
1

Scope and Type

Alan G. Labouseur, Ph.D.

Alan.Labouseur@Marist.edu

mailto:Alan.Labouseur@Marist.edu

2

Scope and Type

There are many aspects of data types to consider :

• Static and Dynamic types

• Expressing Type Systems

• Checking Scope and Type in a Program

3

Identifiers, Variables, and Scope

Identifiers =? Names

• Used for namespaces, classes, methods, variables, etc.

Design issues for names

• Are names case sensitive?

• Are special words reserved words or keywords? (What’s the

difference)

• How many characters can be in an identifier names?

‣ If they’re too short they cannot be meaningful.

‣ If they’re too long they might get unwieldy.

‣ Examples

- FORTRAN I: maximum 6

- COBOL: maximum 30

- FORTRAN 90 and C89: maximum 31

- C99: maximum 63

- C#, Ada, Java: no limit (in theory, not in practice)

4

Identifiers, Variables, and Scope

A variable is an abstraction of a memory cell.

• Think of a post office model.

Variables are characterized by attributes

• name

• address

• value

• type

• scope

• lifetime

• visibility

• category

… and more

5

Identifiers, Variables, and Scope

A variable is an abstraction of a memory cell.

• Think of a post office model.

Variables are characterized by attributes

• name	 	 believe it or not, not all variables have names

• address	 location in memory

• value	 	 contents of the location in memory

• type	 	 range of values and set of operations defined for them

• scope	 	 range of statements in a program over which the var is “alive”

• lifetime	 amount of time a variable is bound to a given memory location

• visibility	 public, protected, private, internal, etc.

• category	 const, iterator, etc.

6

Identifiers, Variables, and Scope

A variable is an abstraction of a memory cell.

• Think of a post office model.

Variables are characterized by attributes

• name	 	 believe it or not, not all variables have names

• address	 location in memory

• value	 	 contents of the location in memory

• type	 	 range of values and set of operations defined for them

• scope	 	 range of statements in a program over which the var is “alive”

• lifetime	 amount of time a variable is bound to a given memory location

• visibility	 public, protected, private, internal, etc.

• category	 const, iterator, etc.

Binding?

7

Identifiers, Variables, and Scope

Binding

• A binding is an association, such as between an attribute and an

entity, or between an operation and a symbol

• Binding time is the time at which a binding takes place.

• What are the choices? When can binding take place?

8

Identifiers, Variables, and Scope

Binding

• A binding is an association, such as between an attribute and an

entity, or between an operation and a symbol

• Binding time is the time at which a binding takes place.

• What are the choices? When can binding take place?

‣ Language design time - bind operator symbols to operations

‣ Language implementation time - bind floating point type to a

representation (BCD, two’s compliment, whatever)

‣ OS Installation time - .Net pre-compiles CLR and DLLs / JVM

‣ Compile time - bind a variable to a type (C and Java, and our language)

‣ Load time - bind a C or C++ static variable to a memory cell, for example)

‣ Runtime - bind a non-static local variable to a memory cell

9

Identifiers, Variables, and Scope

Binding

• A binding is an association, such as between an attribute and an

entity, or between an operation and a symbol

• Binding time is the time at which a binding takes place.

• What are the choices? When can binding take place?

‣ Language design time - bind operator symbols to operations

‣ Language implementation time - bind floating point type to a

representation (BCD, two’s compliment, whatever)

‣ OS Installation time - .Net pre-compiles CLR and DLLs / JVM

‣ Compile time - bind a variable to a type (C and Java, and our language)

‣ Load time - bind a C or C++ static variable to a memory cell, for example)

‣ Runtime - bind a non-static local variable to a memory cell

• A binding is static if it first occurs before run time and remains
unchanged throughout program execution.

• A binding is dynamic if it first occurs during execution or can
change during execution of the program.

Early

10

Identifiers, Variables, and Scope

Binding

• A binding is an association, such as between an attribute and an

entity, or between an operation and a symbol

• Binding time is the time at which a binding takes place.

• What are the choices? When can binding take place?

