternoon conversation with John Kemeny in which we agreed that 
certain requirements would be met even if it meant indefinitely postponing the computer. 

a. Students would have free access. 
b. There would be complete privacy. No one would know what the students were doing. 
c. The system should be easy to learn. The computer should contain its own instructions. 
d. The system would be designed to save the time of the user even if it appeared that the com- 

puter was being "wasted." 
e. Turnaround time should be sufficiently rapid that students could use the system for homework. 
f. The system would be pleasant and friendly. 

In early 1964, with the assistance of  two grants from the N S F  and educational discounts 
from General Electric,  Dartmouth acquired a GE-225 computer  (replaced in the summer 
of  1964 by a GE-235) combined with a Datanet-30 and a disk that could be accessed from 
either machine (Kemeny and Kurtz ,  1968). Kemeny  had begun work during the summer 
of  1963 on a compiler for a draft version of  BASIC; GE provided access to GE-225 ma- 
chines in the area. Design and coding for the operating system began in the fall of  1963, 
with the main responsibility falling to students Michael Busch and John McGeachie.  The 
pace quickened in February of  1964 when the equipment  arrived on the campus.  The first 
BASIC program under time sharing was run on May 1, 1964, around 4 A.M. Three  termi- 
nals in May became eleven by June, and twenty in the fall. 

The design of  BASIC and of  the operating system went hand-in-hand. Extant  notes,  
memoranda,  and recollections are concerned more with the design and development  of  the 
operating system than with BASIC itself. On the other  hand, the project  had a single set of  
goals, and these goals applied as much to the design of  BASIC as to the design of  the 
time-sharing system. For  example,  Memo No. 1 (Kurtz,  1963c, Nov.)  reads: 

The Time Sharing System should be externally simple and easy to use for the casual program- 
mer . . . .  

A little later, the same document  states: 

• . . flexible, including compiling in standard languages. However, no attempt will be made at 
making the use of the Time Sharing equipment be compatible with standard use of a computer• 

(Presumably, " s t andard"  meant " b a t c h . " )  This latter quote sets the record straight: the 
Dartmouth system was always a multilingual system, even in its conception.  And finally, 
on p. 2 of  that memo: 

In all cases where there is a choice between simplicity and efficiency, simplicity is chosen. 

Need I say more. 

520 Part Xl 



Paper: BASIC 

2.2. BASIC and Time Sharing 

In addition to reflecting a common set of goals, the language BASIC and the time-shar- 
ing system in which it resides were, and still are, inextricably meshed. It is impossible for 
us to talk about one without the other. For example, each statement in BASIC begins with 
a line number, primarily to aid editing. To cooperate, the operating system monitor as- 
sumed that all inputted lines of text that started with a digit were part of a program. In 
addition, all programs were automatically sorted by line number prior to their being listed 
or run. Additions, deletions, and changes to programs could thus be made without overtly 
involving an editor. On the other hand, all inputted lines of text that started with a nondigit 
were assumed to be monitor commands. The discrimination between program lines and 
commands occurred at the earliest possible juncture in the operating system, rather than 
deeply within some editor, thus encouraging efficiency and rapid response. (A user Wish- 
ing to create or change a text file lacking line numbers needed to overtly invoke an editor.) 

A second example is the choice of monitor commands, such as HELLO, NEW, OLD, 
SAVE, LIST, RUN, and GOODBYE. Short common English words as system commands 
encouraged computer use by nonexperts. The true impact of this choice is almost beyond 
comprehension to a computer specialist, who is quite at home with "logon," "catalog," 
"execute,"  and "logoff," or their single letter abbreviations that are so common. Persons 
who use BASIC but don't understand the distinction between a language processor and an 
operating system monitor are incredulous when they learn that NEW, OLD, and RUN are 
not part and parcel of BASIC. The moral is obvious: simple and understandable command 
languages, like simple programming languages, are essential ff nonexperts are to use the 
computer. 

A final example is that the user deals directly only with his BASIC program. He need 
not even know that such things as "object code" exist. The user could compile (by typing 
RUN), receive error messages, edit by typing line-numbered lines, and recompile, all 
within seconds. Execution would automatically occur ff there were no errors. This ap- 
proach obviously required that compilation be fast, which in turn meant that it had to be 
single-pass. BASIC was always, and still is, a language simple enough to permit single 
pass compilation. Forward GO TO references and functions defined near the end of a pro- 
gram could be handled with linked lists and a "clean up" pass to fill in the missing trans- 
fers. 

We make the point later that BASIC originally was not a true interactive language, since 
the INPUT statement that allowed data to be entered from the terminal during execution 
was not added until later. But BASIC lives, and has always lived, in interactive time shar- 
ing environments. While conceptually possible, a "batch" version of BASIC that used 
punched cards would be unthinkable. 

2.3. Other Influences on BASIC 

The relation of BASIC to FORTRAN and ALGOL is apparent. From FORTRAN 
comes the order of the three loop-controlling values--initial, final, s tep--thus permitting 
the step size to be omitted ff it is unity. From ALGOL come the words FOR and STEP, 
and the more natural testing for loop completion before executing the body of the loop. 
These and other similarities are not surprising, since we knew both languages, and we did 
not hesitate to borrow ideas. 

BASIC Session 521 



Thomas E. Kurtz 

We also knew about the interactive language JOSS, but we preferred to stay nearer the 
main stream of "standard" languages. Several JOSS conventions--decimal points in line 
numbers, and periods after statements--did not appeal to us. Kemeny and I also had con- 
versations with Richard Conway and others from Cornell about CORC, their "friendly" 
student-oriented language designed for card input (Conway and Maxwell, 1963). Like 
BASIC, CORC required the word LET for an assignment statement and made no syntac- 
tic distinction between integers and "real"  numbers. Unlike BASIC, CORC simplified 
data input by fixing the format, provided an approximate equality, included a simple block 
structure, and required declaration of all variables. Interestingly, the educational goals 
stated in the article are similar to Dartmouth's, except that CORC was intended primarily 
for engineering students while BASIC was directed to liberal arts students. 

BASIC was also influenced by the earlier DARSIMCO, which was really an approach to 
assembly language programming. For example, a BASIC program consists of a number of 
"instructions." Each instruction consists of three parts: the "instruction number," the 
"operation," and the "operand." This similarity is exhibited in the first BASIC program 
to appear in published form (Kemeny and Kurtz, 1964a, p. 4): 

Instr. no. Operation Operand 
i0 LET X = (7+8) / 3 
20 PRINT X 
30 END 

2.4. Compiling versus Interpreting 
While its implementation is not strictly part of a language, it is important to realize that 

Dartmouth BASIC was always intended to be compiled. A strong argument favoring an 
interpretive environment concerns "direct" versus "indirect" mode; that is, a user can 
enter a statement for direct execution, or change the program, after execution of the pro- 
gram has begun. This feature was never considered important for BASIC. We were con- 
cerned lest interpretative execution times would be prohibitive for any but the smallest 
programs. Instead, BASIC was intended to be a simple compiler-based language designed 
for use with terminals rather than cards, and for quick turnaround rather than batch-type 
delays. 