‣ Language design time - bind operator symbols to operations

‣ Language implementation time - bind floating point type to a

representation (BCD, two’s compliment, whatever)

‣ OS Installation time - .Net pre-compiles CLR and DLLs / JVM

‣ Compile time - bind a variable to a type (C and Java, and our language)

‣ Load time - bind a C or C++ static variable to a memory cell, for example)

‣ Runtime - bind a non-static local variable to a memory cell

• A binding is static if it first occurs before run time and remains
unchanged throughout program execution.

• A binding is dynamic if it first occurs during execution or can
change during execution of the program.

Late

11

Static and Dynamic Scope

Class ScopeMan {

 int a := 1;

 int b := 2;

 main() {

 int b := 3;

 print(a,b);

 sub1();

 }

 sub1() {

 int a := 4;

 print(a,b);

 sub2();

 }

 sub2() {

 print(a,b);

 }

}

What’s the output of this code?

12

Static and Dynamic Scope

Class ScopeMan {

 int a := 1;

 int b := 2;

 main() {

 int b := 3;

 print(a,b);

 sub1();

 }

 sub1() {

 int a := 4;

 print(a,b);

 sub2();

 }

 sub2() {

 print(a,b);

 }

}

Static Scope

Class

[a,	(int,	1)]

[b,	(int,	2)]

main()

[b,	(int,	3)]

sub1()

[a,	(int,	4)]

sub2()

Symbol Table

(a tree of hash tables)

13

Static and Dynamic Scope

Class ScopeMan {

 int a := 1;

 int b := 2;

 main() {

 int b := 3;

 print(a,b);

 sub1();

 }

 sub1() {

 int a := 4;

 print(a,b);

 sub2();

 }

 sub2() {

 print(a,b);

 }

}

Static Scope

Class

[a,	(int,	1)]

[b,	(int,	2)]

main()

[b,	(int,	3)]

sub1()

[a,	(int,	4)]

sub2()

Symbol Table

(a tree of hash tables)

Note: We don’t actually store the value of
the ids in the symbol table, as they will be
stored in memory. They’re present in this
depiction of a symbol table only so that
we can easily see what the output should
be. We’ll have other attributes to store in
the hash table along with the ids later on.

14

Static and Dynamic Scope

Class ScopeMan {

 int a := 1;

 int b := 2;

 main() {

 int b := 3;

 print(a,b);

 sub1();

 }

 sub1() {

 int a := 4;

 print(a,b);

 sub2();

 }

 sub2() {

 print(a,b);

 }

}

Static Scope

Class

[a,	(int,	1)]

[b,	(int,	2)]

main()

[b,	(int,	3)]

sub1()

[a,	(int,	4)]

sub2()

Static scope is . . .

• Early binding

• Compile time

• about Space,

‣ the shape of the code

‣ the spacial relationships of

code modules to each other
at compile time.

> run

1 3

4 2

1 2

Symbol Table

(a tree of hash tables)

15

Static and Dynamic Scope

Class ScopeMan {

 int a := 1;

 int b := 2;

 main() {

 int b := 3;

 print(a,b);

 sub1();

 }

 sub1() {

 int a := 4;

 print(a,b);

 sub2();

 }

 sub2() {

 print(a,b);

 }

}

Dynamic Scope Class

[a,	(int,	1)]

[b,	(int,	2)]

main()

[b,	(int,	3)]

sub1()

[a,	(int,	4)]

sub2()

Symbol Table

(a tree of hash tables)

Yes, this is a tree. It’s also a
list. And it looks like a stack.
But it’s a tree. And a graph.
Let’s just think of it as a tree.

16

Static and Dynamic Scope

Class ScopeMan {

 int a := 1;

 int b := 2;

 main() {

 int b := 3;

 print(a,b);

 sub1();

 }

 sub1() {

 int a := 4;

 print(a,b);

 sub2();

 }

 sub2() {

 print(a,b);

 }

}

Dynamic Scope Class

[a,	(int,	1)]

[b,	(int,	2)]

main()

[b,	(int,	3)]

sub1()

[a,	(int,	4)]

sub2()
 Dynamic scope is . . .

• Late binding

• Run time

• about Time,

‣ the call stack

‣ the execution order

of code modules at
run time.

> run

1 3

4 3

4 3

Symbol Table

(a tree of hash tables)

17

Static and Dynamic Scope

Class ScopeMan {

 int a := 1;

 int b := 2;

 main() {

 int b := 3;

 print(a,b);

 sub1();

 }

 sub1() {

 int a := 4;

 print(a,b);

 sub2();

 }

 sub2() {

 print(a,b);

 }

}

Dynamic Scope Class

[a,	(int,	1)]

[b,	(int,	2)]

main()

[b,	(int,	3)]

sub1()

[a,	(int,	4)]

sub2()
 Dynamic scope is . . .

• Late binding

• Run time

• about Time,

‣ the call stack

‣ the execution order

of code modules at
run time.

> run

1 3

4 3

4 3

Symbol Table

(a tree of hash tables)

Yes, this is a tree. It’s also a
list. And it looks like a stack.
But it’s a tree.

18

Type Systems

The Basics

What is a Type?

• A set of values

• A set of operations on those values

Type errors happen when we try to perform operations
on values that do not support them.

Type expressions are textual representations of type

• primitive/prime:	 int, boolean, real, date, time, char, pointer, …

• composite:	 	 timestamp, latitude, longitude, student-id, …

What about string? Or String?

19

Type Systems

The Basics

What is a Type?

• A set of values

• A set of operations on those values

Type errors happen when we try to perform operations
on values that do not support them.

Type expressions are textual representations of type

• primitive/prime:	 int, boolean, real, date, time, char, pointer, …

• composite:	 	 timestamp, latitude, longitude, student-id, string, …

Type systems consist of rules governing what operations
are permitted on what values.

• strong type systems prevent type errors at runtime.

• weak type systems allow encourage type errors at runtime.

• Type systems can be documented and reasoned about using inferences rules.

20

Type Systems

Specifying a Type System with Inference Rules

We can use inference rules from mathematics and
Axiomatic Semantics. Why?

• It’s fun.

• It’s accurate. We need a rigorous definition of types and type systems so that we

can enforce them in the compiler.

• It gives flexibility in implementation because it’s not tied to any grammar.

• It allows for formal verification of program properties.

• It’s what used in the computer science literature.

preconditions

postconditions

21

Inference Rules

An inference rule is written

It expresses that if f1, f2, … fn are theorems — that is, they are proven
well-formed formulae (WFF) — then we can infer that f0 is another
theorem.

That’s nice, but how do we know?

How can we actually prove things?

Let’s look at famous inference rule: Modus Ponens.

f1, f2, … fn

f0

22

A Famous Inference Rule

Modus Ponens

Modus Ponens (“the mode that affirms”) can be read:

if

	 	 we have p (meaning, p is true) and

	 	 p implies q

then

	 	 we can infer that q is true.

end if

The implication/conditional operator (⇒) is like a contract:

if p then q.

p, p ⇒ q

q

23

Inference Rule vs. Propositional Connective

Modus Ponens

Modus Ponens (“the mode that affirms”) can be read:

if

	 	 we have p (meaning, p is true) and

	 	 p implies q

then

	 	 we can infer that q is true.

end if

The implication/conditional operator (⇒) is like a contract:

if p then q.

Let’s review this in Propositional logic.

p, p ⇒ q

q
Inference Rule

Propositional

Connective

24

Propositional Logic

Truth Tables

p q⇒

0 0

0 1

1 0

1 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

(propositional connectors)

25

Truth Tables

p q p∧q⇒

0 0 0

0 1 0

1 0 0

1 1 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Propositional Logic

26

Truth Tables

p q p∧q p∨q⇒

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Propositional Logic

27

Truth Tables

p q p∧q p∨q ¬p⇒

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Do we need more? (Do we even need all of these?)

Propositional Logic

28

Truth Tables

p q p∧q p∨q ¬p⇒

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Do we need more? No. (Do we even need all of these? No.)

p∨q = ¬(¬p∧¬q)

Propositional Logic

29

Truth Tables

p q p∧q p∨q ¬p p⇒q

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

Propositional Logic

30

Truth Tables

p q p∧q p∨q ¬p p⇒q

0 0 0 0 1 1

0 1 0 1 1 1

1 0 0 1 0

1 1 1 1 0

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

These are vacuously true because p is false and
false can imply anything because it’s an invalid
premise.