The bias toward interpretive language processing in interactive environments was prob- 
ably also influenced by the slowness of many compilers, which employed multiple passes. 
(One horror story claims that a certain FORTRAN compiler required 45 seconds to com- 
pile a program consisting only of the END statement; this was because the termination 
routine was located at the end of a long subroutine tape.) We estimated that a BASIC 
"compile" would require no more time than a "linking load". Load-and-go compiling 
placed a limit on program size, since the entire object code was assumed to be present in 
memory; this limitation proved more theoretical than real. As BASIC grew, program sizes 
were allowed to grow without conceding the single-pass ideal. 

Another argument advanced in favor of interpreting involved instant syntactical error 
analysis. This approach went too far, in our view, and posed too great a load on the com- 
puter. In addition, it required users to compose programs in a restricted manner, giving 
them error messages before they had a chance to make obvious corrections on their own. 
BASIC at Dartmouth never checked for errors line-by-line. Instead, our strategy sepa- 

522 Part Xl 



Paper: BASIC 

rated program construction from compiling. If  there were errors, reasonable error  m e s -  
sages in English, limited to five in number per compilation, were produced only after the 
user requested a run. For  small programs, this response occurred within five or ten sec- 
onds. 

Despite the fact that both the Dartmouth and the General Electric implementations use 
compilers, BASIC is widely believed to be an interpretive language. Perhaps the reason is 
that most minicomputer implementations of  BASIC use interpreters, for good reasons 
only loosely related to BASIC itself. Furthermore,  minicomputers became quite widely 
available, and were the principal agents in the spread of  BASIC. For  instance, all of  these 
minicomputers used interpreters for BASIC: the HP 2000, the DEC PDP/8,  the DEC 
PDP/11,  the DG NOVA, the WANG,  and even the early DEC PDP/10.  But BASIC itself, 
particularly at Dartmouth,  possesses few 'properties that would a priori incline it toward 
being interpretive. In fact, its closest relative in many ways is FORTRAN,  which was 
never  thought to be interpretive. 

3. Descriptions of BASIC 
This section details the features of  the sequence of BASICs developed at Dartmouth. 

The early versions were the most influential, but later versions are included to illustrate 
how the language has grown without sacrificing the original goals. What we omit, with 
deep regret, is the study of  the many versions of BASIC developed elsewhere.  Features 
have been catalogued for the more commonly available versions (Isaacs, 1973), and the 
diversity seems greater than the unity. All of these versions should however  receive credit 
for helping to make computing more accessible to more people, which is the unifying 
theme that underlies BASIC. 

3.1. BASIC, the First Edition 
The first version of  BASIC (Kemeny and Kurtz,  1974a) is similar to the proposed Amer- 

ican National standard Minimal BASIC (ANSI, 1978). It included the statements or "in- 
structions":  LET,  PRINT, END,  FOR, NEXT,  GOTO, IF T H E N ,  DEF,  READ, DATA, 
DIM, GOSUB,  RETURN,  and REM. A variable name consisted of  a single letter or a 
single letter followed by single digit. (This restriction did not seem severe to us for two 
reasons: first, composing programs is quicker if shorter names are used; second, being 
mathematicians, we were accustomed to short variable names. As I recall, two arguments 
for short variable names were: we were concerned about symbol table lookup time, and 
we wanted space independence so that, for instance, FOR I = 1 TO NSTEP2 would be 
recognized as FOR I = 1 TO hl STEP 2 .  ) Subscripted variables were named by single 
letters and could have one or two dimensions. 

Expressions,  which were called " fo rmulas , "  were governed by the usual rules. The ex- 
ponentiation operator  was the up-arrow 1', a symbol then available on a Teletype.  This 
symbol was selected " . . . since on a teletype typewriter  it is impossible to print super- 
scripts . . . .  " (Kemeny and Kurtz ,  1964a, p. 5). The exponentiation operation A 1' B 
took the absolute value of  A, no doubt in order to calculate it by EXP ( B*LOG ( ABS ( A ) ) ) .  
The manual explained that to compute  X 1' 3 when X could be negative, one should use 
X*X*X. Through an error  in the treatment of  unary minus signs (Kemeny,  personal com- 

BASIC Session 523 



Thomas E. Kurtz 

munication, 1978 Feb. 7), - X  ~ 2 was incorrectly interpreted as ( - X )  1' 2. This was cor- 
rected in the third edition of BASIC. 

Ten intrinsic fu'nctions were provided: SIN, COS, TAN,  ATN,  EXP,  LOG,  SQR, ABS, 
RND, and INT.  The first four had the usual definitions and used radian measure.  The next  
two used base e, not base 10. SQR provided the square root of  the absolute value. ABS 
was of  course the absolute value function. RND provided a " r a n d o m "  number  between 0 
and 1, but was quaint in one way: no doubt  we were merely being lazy when we required 
that RND have a dummy argument.  Although in later versions we quickly removed  this 
unfortunate syntax,  the damage had been done,  and our  bad choice later resurfaced in 
several ugly forms. The first version of INT truncated toward zero. That  is, 
" . . .  I N T ( 3 . 4 5 )  = 3 ,  I N T ( - 3 4 . 5 6 7 )  = - 3 4 ,  . . " (Kemeny and Kurtz ,  1964a, 
p. 31). INT was changed in the third edition of  BASIC to conform to the " f loo r "  function, 
in order  to allow rounding by using INT(X + .5) for  both positive and negative val- 
ues of  X. The GE-225 word size (20 bits) seduced us into making a third unfortunate 
dec i s ion- -a l l  function names had to have three letters,  20 bits being enough for three 
six-bit characters.  

Regarding variable types,  we felt that a distinction between " f ixed"  and "f loat ing"  was 
less justified in 1964 than earlier. The ratio of  the execution times between floating and 
fixed calculations was diminishing. Fur thermore ,  to our  potential audience the distinction 
between an integer number  and a non-integer number  would seem esoteric.  A number  is a 
number is a number.  Since all numeric variables were of type " n u m b e r , "  there was no 
need either for explicit typing, as in A L G O L ,  or implicit typing, as with the FORTRAN 
I JKLMN convention.  

We now consider the individual " ins t ruc t ions ."  The assignment s tatement  required 
(and still requires) the word LET.  We felt the assignment idea to be particularly tricky, 
and the word L E T  helped. LET X = X + 1 is easier for novices to understand than is 
X = X + 1. Fur thermore,  we felt it important  that all BASIC statements begin with an 
English word. The " ins t ruc t ion"  END was required to be the last s tatement in a program. 

The PRINT statement allowed expressions,  used the comma as a separator,  and al- 
lowed quoted material. The comma was " a  signal to move to the next  print zone (or to a 
new line if we are in the fifth zone)"  (Kemeny and Kurtz ,  1964a, p. 25). The comma could 
be omitted when the quoted material was combined with a simple variable or expression,  
as in PRINT "FIRST NO. =" A, "SECOND NO. =" B (Kemeny and Kurtz ,  1964a, 
p. 25); later versions of  BASIC required either a comma or a semicolon between the 
quoted material and the expression. 

A cornerstone of BASIC is that numbers are automatically printed in a fixed format,  
thus freeing the user from having to learn about formatting. The format  used depended on 
the number.  If the number happened to be an integer, it was printed that way,  without a 
decimal point. If the number was not an integer, but could be represented in a fixed deci- 
mal format  with the decimal point adjacent to one of the six significant figures, it was so 
printed. Otherwise,  an exponential  format  was used, with six significant digits and a power  
of  ten. Six significant digits, which was within the accuracy of our  hardware,  was felt to be 
adequate for most applications. 

The FOR and N E X T  statements were designed to be more general than the F O RTRA N  
DO and C O N T I N U E ,  but without allowing recalculation of  the stepsize or final value, as 
permitted in ALGOL.  The running variable is of  course available to the programmer.  We 
allowed noninteger values in the loop statement.  This decision caused us fewer  serious 

524 Part Xl 



Paper: BASIC 

problems than it might have,  for the reason that arithmetic was done in binary floating 
point, and the results truncated rather  than rounded. Thus,  for instance, the value 0.1 was 
internally slightly less; consequently,  a typical FOR statement FOR X = i TO 10 STEP . 1 
worked as the unsuspecting programmer expected;  namely,  it provided 101 values of  
X = 1, 1.1 . . . . .  9.9, 10. But since negative numbers on the GE-225 were represented as 
two's  complements,  -0 .1  truncated became slightly larger in absolute value, and the con- 
struction FOR X = 10 TO 1 STEP - .  1, fortunately less common,  would not provide 
values of  X = 10, 9.9 . . . . .  1.1, 1. 

The GOTO statement requires some explanation. We had already decided that BASIC 
programs would have line numbers.  Why not, then, have the GOTO statement use the 
already existing line numbers? For  those who program mentally, forward-pointing GOTOs 
required picking line numbers for  later portions of  the program. But this nuisance seemed 
preferable to defining a new syntactical entity called " l abe l " ,  and explaining this to stu- 
dents. Whatever  the strengths or weaknesses of  this decision, it was made,  it is simple, 
and it is BASIC. 

The I F - T H E N  statement allowed a relational expression using any one of  the six rela- 
tional operators:  =,  <,  > ,  > = ,  < = ,  < > .  The relational expression did not have to be 
enclosed in parentheses,  as it did in FORTRAN.  The two-way branching was pedagogi- 
cally simpler than the three-way IF  statement in FORTRAN.  

The first version of BASIC allowed two methods for aiding program organization: the 
DEF  defined function and the subroutine. D EF  could be used to define up to 26 additional 
functions, with three-letter names ranging from FNA to FNZ. These had to have exactly 
one argument, and were restricted to a single line. They would appear anywhere  in the 
program. 

Subroutines were provided by a subroutine jump,  GOSUB,  which used a stack for the 
return address,  and a R E T U R N  statement to effect the return. In violation of  present 
theories about  program structure, a subroutine could have multiple entry points, and mul- 
tiple exit points, but could not pass arguments. Some of  us have learned how to use 
GOSUB with discipline, but BASIC itself remains laissez faire on this issue. 

READ and DATA operated in an obvious manner.  The interesting point is that READ 
was the only input statement in the first version of  BASIC. Thus, not only was the first 
version of  BASIC not interpretive, it wasn ' t  even interactive! 

The REM statement was included. We of  course knew that FORTRAN had its C state- 
ments and A L G O L  its comments ,  but the reason is not recorded for choosing the state- 
ment name REM or REMARK in BASIC. 

The DIM statement for specifying array bounds was optional. In the absence of  a DIM 
statement for an array, BASIC provided default subscript ranges of  1-10 in each dimen- 
sion. The terms vector and matrix were used here. In later editions of  the manual, we used 
the less mathematical list and table. 

The conventions for creating and editing programs using line numbers were defined in 
this manual. One could SAVE programs, RUN (compile and go), and LIST them, but not 
much more. It was suggested that debugging could be aided by inserting extra PRINT 
statements. To start a new program, one had to type H E L L O  and reenter  the user num- 
ber, which was the student 's  regular ID number. Running time was computed to the 
nearest second, so that the trailing message "TIME:  0 SECS."  was common,  and the 
manual warned the user to "no t  be shocked"  by it (Kemeny and Kurtz,  1964a, p. 17). The 
user was admonished that "s ince  the space on the disks is limited, users are asked not to 

BASIC Session 525 



Thomas E. Kurtz 

save a program unless they really expect to use it again" (Kemeny and Kurtz, 1964a, 
p. 18). 

The mathematical flavor of what was done is reflected in the examples appearing in the 
first manual: average of 100 logarithms, quadratic equation solver, maximum value of a 
function, Simpson's Rule, product of two matrices, binomial probabilities. The program 
that found the maximum value of a function took "1 MINS. 11 SECS." on the GE-225 
(Kemeny and Kurtz, 1964a, p. 37). (A penciled notation states that the same problem in 
FORTRAN on a 1620 model II required 4 minutes 55 seconds.) In the manual we promised 
that with the forthcoming GE-235, the problem should take less than 10 seconds. Just for 
fun, that same problem required 1.181 seconds in 1977 (in Dartmouth BASIC on a HIS 
66/40 computer). Finally, the manual promises that " a  second language, MATRIX, will 
be designed specially for matrix work" (Kemeny and Kurtz, 1964a, p. 39). 

3.2. BASIC, the Second Edition 

Starting with the third edition of BASIC, each new edition of the manual signaled a sig- 
nificantly different version of BASIC. Since 1966 we have therefore identified the versions 
of BASIC by the edition number of the manual. On the other hand, the first and second 
editions of the manual each referred to the original version of BASIC, with only minor 
changes. The manuals themselves differ in that the first edition was organized as a refer- 
ence manual while the second edition was organized as a primer, reflecting BASIC's prin- 
cipal clientele. 

One other historical fact: although neither the first edition nor the second edition was 
actually signed, my memory records that John Kemeny wrote the first edition while I 
wrote the second edition. 

The manual for the second edition (Kemeny and Kurtz, 1964b, Oct.) bears a date only 
five months after that of the birth of BASIC. In that brief time, the semicolon was added as 
an allowable print separator. Its purpose was to "pack"  numeric output by using only 
the actual spaces needed, up to the nearest multiple of three spaces. (This unfortunate 
glitch, rectified in later versions, can be traced in non-Dartmouth implementations.) 

The other important addition was that the zero subscript, as in A(0) or B(0,0), was now 
allowed. Polynomial coefficients could now be represented naturally as, for instance, 
C(0) . . . . .  C(N). 

A slightly different version of BASIC called CARDBASIC was also described in the 
second edition. It was designed for card input and printer output, and operated in back- 
ground, which shared time slices with the foreground users. CARDBASIC contained the 
first version of the MAT statements, which had been promised in the first edition. These 
statements appeared in regular BASIC in the third edition, and are therefore described in 
the next section. There were of course other features, such as allowing longer programs 
and more data. CARDBASIC differed in one other important way: it did not allow the zero 
subscript. CARDBASIC lived a short life, since one of our goals was to eliminate depen- 
dence on punched cards. 