Also, we take “if p then q” to be false only
when p is true and q is false.

Propositional Logic

31

Truth Tables

p q p∧q p∨q ¬p p⇒q

0 0 0 0 1 1

0 1 0 1 1 1

1 0 0 1 0 0

1 1 1 1 0

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

This is false because p is true and q is
false, and “true implies false” is false.

Propositional Logic

32

Truth Tables

p q p∧q p∨q ¬p p⇒q

0 0 0 0 1 1

0 1 0 1 1 1

1 0 0 1 0 0

1 1 1 1 0 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

This is true because p is true and q is
true, and “true implies true” is true.

Propositional Logic

33

Truth Tables

p q p∧q p∨q ¬p p⇒q ¬p∨q

0 0 0 0 1 1

0 1 0 1 1 1

1 0 0 1 0 0

1 1 1 1 0 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.

Propositional Logic

34

Truth Tables

p q p∧q p∨q ¬p p⇒q ¬p∨q

0 0 0 0 1 1 1

0 1 0 1 1 1 1

1 0 0 1 0 0 0

1 1 1 1 0 1 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.

These two columns are the same.

Both are implication.

Propositional Logic

35

Truth Tables

p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0 0 0 1 1 1

0 1 0 1 1 1 1

1 0 0 1 0 0 0

1 1 1 1 0 1 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.

A tautology is logical statement that is always true regardless of the
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

Propositional Logic

36

Truth Tables

p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0 0 0 1 1 1 1

0 1 0 1 1 1 1 1

1 0 0 1 0 0 0 1

1 1 1 1 0 1 1 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.

A tautology is logical statement that is always true regardless of the
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

}

Propositional Logic

Tautology

37

Truth Tables

p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0 0 0 1 1 1 1

0 1 0 1 1 1 1 1

1 0 0 1 0 0 0 1

1 1 1 1 0 1 1 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.

A tautology is logical statement that is always true regardless of the
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

What’s the opposite
of a tautology, where
the statement is
always false?

Propositional Logic

38

Truth Tables

p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0 0 0 1 1 1 1

0 1 0 1 1 1 1 1

1 0 0 1 0 0 0 1

1 1 1 1 0 1 1 1

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.

A tautology is logical statement that is always true regardless of the
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

What’s the opposite
of a tautology, where
the statement is
always false?

A contradiction.

Propositional Logic

39

Truth Tables

p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q) p∧¬p

0 0 0 0 1 1 1 1 0

0 1 0 1 1 1 1 1 0

1 0 0 1 0 0 0 1 0

1 1 1 1 0 1 1 1 0

Propositional logic has only false and true, no variables.

It also has logical operators like and, or, and not.

Implication is like a contract:

“if p then q” or “p ⇒ q”.

Implication can also be written as ¬p∨q.

A tautology is logical statement that is always true regardless of the
truth values of its components. Here’s one: p∧q ⇒ (p ⇒ q)

Propositional Logic

A contradiction

Contradictions
cannot exist.

40

Back to that Famous Inference Rule

Propositional Logic for Modus Ponens

p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q)

0 0 0 0 1 1 1 1

0 1 0 1 1 1 1 1

1 0 0 1 0 0 0 1

1 1 1 1 0 1 1 1

Modus Ponens

can be written “if p and p ⇒ q then q”, which can be written

 (p ∧ (p ⇒ q)) ⇒ q

p, p ⇒ q

q

41

A Famous Inference Rule

Propositional Logic for Modus Ponens

p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q) p∧(p⇒q)

0 0 0 0 1 1 1 1 0

0 1 0 1 1 1 1 1 0

1 0 0 1 0 0 0 1 0

1 1 1 1 0 1 1 1 1

Modus Ponens

can be written “if p and p ⇒ q then q”, which can be written

 (p ∧ (p ⇒ q)) ⇒ q

p, p ⇒ q

q

42

A Famous Inference Rule

Propositional Logic for Modus Ponens

p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q) p∧(p⇒q)(p∧(p⇒q))⇒q

0 0 0 0 1 1 1 1 0 1

0 1 0 1 1 1 1 1 0 1

1 0 0 1 0 0 0 1 0 1

1 1 1 1 0 1 1 1 1 1

Modus Ponens

can be written “if p and p ⇒ q then q”, which can be written

 (p ∧ (p ⇒ q)) ⇒ q

p, p ⇒ q

q

43

A Famous Inference Rule

Propositional Logic for Modus Ponens

p q p∧q p∨q ¬p p⇒q ¬p∨q p∧q⇒(p⇒q) p∧(p⇒q)(p∧(p⇒q))⇒q

0 0 0 0 1 1 1 1 0 1

0 1 0 1 1 1 1 1 0 1

1 0 0 1 0 0 0 1 0 1

1 1 1 1 0 1 1 1 1 1

Modus Ponens

can be written “if p and p ⇒ q then q”, which can be written

 (p ∧ (p ⇒ q)) ⇒ q

p, p ⇒ q

q

Tautology. Woot!

44

Inference Rules for Type Systems

With Modus Ponens proved and used as the basis for inference rules,
we need to move from Propositional logic to Predicate logic.

The complexity of reasoning about type systems cannot be handled
with truth tables because we need to accommodate ideas like any, all,
or some. Also, we need variables and functions. This leads us to . . .

First Order Logic

• variables

• domains

• named constants

• relations (>, <, etc.)

• functions (math operations)

• logical operators

• quantifiers (for-all “∀” and there-exists “∃”)

Now we can reason about type systems.

45

Type Systems

Primitives / Literals / Intrinsic Types

Boolean literals

String literals

Integer literals

s is a string literal or constant

⊢ s: string

i is an integer literal or constant

⊢ i: integer

⊢ true: boolean ⊢ false: boolean

An empty pre-condition means
“under any circumstances”.

46

Type Systems

Addition

Boolean literals

String literals

Integer literals
⊢ e1 : integer

⊢ e2 : integer

⊢ e1 + e2 : integer

We cannot add Booleans because no inference rules
are given to support that.

⊢ e1 : string

⊢ e2 : string

⊢ e1 + e2 : string

This would be better labeled as
concatenation, since it’s not really
addition. Maybe we should choose a
different operator, like “・”.

Something is missing here . . .

47

Type Systems

Assignment

Comparisons

⊢ e1 : T

⊢ e2 : T

T is a primitive type

⊢ e1 = e2 : T

I’ve got a bad feeling about this . . .

⊢ e1 : T

⊢ e2 : T

T is a primitive type

⊢ e1 == e2 : boolean

⊢ e1 : T

⊢ e2 : T

T is a primitive type

⊢ e1 != e2 : boolean

⊢ e1 : T

⊢ e2 : T

T is a primitive type

⊢ e1 > e2 : boolean

⊢ e1 : T

⊢ e2 : T

T is a primitive type

⊢ e1 < e2 : boolean

48

Type Systems

Example

string x = “I have a”;

string y = “bad feeling”;

int aboutThis(int x) {

 return x + y;

}

main() {

 int z;

 z = aboutThis(42);

 print(z);

}

49

Type Systems

Example

string x = “I have a”;

string y = “bad feeling”;

int aboutThis(int x) {

 return x + y;

}

main() {

 int z;

 z = aboutThis(42);

 print(z);

}

Things we know

x: string

y: string

x: int

z: int

50

Type Systems

Example

string x = “I have a”;

string y = “bad feeling”;

int aboutThis(int x) {

 return x + y;

}

main() {

 int z;

 z = aboutThis(42);

 print(z);

}

Things we know

x: string

y: string

x: int

z: int

Things we wonder about

Is x + y a legal operation under our type rules?

⊢ e1 : integer

⊢ e2 : integer

⊢ e1 + e2 : integer

⊢ e1 : string

⊢ e2 : string

⊢ e1 + e2 : string

51

Type Systems

Example

string x = “I have a”;

string y = “bad feeling”;

int aboutThis(int x) {

 return x + y;

}

main() {

 int z;

 z = aboutThis(42);

 print(z);

}

Things we know

x: string

y: string

x: int

z: int

Things we wonder about

Is x + y a legal operation under our type rules?