I make one last observation about the second edition. Long before the current surge of 
interest in structure and style in programming, the following sentences appeared (p. 48): 

There are some matters that do not affect the correct running of programs, but pertain to style 
and neatness. For instance, as between two or more similar ways to prepare a part of a program, 

526 Part Xl 



Paper: BASIC 

one should select the one that is most easily understood unless there is an important reason not to 
do so. 

And, after some hints about  data organization, the following appeared (p. 49): 

No doubt the user will be able to devise other ways to make a program neat and readable. But 
again, the important consideration in style is to program in a way that makes it more understand- 
able and useful to both oneself and others in the future. 

These sentences give little hint as to what  the user was supposed to do in order  to achieve 
good style, but at least the thought was there. Since then several  stylistic ideas have been 
tried, and there is now a book about  structure and style using e lementary  BASIC (Nevi- 
son, 1978). 

3.3. BASIC, the Third Edition 

There were only two major  changes to Dar tmouth  BASIC in the 15 months since the 
second edition. By 1966 we knew our  efforts would shortly be directed to a GE-635 com- 
puter,  and we therefore felt that further  development  of  BASIC for the GE-265 was point- 
less. The manual  (Kemeny  and Kurtz ,  1966) records a few minor changes.  A SGN (sig- 
num) function was added, and it was noted that repeated exponentiat ion was 
left-associative. A R E S T O R E  sta tement  was added to reset  the internal pointer  to the data 
block, which was constructed f rom the totality of  the DATA statements.  The precedence 
of  the unary minus sign was finally corrected (p. 40) so that - X  ~ 2 would be interpreted 
as - ( X  1' 2). 

The first major  addition was that of  the I N P U T  statement ,  which accepted  data from the 
terminal during execution. BASIC was at last an interactive language! 

The second major  addition was the collection of  MAT statements ,  originally tested in 
CARDBASIC (see the previous section). These allowed operations on arrays of  one and 
two dimensions.  When it mat tered,  a v e c t o r - - a n  array of  one d i m e n s i o n - - w a s  treated as 
a column vector.  The following operat ions were described: 

READ A, B, C 
PRINT A, B; C 

MAT 
MAT 
MAT C = A + B 
MAT C = A - B 
MAT C = A * B 
MAT C = INV(A) 
MAT C = TRN(A) 
MAT C + (scalar expression)*A 
MAT C = ZER 
MAT C = CON 
MAT C = IDN 

In MAT PRINT,  the semicolon caused packed printing while the c o m m a  caused printing 
in zones. The * stood for matrix multiplication, not e lement-by-element  multiplication. 
I N V  and T R N  produced an inverse and t ranspose,  respectively.  Z E R  and CON produced 
arrays of  zeros and ones, respect ively,  while I D N  produced an identity matrix.  The state- 
ment  MAT READ A ( M, N ) caused the array A to be redimensioned before the reading took 

BASIC Session 527 



Thomas E. Kurtz 

place. Redimensioning was also allowed with the ZER, CON, and IDN functions. 
MAT A + B*A and MAT A = B were specifically disallowed. It was stated (p. 47) that the 
former would "result in nonsense" and that the latter could be achieved by the statement 
MATA = (1)*B. 

The MAT statements in CARDBASIC (Kemeny and Kurtz, 1964b, Oct.) had dealt with 
arrays whose subscripts started with 1. In the third edition (Kemeny and Kurtz, 1966), 
subscripts started with 0, and the MAT statements were changed accordingly. Thus, for 
example, CON(3,4) was a four-by-five array of ones. This also meant that the upper left 
hand corner of a matrix was the element subscripted (0,0). Needless to say, we were not 
completely happy with our choices. 

On a happier note, here was the first appearance in BASIC of indentation to suggest the 
scope of a loop (p. 19). 

3.4. BASIC, the Fourth Edition 

By 1965-1966, system use had grown to about thirty simultaneous Teletype model 33 
and 35 terminals, a number of which were off campus in secondary schools and colleges. 
Plans were afoot to replace the hardware with a GE-635 and move to a new building. Al- 
though the third edition continued in use into the fall of 1967, a new experimental version 
of BASIC appeared on the GE-635 in the spring of 1967. It was described in the Supple- 
ment to the BASIC Manual, Third Edition (Kemeny and Kurtz, 1967). 

The software for the new hardware was developed jointly by General Electric and Dart- 
mouth; GE wrote the operating system while Dartmouth wrote the compilers and editors. 
Both General Electric and Dartmouth contributed to the design of this version of BASIC. 
For instance, GE made suggestions concerning strings and files, presumably to improve 
compatibility with their Mark I BASIC (phone conversation, Neal Weidenhofer, 1978 
February 15). 

The Supplement notes that the previously required dummy argument for the RND func- 
tion was omitted, and a new statement, RANDOMIZE, was added to "randomize" the 
starting point of the random number sequence. Defined functions were now allowed to 
have no arguments. The ON-GOTO statement was added as a multiple-way branch. In 
order to "increase the similarity between the ON and IF-THEN" all variations--IF- 
THEN, IF-GOTO, ON-THEN, and ON-GOTO--were permitted. The argument of the 
ON-GOTO was truncated and, if out of range, caused a program halt. 

The semicolon PRINT separator now produced contiguous printing. A TAB function 
was added, with the column positions numbered from 0 to 74. Multiple assignments in a 
single LET statement were allowed, as were assignments to subscripted variables having 
subscripted variables as subscripts. For the first time, BASIC initialized all variables to 
zero. 

Two major additions appeared. The first provided string variables and arrays of strings 
(one-dimensional only) together with all relational operators, thus allowing the sorting of 
alphabetical information. The DATA statement was expanded to allow unquoted string 
constants as data. String data and numeric data were retained in two separate pools, re- 
gardless of how they might be intermixed in the source program. A statement RESTORES 
was provided to reset the pointer to the string data. (RESTORE* reset the numeric data 
pointer, while RESTORE reset both; this feature persisted until the sixth edition of 

528 Part Xl 



• Paper: BASIC 

BASIC in 1971.) One serious error was made, with the good intention of making things 
easier for the casual programmer--trailing spaces were ignored in string comparisons. 
Thus "YES"  and "YES ~" were treated as equal. (This feature persists into Dartmouth's 
current BASIC, but will almost certainly disappear in the next version.) 

The other major change was in the MAT package. There were a few minor additions, 
such as allowing MAT A = B, and various options for MAT PRINT. But the important 
change was that MAT now ignored the zeroth row and column. A programmer could now 
expect to find the "corner" element of a matrix in position (1,1). This compromise has 
worked well over the years, despite theoretical and esthetic arguments against it. One 
statement, MAT INPUT V, where V is one-dimensional array variable, was added to per- 
mit arbitrary amounts of input, separated by commas. Though not strictly speaking a 
MAT operation, this capability was urgently needed. A zero-argument function NUM was 
added to provide the actual number of data entered. 

The manual for the fourth edition finally appeared (Dartmouth, 1968). Since most of the 
new features had been described in the Supplement to the Third Edition (Kemeny and 
Kurtz, 1967), only a few additional features now made their appearance. 