Which x is that?

⊢ e1 : integer

⊢ e2 : integer

⊢ e1 + e2 : integer

⊢ e1 : string

⊢ e2 : string

⊢ e1 + e2 : string

52

Type Systems

Example - No Context

The problem is that our type rules lack context. We need to
strengthen them to specify under what circumstances they apply.
In other words, we need scope.

string x = “I have a”;

string y = “bad feeling”;

int aboutThis(int x) {

 return x + y;

}

main() {

 int z;

 z = aboutThis(42);

 print(z);

}

Things we know

x: string

y: string

x: int

z: int

Things we wonder about

Is x + y a legal operation under our type rules?

⊢ e1 : integer

⊢ e2 : integer

⊢ e1 + e2 : integer

⊢ e1 : string

⊢ e2 : string

⊢ e1 + e2 : string

53

Type Systems

Addition with Scope Context

Boolean literals

String literals

Integer literals
S ⊢ e1 : integer

S ⊢ e2 : integer

S ⊢ e1 + e2 : integer

We cannot add Booleans because no inference rules
are given to support that.

S ⊢ e1 : string

S ⊢ e2 : string

S ⊢ e1・e2 : string

e1 is a string in scope S

e2 is a string in scope S

e1・e2 results in a string in scope S

This is better . . .

e1 is an integer in scope S

e2 is an integer in scope S

e1 + e2 results in an integer in scope S

54

Type Systems

Assignment

with Scope Context

Comparisons

with Scope Context

S ⊢ e1 : T

S ⊢ e2 : T

T is a primitive type

S ⊢ e1 = e2 : T

I’ve got a good feeling about this.

S ⊢ e1 : T

S ⊢ e2 : T

T is a primitive type

S ⊢ e1 == e2 : boolean

S ⊢ e1 : T

S ⊢ e2 : T

T is a primitive type

S ⊢ e1 != e2 : boolean

S ⊢ e1 : T

S ⊢ e2 : T

T is a primitive type

S ⊢ e1 > e2 : boolean

S ⊢ e1 : T

S ⊢ e2 : T

T is a primitive type

S ⊢ e1 < e2 : boolean

55

Type Systems

Addition

with Scope Context …

… and an implementation in Prolog

S ⊢ e1 : T

S ⊢ e2 : T

T is a primitive type

S ⊢ e1 + e2 : T

/* Symbol Table facts */

type(i, int).

type(j, int).

type(x, real).

type(y, real).

/* Type System rules */

expectedtype(plus(E1,E2),T) :- type(E1,T),

 type(E2,T).

/* Type inference and checking queries */

expectedtype(plus(i,j),X) /* int */

expectedtype(plus(x,y),X) /* real */

expectedtype(plus(i,y),X) /* false - Type error. (No unifying match.) */

56

Type Systems

Addition

with Scope Context …

… and an implementation in Prolog

S ⊢ e1 : T

S ⊢ e2 : T

T is a primitive type

S ⊢ e1 + e2 : T

57

Type Systems

Addition

with Scope Context …

… and an implementation in Prolog

S ⊢ e1 : T

S ⊢ e2 : T

T is a primitive type

S ⊢ e1 + e2 : T

58

Type Systems

Addition

with Scope Context …

… and an implementation in Prolog

S ⊢ e1 : T

S ⊢ e2 : T

T is a primitive type

S ⊢ e1 + e2 : T

59

Type Systems

Type Equivalence and Compatibility

What does it mean to say that two variable/values are equivalent?

1 ≟ 1.0

1.0 ≟ 1.000

“c” ≟ ‘c’

There are two approaches:

Name Equivalence

Types are equivalent if they have the same name.

I.e., they are the same if the programmer says they are the same.

Restrictive, but easier to implement than structural equivalence.

Structural Equivalence

Types are equivalent if they have the same structure.

I.e., they are the same if they are built the same: same parts in the same order.

Flexible, but harder to implement than name equivalence.