Multiple-line defined functions were allowed, though they still accepted only numeric 
arguments and produced only numeric values. The CHANGE statement was added to 
change a string to a numeric vector consisting of the ASCII codes for each character of the 
string, and vice versa. The zeroth element of the vector contained the number of charac- 
ters. This capability proved extraordinarily useful, since any conceivable string operation 
could be carried out by equivalent operations on numbers. 

3.5. BASIC, the Fifth Edition 

This, the first version of BASIC to exist with the DTSS operating system, was described 
initially in two supplements to the fourth edition of BASIC (Dartmouth 1969 February, 
April). The fifth edition manual appeared in late 1970 (Dartmouth, 1970). 

Important changes appeared in this version of BASIC. The most significant was the ad- 
dition of files. DTSS was designed around a random access file system. The catalog entry 
for each file included a number of "device addresses" so that a file could be distributed 
over several devices. The address of any particular point in the file could be calculated 
easily from these device addresses. We were thus able to allow both sequential files, 
which we called "terminal format" files, and random access files. The latter could contain 
either numeric or string data, but not both. A FILES statement associated filenames with 
file reference numbers, which were really the ordinal numbers of the filenames in the 
FILES statement. (This stringent early binding requirement was relaxed with the FILE 
statement, described shortly, and was eliminated in the sixth edition of BASIC.) For ran- 
dom access files, the file type was indicated explicitly in the file name. Numeric file names 
required a " % "  following the filename proper, while string files require a "$xx" ,  where xx 
was a constant integer that gave the maximum string length. 

The FILE statement was introduced to allow changing the file name associated with a 
particular file reference number. This more natural file opening mechanism became more 
commonly used, even though the FILES statement remained; the user merely specified 
unnamed scratch files in the FILES statement and specified his real files in several FILE 
statements. 

BASIC Session 529 



Thomas E. Kurtz 

In order to help casual programmers distinguish between sequential and random-access 
files, separate statements were provided. The PRINT and INPUT statements applied to 
sequential files. IF END was used to determine the end-of-file condition. Both input and 
printing operations could take place on the same file. 

For random-access files, the principle statements were READ and WRITE. The loca- 
tion of the file pointer was given by a LOC function, and the file length by LOF. The 
RESET statement for this type of file could set the pointer to any location in the file. The 
end of the file was detected by a statement such as: 

IF LOC(#l) >= LOF(#1) THEN <process end of file>. 

Two program segmentation features were added in this version. The simplest was 
CHAIN, which allowed a program to initiate the execution of another program. CHAIN 
permitted almost any system structure, although it was inefficient at times. It could, for 
instance, allow a program to create a whole new program, and then transfer to it. At this 
stage, only simple chaining was allowed, though later versions allowed file passing. 

The other segmentation feature was called subprograms, although it was really a variant 
of overlaying. The variable names of the several segments were common, as if in a giant 
COMMON, but the line numbers were independent. These so-called subprograms were 
referred to b'y reference number, and obviously had to be compiled with the main pro- 
gram. There were a number of petty restrictions with this feature, and by hindsight it is 
easy to conclude that this was a bad idea. It did serve, however, to allow construction of 
moderately large systems using BASIC. The most notable was the first version of IM- 
PRESS, a system for analyzing social science survey data (Dartmouth, 1972). 

These two segmentation features were similar to features designed by GE for its Mark I 
BASIC on the GE-265 computer. It is not known whether Dartmouth devised them inde- 
pendently or copied them from GE. 

This version contained corrections of previous minor flaws, such as now leaving the for 
variable untouched if the for loop was to be executed zero times. Two-dimensional string 
arrays were added. The individual characters of a string could be obtained only through 
the CHANGE statement. Defined functions could now have string arguments and values. 
Several new functions were added: CLK$, DAT$, LEN, USR$, STR$, VAL, ASC, and 
TIM. They provided, respectively, the wall clock time, the date, the length of a string, the 
current user number, the printed form of a number but without leading or trailing spaces, 
the numeric value of a string presumed to represent a number, the ASCII number of a 
character, and the elapsed running time of a job. In-line comments appeared for the first 
time, using the apostrophe as a separator. 

The CHANGE statement was amplified to allow specifying the bit size of the charac- 
ters. Thus, CHANGE A TO AS BIT 4 allowed the string A$ to contain decimal digits, each 
requiring only four bits, thereby obtaining greater packing densities for data. (This feature 
was added to accommodate Project IMPRESS.) 

User defined functions were allowed to be recursive, but were implemented so ineffi- 
ciently that they were (arbitrarily) prohibited from being recursive in the subsequent ver- 
sion of BASIC. 

In the MAT package, MAT A = A*B was still not allowed. 

530 Part Xl 



Paper: BASIC 

3.6. BASIC, the Sixth Edition 
In the fall of 1969, even prior to the appearance of the manual for the fifth edition of 

BASIC, we began designing the sixth edition. In addition to Kemeny and myself, the 
group included three former students who had returned to Dartmouth as faculty: Stephen 
Garland, John McGeachie, and Robert Hargraves. It is probably the best-designed and 
most stable software system Dartmouth has ever written. Previous versions had been 
hastily designed, introducing many flaws to be corrected in subsequent versions, which 
appeared often. This time we designed thoughtfully and slowly. Ideas were carefully dis- 
cussed. Specifications were written down in advance. Undergraduate programmers Ken- 
neth Longmuir and Stephen Reiss began their work only after the design was essentially 
complete. The compiler and runtime support routines were extensively tested, and were 
operated as an experimental version for over three months during the summer of 1971. The 
manual was prepared in advance and published prior to the official installation of the new 
version (Mather and Waite, 1971). A formal specification was prepared; it appeared two 
years later (Garland, 1973). This new version went into regular operation on September 
21, 1971. There were almost no problems, conversions having taken place during the sum- 
mer. This stands in our mind as a rare and shining example of how a major system change 
should take place. 

Though not part of the ancient history of BASIC, the design of the sixth edition at Dart- 
mouth is discussed here for several reasons. First, it really is the culmination of the origi- 
nal BASIC project, having grown from the rapidly changing earlier versions. Second, it 
appeared first in 1971, which was seven years from the initial version, and which was 
about seven years ago. Third, it has been used since 1971 without significant change, a 
rarity among university-built software. 

Major changes were made to subprograms, files, the string package, and output format 
control. (Minor changes were also made, but these will not be discussed here.) 

The most significant change was the scrapping of the previous subprogramming feature, 
and its replacement by subprograms that connect to the calling program only through the 
calling sequence. The statements used are CALL, SUB, and SUBEND. Parameters are 
specified by reference. There is no syntactical distinction between input and output pa- 
rameters. Unlike early FORTRAN, parameters and arguments are matched at each CALL 
for correct type and number. Unlike ALGOL, parameters cannot be specified "by name," 
nor can there be global variables. Since the subprograms exist independently of the calling 
program, they can be separately compiled and collected into libraries. They can also over- 
lay one another, thus allowing BASIC to be used for constructing large systems. Indeed, 
the management information system (FIND) Used at Dartmouth is written almost entirely 
in BASIC (McGeachie and Kreider, 1974). 

The second major change was to files. The FILES statement was dropped completely. 
The FILE statement provides execution-time binding of file names to file reference num- 
bers. The requirement for file typing by trailing character was removed, since BASIC can 
almost always tell what the user wants. The ambiguous case occurs in writing to an empty 
random-access string file; here, the MARGIN statement specifies the maximum string 
length for such a file. Two new functions were added to permit file type checking by the 
programmer. In the previous version, a nonexistent file name appearing in a FILE state- 
ment would cause termination. In this version, no error can occur on a FILE statement. A 

BASIC Session 531 



Thomas E. Kurtz 

program can then use special functions to determine if the file actually exists, and what 
operations are permitted on it. Naturally, if an inconsistent operation is attempted, termi- 
nation still occurs. 

That we should expand string manipulation in BASIC was clear. Less clear was what 
substring notation should be used. We therefore chose to use string functions, since they 
could be changed more easily than new syntax. The SEG$ function provides a substring, 
while the " & "  causes string concatenation. The POS function can locate a given string 
expression in a string. Together, these functions allow all string operations. For example, 
assignment into the interior of a string can be done by constructing the desired string with 
SEG$ and &. 

A form of "image" formatting was added. It is employed by including in the PRINT 
statement a stnng expression which specifies the image (rather than the statement number 
of an "image" statement). 

A final note: MAT A = A*B is now legal. 

4. Dartmouth and General Electric 

The history of Dartmouth time sharing and the BASIC language is intertwined with the 
early history of the General Electric time-sharing business. It is therefore appropriate here 
to outline key events in the relationship. This will not be a complete history, nor will it 
extend credit to all that are due it. 

Our first technical contact with General Electric occurred in the summer of 1962. An- 
thony Knapp (a student) and I visited GE in Phoenix and examined the GE-225, the Da- 
tanet-930 (a predecessor to the Datanet-30), and the dual access disk controller. On return- 
ing to Dartmouth, Knapp sketched, in two weeks, an outline of a time-sharing system using 
that equipment. A descriptive document entitled MESS (Knapp and Kurtz, 1962) was 
mailed to everyone we had met, no doubt in the hope that GE would immediately want to 
give us a computer on which to carry out our ideas. MESS elicited no response. 

Our own plans nevertheless gathered steam, and in April of 1963 Dartmouth sent to 
General Electric a letter of intent to purchase a system. During the summer of 1963, John 
Kemeny developed a compiler for a draft version of BASIC, using GE-225 computers in 
the New England area. Our own hardware arrived in February of 1964, with assists from 
GE educational discounts and two NSF grants made in January 1964. 

During the spring and summer, persons from the Engineering Department at General 
Electric in Phoenix followed our progress. They provided both moral and material assis- 
tance- -a  FORTRAN compiler and additional magnetic tape drives, for example. In the 
fall, Dartmouth demonstrated at the Fall Joint Computer Conference in San Francisco, 
with General Electric providing the costs of the display. In December of 1964 and January 
of 1965 a copy of the Dartmouth system, including BASIC and ALGOL, was installed in 
the Engineering Department in Phoenix. 

Shortly thereafter, operation of that machine was transferred to GE's already-estab- 
lished service bureau business. Since the hardware was a marriage of the GE-235 and the 
Datanet-30, the new system was named the GE-265. Additional copies were put into oper- 
ation as their service bureau business grew. 

In 1965 we attempted to obtain support from GE for our continuing software work. 
Louis Rader, then a Vice President of General Electric, responded in September of 1965 
by offering to place an entire GE-635 system in the Kiewit Computation Center then under 

532 Part Xl 



Paper: BASIC 

construction. The terms included joint use of the machine for three years, and a joint 
project to develop an operating system for that machine. GE was to retain title to the ma- 
chine for the period of the agreement, which started on October 1, 1966. 

While Dartmouth ceased in 1965 enhancing its third edition version of BASIC (see Sec- 
tion 3.3), GE added important features to its version for the Mark I service. These features 
included strings and files (phone conversation, Derek Hedges, 1978 February). They also 
designed a CHAIN statement, borrowed from an early version of FORTRAN, and a 
CALL statement, which was similar to the CALL feature found later in the fifth edition of 
Dartmouth BASIC (see Section 3.5). 

Software teams from both sides formed in the spring of 1966. The Dartmouth team in- 
cluded Kemeny, Kenneth Lochner, and myself, together with students Sidney Marshall, 
David Magill, Sarr Blumsen, Ronald Martin, Steven Hobbs, and Richard Lacey. A GE- 
635 computer at RADC, Griffiss AFB, Rome, New York, was used in the summer and fall 
to develop and operate MOLDS, a multiple user on-line debugging system designed by 
Marshall. 

A GE-635 was installed at Dartmouth in late 1966 and early 1967. Using MOLDS, GE 
personnel developed a Phase I operating system for this machine. Dartmouth developed 
the fourth edition of BASIC to specifications prepared jointly with GE, and provided com- 
munications software. This work continued through 1967 until Phase I became operational 
in September of 1967, allowing Dartmouth to sell its GE-265. Both Dartmouth people and 
GE customers shared the new machine under the terms of the joint agreement. 

In April of 1967, having completed its part of the Phase I development, Dartmouth 
began designing its own "ideal" operating system, which was called Phase II. Joining the 
group at this time were former students Stephen Garland and Robert Hargraves. Marshall 
continued but with the new title Chief Designer. The project group, which included many 
other persons, met weekly to resolve problems; Kemeny served as chairman and final ar- 
biter. 

General Electric established additional sites in the fall of 1968, and transferred its com- 
mercial customers to them. Dartmouth continued to use Phase I until late March 1969, 
when Phase II replaced it. The name Phase II was changed to DTSS shortly thereafter. 

The fourth edition of Dartmouth BASIC (see Section 3.4) was the original version on the 
GE Phase I operating system, which shortly became the Mark II service. GE continued to 
modify and use that version of BASIC, whereas Dartmouth replaced it in 1969 with its 
own fifth edition of BASIC. 

After 1967 there was little exchange of software with GE, though both sides made nu- 
merous good faith efforts to exploit the association and achieve mutual benefits. The title 
to the GE-635 passed to Dartmouth in September of 1969. An additional three year agree- 
ment was then executed, but little occurred under its terms other than the gift from Gen- 
eral Electric to Dartmouth of several additional major pieces of GE-635 hardware. All con- 
tractual association with GE ceased on September 30, 1972. 

While working together from 1966 to 1968 posed problems for both sides, there is no 
question that each benefited enormously from the association. Dartmouth obtained a large 
machine far beyond its own means at that time. General Electric started in time sharing 
initially by adopting the original Dartmouth system (Mark I on the GE-265), and later 
shifted to a larger system (Mark II on the GE-635) through close association with Dart- 
mouth. 

BASIC Session 533 



Thomas E. Kurtz 

5. Evaluation 

5.1. A Priori Evaluation 

Our goal was to provide our user community with friendly access to the computer. The 
design of BASIC was merely a tool to achieve this goal. We therefore felt completely free 
to redesign and modify BASIC as various features were found lacking. We have always 
remained loyal to our overall goals, while at the same time we allowed the language to 
grow to meet the increasingly sophisticated tastes. We did not design a language and then 
attempt to mold the user community to its use. 