60

Type Systems

Type Equivalence and Compatibility

Name Equivalence

Types are equivalent if they have the same name.

first and last are the same type.

head and tail are the same type.

first and head are different types.

Structural Equivalence

Types are equivalent if they have the same structure.

first, last, head, and tail are all the same type.

type link = ↑cell;

var first : link;

 last : link;

 head : ↑cell;

 tail : ↑cell;

61

Type Systems

Type Equivalence and Compatibility

Name Equivalence

Types are equivalent if they have the same name.

MyRec and YourRec are different types.

a1, a2, and a3 are all different types.

Structural Equivalence

Types are equivalent if they have the same structure.

MyRec and YourRec are the same type.

a1, a2, and a3 are all the same type.

val MyRec = { a=1, b=2 };

val YourRec = { a=1, b=2 };

var a1 = array[1..10] of int;

var a2 = array[1..2*5] of int;

var a3 = array[0..9] of int;

62

Semantic Analysis

Semantic Analysis is the compiler phase that checks scope and type.

A depth-first, in-order Abstract Syntax Tree (AST) traversal will
allow us to …

• build the symbol table (a tree of hash tables)

• check scope

• check type

… in a single pass. It’s very cool. Let’s do it!

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Semantic Analysis

63Symbol Table

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

AST

Scope 0
current scope

Initialize Scope 0

Set the

current scope
pointer.

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

64Symbol Table

Scope 0
a|int current scope

Initialize Scope 0

add symbol a

in the current scope

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

65Symbol Table

Scope 0
a|int current scope

Initialize Scope 0

add symbol a

lookup symbol a

in the current scope

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

66Symbol Table

Scope 0
a|int current scope

Initialize Scope 0

add symbol a

lookup symbol a

check types

Verify that the left child
and right child are

type compatible

for assignment.

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

67Symbol Table

Scope 0
a|int

current scope

Scope 1

Initialize Scope 0

add symbol a

lookup symbol a

check types

Initialize Scope 1

Move the current scope

pointer to this child.

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

68Symbol Table

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Scope 0
a|int

current scope

Scope 1
a|string

Initialize Scope 0

add symbol a

lookup symbol a

check types

Initialize Scope 1

add symbol a

in the current scope

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

69Symbol Table

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Scope 0
a|int

current scope

Scope 1
a|string

Initialize Scope 0

add symbol a

lookup symbol a

check types

Initialize Scope 1

add symbol a

lookup symbol a

in the current scope

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

70Symbol Table

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Scope 0
a|int

current scope

Scope 1

Initialize Scope 0

add symbol a

lookup symbol a

check types

Initialize Scope 1

add symbol a

lookup symbol a

check types

Verify that the left child

 and right child are

type compatible

for assignment.

a|string

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

71Symbol Table

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Scope 0
a|int

current scope

Scope 1
a|string

Initialize Scope 0

add symbol a

lookup symbol a

check types

Initialize Scope 1

add symbol a

lookup symbol a

check types

lookup symbol a

in the current scope.

Print can take any type,

so there’s no need to

type check here.

We must still check the
scope, of course!

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

72Symbol Table

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Scope 0
a|int

Scope 1
a|string

current scope

Initialize Scope 0

add symbol a

lookup symbol a

check types

Initialize Scope 1

add symbol a

lookup symbol a

check types

lookup symbol a

Close Scope 1

Move the current scope

pointer to its parent.

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

73Symbol Table

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Scope 0
a|int

Scope 1
a|string

current scope
b|string

Initialize Scope 0

add symbol a

lookup symbol a

check types

Initialize Scope 1

add symbol a

lookup symbol a

check types

lookup symbol a

Close Scope 1

add symbol b

in the current scope

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

74Symbol Table

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Scope 0
a|int

Scope 1
a|string

current scope
b|string

Initialize Scope 0

add symbol a

lookup symbol a

check types

Initialize Scope 1

add symbol a

lookup symbol a

check types

lookup symbol a

Close Scope 1

add symbol b

lookup symbol b

in the current scope

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

75Symbol Table

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Scope 0
a|int

Scope 1
a|string

current scope
b|string

Initialize Scope 0

add symbol a

lookup symbol a

check types

Initialize Scope 1

add symbol a

lookup symbol a

check types

lookup symbol a

Close Scope 1

add symbol b

lookup symbol b

check types

Verify that the left child

 and right child are

type compatible

for assignment.