Little a priori evaluation of BASIC exists. A memorandum (Kemeny and Kurtz, 1963) 
prepared for internal use discussed time sharing, simple user interfaces, and open access 
computing, but failed to mention BASIC, and made only a passing reference to the need 
for a "simple language." Although two proposals were submitted to the NSF in 1963 and 
funded in 1964, neither dealt primarily with BASIC. One was a facilities proposal based on 
research, the other dealt with course content improvement. Understandably, there were 
doubts about our ability to develop a time sharing system using undergraduate students as 
programmers. Nonetheless, the two grants were made. 

5.2. A Posteriori Evaluation 

BASIC and the associated system commands spread rapidly. The original version, for 
the GE-265, was replicated in perhaps fifty sites, and for several years served General 
Electric as its Mark I time sharing system. Other users of the GE-265 included Call-A- 
Computer and several educational institutions. 

The Dartmouth approach served as the model for two of the most widely used small 
time sharing systems ever developed: the HP 2000, and the DEC PDP/11-RSTS. Almost 
all small systems now offer BASIC, either exclusively or with other languages. Although 
one of COBOL or FORTRAN is probably the most widespread language in terms of num- 
ber of lines of code ever written, it is my opinion that more people in the world know or 
have seen BASIC than any other computer language. I can only wildly guess that perhaps 
five million school children have learned BASIC on some minicomputer. 

In 1973 when consideration was being given to the possible standardization of BASIC, 
we discovered that the number of commercial time-sharing service bureaus that offered 
BASIC was greater than the number offering any other language (SPARC, 1973). Some 
criticized that it was too late to standardize BASIC. Perhaps, but committee X3J2 has 
been one of the largest and most enthusiastic of the language standards committees. The 
standard for Minimal BASIC (ANSI, 1978) is in the final stages (as of 1978 February). 
Close cooperation with ECMA/TC21 (the European counterpart of X3J2) has ensured 
that the European and American standards are technically equivalent. Work continues on 
enhancements to Minimal BASIC. 

Developing a standard for BASIC has suffered from the multiplicity of different ver- 
sions. The major differences have been catalogued (Isaacs, 1973), and Isaacs admonishes 
the user to stick to elementary BASIC for transportability. Indeed, the standards commit- 
tee X3J2 was charged to develop a standard for Minimal BASIC first, partly because it 
might fail if it tried to do more. 

534 Part Xl 



Paper: BASIC 

BASIC is truly a product of grass roots efforts. Hobbyists can and do write their own 
compilers, adding their own innovations. Rather than being a single language with dia- 
lects, BASIC is really a class of languages, all with a common core. Variations and fea- 
tures abound. From Dartmouth's point of view, some languages called BASIC really 
shouldn't be, since they violate one or more of our original criteria, although they may 
have borrowed other features. For instance, our dogma prohibits the optional LET, sev- 
eral statements on one line, and a single statement continued over several lines. 

In some ways, the effort to standardize BASIC has suffered from the same malady that 
plagued the early FORTRAN standards efforts: the multiplicity of variations that had to 
be reconciled. If anything, the task is more difficult since BASIC grew unchecked for nine 
years (from 1964 to 1973) before the effort began. In contrast, APL was designed by a 
single person and copied almost exactly, so that it became its own standard. COBOL was 
designed as a standard language to begin with. ALGOL was also designed before it was 
used, so that the ALGOL 60 Report serves as its standard. 

What would we change if we were to start over? We now know that spaces should be 
used to improve clarity, and to indicate scope through indentation. We also now know that 
the selection of variable names is far too limited. Requiring spaces around keywords, as 
ANS Minimal BASIC does, and multicharacter variable names go hand in hand. This 
change is high on our wish list. 

We also now know the limitation of the primitive GOTO and IF THEN statements in 
BASIC. A version called SBASIC (Garland, 1976) dispenses with GOTO, IF THEN, 
GOSUB, and ON GOTO, all of which target to line numbers, and replaces them with the 
DO and LOOP for loops, the IF, THEN, ELSE,  and CONTINUE for decision mecha- 
nisms, the PERFORM, DEFINE, and DEFEND for subroutines, and the SELECT CASE 
for multiple-way branches. While the particular constructs selected are not ideal in all 
cases, SBASIC has been taught in several elementary courses with very good results. My 
own opinion is that GOTO has an attractive simplicity for novices, but that it should be 
discarded at an early stage in favor of structured constructs. 

Finally, to paraphrase, one graph is worth a thousand numbers. About 10% of all 
BASIC programs at Dartmouth produce graphical output. This being the case, graphical 
statements have been added to the language by means of a preprocessor. The statements 
include PLOTTER < device > , VIEWPORT, WINDOW, CLEAR, BORDER, AXIS, 
PLOT, and others. Also included are picture definitions similar to subprograms, simple 
ways of applying transformations such as translation and rotation, and three-dimensional 
perspectives (Garland, 1976; Arms, 1977; Hardy, 1978). 

6. Implications 
BASIC has become the most widely known computer language. Why? Simply because 

there are more people in the world than there are programmers. If ordinary persons are to 
use a computer, there must be simple computer languages for them. BASIC caters to this 
need by removing unnecessary technical distinctions (such as integer versus real), and by 
providing defaults (declarations, dimensioning, output formats) where the user probably 
doesn't care. BASIC also shows that simple line-oriented languages allow compact and 
fast compilers and interpreters, and that error messages can be made understandable. 

BASIC Session 535 



Thomas E. Kurtz 

ACKNOWLEDGMENTS 
I would like to thank the numerous persons who read early drafts of this paper, suggested changes, and filled 

lapses in my own faulty memory. John Kemeny especially recalled important facts and ideas. More than that, our 
close collaboration of 22 years has made it difficult to separate our respective contributions to the overall effort. 

I would also like to thank Henry Ledgard and Ted Lewis, the reviewers, for their many helpful suggestions. 
My special thanks go to Stephen Garland, who kept better files than I concerning the early days, and to Kent 
Morton, who corrected numerous stylistic flaws. As is customary, the author accepts final responsibility for all 
remaining errors, factual and otherwise. 

Finally, the author expresses his deep appreciation to Jean Sammet for organizing the History of Programming 
Languages Conference, thereby goading the author into writing about a subject that has appeared only rarely in 
the technical literature. 