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

76Symbol Table

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Scope 0
a|int

Scope 1
a|string

current scope
b|string

Initialize Scope 0

add symbol a

lookup symbol a

check types

Initialize Scope 1

add symbol a

lookup symbol a

check types

lookup symbol a

Close Scope 1

add symbol b

lookup symbol b

check types

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

77Symbol Table

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Scope 0
a|int

Scope 1
a|string

current scope
b|string

Initialize Scope 0

add symbol a

lookup symbol a

check types

Initialize Scope 1

add symbol a

lookup symbol a

check types

lookup symbol a

Close Scope 1

add symbol b

lookup symbol b

check types

lookup symbol a

in the current scope

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

78Symbol Table

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Scope 0
a|int

Scope 1
a|string

current scope
b|string

Initialize Scope 0

add symbol a

lookup symbol a

check types

Initialize Scope 1

add symbol a

lookup symbol a

check types

lookup symbol a

Close Scope 1

add symbol b

lookup symbol b

check types

lookup symbol a

check types

Verify that the left child
and right child are

type comparable

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

79Symbol Table

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Scope 0
a|int

Scope 1
a|string

current scope
b|string

Initialize Scope 0

add symbol a

lookup symbol a

check types

Initialize Scope 1

add symbol a

lookup symbol a

check types

lookup symbol a

Close Scope 1

add symbol b

lookup symbol b

check types

lookup symbol a

check types

Initialize Scope 1b

Move the current
scope

pointer to this child.

Scope 1b

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

Symbol Table

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Scope 0
a|int

Scope 1
a|string

current scope
b|string

Initialize Scope 0

add symbol a

lookup symbol a

check types

Initialize Scope 1

add symbol a

lookup symbol a

check types

lookup symbol a

Close Scope 1

add symbol b

lookup symbol b

check types

lookup symbol a

check types

Initialize Scope 1b

lookup symbol b

in the current scope.

?
Scope 1b

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

Symbol Table

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Scope 0
a|int

Scope 1
a|string

current scope
b|string

Initialize Scope 0

add symbol a

lookup symbol a

check types

Initialize Scope 1

add symbol a

lookup symbol a

check types

lookup symbol a

Close Scope 1

add symbol b

lookup symbol b

check types

lookup symbol a

check types

Initialize Scope 1b

lookup symbol b

in the parent scope.

Print can take any type.

?
Scope 1b

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

Symbol Table

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Scope 0
a|int

Scope 1
a|string

current scope
b|string

Initialize Scope 0

add symbol a

lookup symbol a

check types

Initialize Scope 1

add symbol a

lookup symbol a

check types

lookup symbol a

Close Scope 1

add symbol b

lookup symbol b

check types

lookup symbol a

check types

Initialize Scope 1b

lookup symbol b

Close Scope 1b

Scope 1b

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

83Symbol Table

Source Code
{

 int a

 a = 1

 {

 string a

 a = "a"

 print(a)

 }

 string b

 b = "b"

 if (a == 1) {

 print(b)

 }

}

Scope 0
a|int

Scope 1
a|string

current scope
b|string

Initialize Scope 0

add symbol a

lookup symbol a

check types

Initialize Scope 1

add symbol a

lookup symbol a

check types

lookup symbol a

Close Scope 1

add symbol b

lookup symbol b

check types

lookup symbol a

check types

Initialize Scope 1b

lookup symbol b

Close Scope 1b

Close Scope 0

Scope 1b

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

Symbol Table

Now we have a
lexically, syntactically,
and semantically
correct AST and a
complete symbol table
to go with it.

Scope 0
a|int

Scope 1
a|string

b|string

Scope 1b

Block

VarDecl Assign VarDecl Assign

Print

If

isEq

a

aaint 1 string b b “b” Block

Block

VarDecl Assign

aa “a”string a 1 Print

b

Block
Semantic Analysis

85