REFERENCES 
ANSI (1978). American national standard programming language: minimal BASIC, X3.60-- 1978. New York: 

American National Standard Institute, 
Arms, W. Y. (1977). Graphics with SBASIC (unpublished memo). Hanover, New Hampshire: Kiewit Computa- 

tion Center. 
Conway, R. W., and Maxwell, W. L. (1963). CORC-- the  Cornell computing language. CACM 6(6): 317-321. 
Corbato, F. J.,'Merwin-Daggett, M., and Daley, R. C. (1962). An experimental time sharing system. In AFIPS 

Conference Proceedings, Vol. 21. Palo Alto, California: National Press. 
Dartmouth (1956). DARSIMCO. Hanover, New Hampshire: Dartmouth College. 
Dartmouth (1968). BASIC, 4th ed. Hanover, New Hampshire: Dartmouth Publ. 
Dartmouth (1969a) February. BASIC, 4th ed. (supplement, version I). Hanover, New Hampshire: Kiewit Com- 

putation Center. 
Dartmouth (1969b) April. BASIC, 4th ed. (supplement, version II). Hanover, New Hampshire: Kiewit Computa- 

tion Center. 
Dartmouth (1970) September. BASIC, 5th ed. Hanover, New Hampshire: Kiewit Computation Center. 
Dartmouth (1972) July. The IMPRESS manual. Hanover, New Hampshire: Project IMPRESS. 
Garland, S. J. (1973). Dartmouth BASIC, a specification. Hanover, New Hampshire: Kiewit Computation Cen- 

ter TM028. 
Garland, S. J. (1976). Structured programming, graphics, and SBASIC. Hanover, New Hampshire: Kiewit Com- 

putation Center SP028. 
Giles, D. (1968) January. Use of transition matrices in compiling. CACM 11(1): 26-34. 
Hardy, S. (1978) February. Graphics in BASIC and structured BASIC. Hanover, New Hampshire: Kiewit Com~ 

putation Center TM110. 
Hargraves, R. F. (1959) October. DART I. Hanover, New Hampshire: Dartmouth Computation Center. 
Ingerman, P. Z. (1961) January. Thunks. CACM 4(1): 55-58. 
Irons, E. T. (1961) January. A syntax directed compiler for ALGOL 60. CACM 4(1): 51-55. 
Irons, E. T., and Feurzeig, W. (1961) January. Comments on the implementation of recursive procedures and 

blocks in ALGOL 60. CACM 4(1): 65-69. 
lsaacs, G. L. (1973). lnterdialect translatability of  the BASIC programming language. Iowa City, Iowa: Amer- 

ican College Testing Program. ACT Tech. Bull. No. 11. 
Kemeny, J. G. (1962) May. Dartmouth oversimplified p~ogramming experiment. Hanover, New Hampshire: 

Dartmouth Computation Center. 
Kemeny, J. G., and Kurtz, T. E. (1963). A proposal for a college computation center. Hanover, New Hamp- 

shire: Dartmouth College. 
Kemeny, J. G., and Kurtz, T. E. (1964a) June. BASIC instruction manual. Hanover, New Hampshire: Dart- 

mouth College. 
Kemeny, J. G., and Kurtz, T. E. (1964b) October. BASIC, 2nd ed. Hanover, New Hampshire: Dartmouth Col- 

lege Computation Center. 
Kemeny, J. G., and Kurtz, T. E. (1966). BASIC, 3rd ed. Hanover, New Hampshire: Dartmouth College. 
Kemeny, J. G., and Kurtz, T. E. (1967). BASIC, 3rd ed. (supplement). Hanover, New Hampshire: Dartmouth 

College. 
Kemeny, J. G., and Kurtz, T. E. (1968). Dartmouth time sharing. Science 162: 223-228. 

536 Part Xl 



Transcript of Presentation 

Knapp, A. W., and Kurtz, T. E. (1962). MESS, a master executive supervisory system. Hanover, New Hamp- 
shire: Dartmouth College. 

Kurtz, T. E. (1962a) February. ALGOL for  the LGP-30, a comparison. Hanover, New Hampshire: Dartmouth 
Computation Center. 

Kurtz, T. E. (1962b) March. ALGOL-30 system operating instructions. Hanover, New Hampshire: Dartmouth 
College Computation Center. Procedure Manual CCM-5. 

Kurtz, T. E. (1962c) October. A Manual for  SCALP, a self-contained Algol processor. Hanover, New Hamp- 
shire: Computation Center. 

Kurtz, T. E. (1963a) January. Programming for  a Digital Computer. HanovEr, New Hampshire: Dartmouth Col- 
lege. 

Kurtz, T. E. (1963b) May. Languages (unpublished memo). Hanover, New Hampshire: Dartmouth College. 
Kurtz, T. E. (1963c) November. Background for  the time sharing system. Hanover, New Hampshire: Dartmouth 

Computation Center Time Sharing Project Memo No. 1. 
Loveday, E. (1977) September. George Stibitz and the Bell Labs Relay Computer. Datamation pp. 80-85. 
Mather, D. G., and Waite, S. V. F., eds. (1971). BASIC, 6th ed. Hanover, New Hampshire: University Press of 

New England. 
McCarthy, J., et al. (1963). A time sharing debugging system for a small computer. In AFIPS Conference Pro- 

ceedings, Vol. 23, pp. 51-57. Washington, D.C.: Spartan Books. 
McGeachie, J. S., and Kreider, D. L. (1974). Project FIND--an integrated information and modeling system for 

management. In AFIPS Conference Proceedings, Vol. 43, pp. 529-535. Montvale, New Jersey: AFIPS 
Press. 

Naur, P., ed. (1960). Report on the algorithmic language ALGOL 60. CACM 3(5): 299-314. 
Nevison, J. M. (1978). The little book o f  BASIC style. Reading, Massachusetts: Addison-Wesley. 
Samelson, K., and Bauer, F. L. (1960) February. Sequential formula translation. CACM 3(2): 76-83. 
SPARC (1973). Proposal for  an American National Standard project under committee X3, the BASIC program- 

ming language. Washington, D.C.: CBEMA. 
Wheelock, E. (1769). The Dartmouth College Charter. Portsmouth, New Hampshire: King George III. 

TRANSCRIPT OF PRESENTATION 

THOMAS CHEATHAM; For the rest of  the session, we'll  turn our attention to the BASIC 
language. Professor Tom Kurtz is going to talk about that. In 1964 Tom was an Associate 
Professor of  Mathematics, teaching mainly Statistics at Dartmouth Colle.ge, and at the 
same time, the Director of  the Dartmouth College Computing Center. Initially they had an 
LGP 30, [but] in the Spring of  1964 they got their first Dartmouth time-sharing system, and 
then on to BASIC. At the present point in time, Tom is a Professor of  Mathematics, teach- 
ing about half-and-half in Statistics and Computer  Science, having, I guess wisely, given 
up the Computing Center. 

THOMAS E. KURTZ: This is the last talk of  the day. I would like to believe that the plan 
was to save the best for  last. I 'm  not sure about that, but I do have one firm principle 
myself  and that is not to cut into the cocktail hour, so I 'm  in complete accord with the 
firmness of the management to hold the talks on schedule. 

In a way, this is like a reunion for me, because I got my start in computing in [the sum- 
mer of] 1951 at the National Bureau of  Standards Institute for Numerical Analysis, which 
was located on the U C L A  campus. As a matter of  fact, there was one other person who 
was also a student in that program that summer; that was Ken Iverson. And I think it 's 
kind of  interesting that out of  six summer students who were involved that year, and who 
happened to be students of  a man named Forman Acton,  two of  them went on to invent or 
coinvent computer  languages. 

BASIC Session 537 


