
[bookmark: AllHeadersAndTitle]
[bookmark: DescriptionPlus]
[bookmark: FeatureTitle]

Alan++
Language Design
and Example Programs
Version 0.0.7
[bookmark: _Ref463345912]
This document is part example of, and part instructions for, your final project [100 points] in Theory of Programming Languages. Read it fully and thoroughly before you begin.

Hints and Requirements:
You are free to emulate my template style here, but you do not have to.
Make the example code great. Syntax-highlight your code to make it easier to read and more impressive to look at.
You do have to include all the sections here, including all heading and subheadings.
I expect all of your content to be original. That means replacing the code fragments I’ve used here as examples with your own.
Be sure that you address and provide content for all the italicized instructions and all sections.
Introduction
Alan++ (pronounced “Alan plus plus”) is a simple, modern, object-oriented, and (strongly) type-safe programming language. Based on YYY and YYZ, but differing in the following ways:

Genealogy
Where does your language fit into the programming language genealogy? Add your language to this diagram to highlight your language and its ancestry.
[image: Picture 1]

Hello world
You are morally obligated to write the “Hello World” program in your language here.

Program structure
The key organizational concepts in Alan++ are as follows:

This example (which should be replaced by an original one of your own)
namespace Acme.Collections
begin
	public class Stack
	begin
		public Entry top;
		public void Push(object data)
 begin
			top := new Entry(top, data);
		end;

		public object Pop()
 begin
			if (top = null) then
throw new InvalidOperationException();
else
	object result := top.data;
	top := top.next;
	return result;
end if
		end Pop

		class Entry
		begin
			public Entry next;
			public object data;
			public Entry(Entry next, object data)
 begin
				this.next := next;
				this.data := data;
			end;
		end class Entry;
	end class Stack;
end namespace Acme.Collections;
declares a class named Stack in a namespace called Acme.Collections. The fully qualified name of this class is Acme.Collections.Stack. The class contains several members: a field named top, two methods named Push and Pop, and a nested class named Entry. The Entry class further contains three members: a field named next, a field named data, and a constructor.

Types and Variables
There are two kinds of types in Alan++: value types and reference types. Variables of value types directly contain their data whereas variables of reference types store references to their data, the latter being known as objects. With reference types, it is possible for two variables to reference the same object and thus possible for operations on one variable to affect the object referenced by the other variable. See Section 3 for details.

Visibility
Public, Private, Protected, Internal… more or less? How does your language handle this?

Statements Differing from YYY and YYZ

	Statement
	Example

	Expression statement
	static void Main()
begin
	int i;
	i := 123;					
	Put(i);	
	inc(i);							
	Put(i);	
end Main

	if statement
	static void Main(string[] args)
begin
	if (args.Length = 0)
		Put("No arguments");
	else
 Put("One or more arguments");
	end if
end Main

	
	Keep adding your examples.
.
.
.

	
	

Lexical structure
Programs
A Alan++ program consists of one or more source files. A source file is an ordered sequence of (probably Unicode) characters.
Conceptually speaking, a program is compiled using three steps:
Transformation, which converts a file from a particular character repertoire and encoding scheme into a sequence of Unicode characters.
Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.
Syntactic analysis, which translates the stream of tokens into executable code.
If there’s anything different about your language in the regard, this is the place for it.

Grammars
This specification presents the syntax of the Alan++ programming language where it differs from YYY and YYZ.
[bookmark: _Ref503069266]Lexical grammar (tokens) where different from YYY and YYZ
Write your Regular Expressions for tokens here.

[bookmark: _Ref503069282]Syntactic (“parse”) grammar where different from YYY and YYZ
Write your BNF grammar productions here.

[bookmark: _Ref503147908]Lexical analysis
[bookmark: _Ref503086494]Comments
Two forms of comments are supported: single-line comments and delimited comments. Single-line comments start with the characters // and extend to the end of the source line. Delimited comments start with the characters /* and end with the characters */. Delimited comments may span multiple lines. Comments do not nest. (Unless they do in your grammar. Be different. Specify something new and original.)

[bookmark: _Ref462576650][bookmark: _Ref54349021][bookmark: _Ref54349034]Tokens
There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space and comments are not tokens, though they act as separators for tokens where needed.
tokens:
identifier
keyword
integer-literal
real-literal
character-literal
string-literal
operator-or-punctuator
List all valid tokens in your language.

[bookmark: _Ref462576223]Keywords different from YYY or YYZ
A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier except when prefaced by the @ character.
New keywords:
begin			end			inc

Removed keywords:
[bookmark: _Ref449414802]do				goto		internal

[bookmark: _Ref492783637]Type System
Alan++ uses a strong static type system. (This is nice, but feel free to use weak systems that are static or dynamic. Be sure to explain their details and document them with Type Inference diagrams.) Strong typing means that type errors are caught and expressed to the programmer during compilation. Static typing means early binding compile-time type checking.

Type Rules
The type rules for Alan++ are as follows:
You have to specify type rules regardless of whether you are using a strong or weak type system. In fact, your type rules should explicitly reflect this choice. Write type inference rules in the style found in the “Scope and Type” slide deck on our web site, an example of which is given below. Write your own type rules; do not just include these verbatim. Be sure your type rules match the operators you chose for your language.

[image: Picture 2]

Alan++ types are divided into two main categories: Value types and Reference types. (Maybe you have some other thoughts here. I hope so.)

[bookmark: _Ref450883570]Value types (different from YYY and YYZ)
Examples

[bookmark: _Ref496324790]Reference types (differing from YYY and YYZ)
Examples

Example Programs
Illustrate your new language with six (6) example programs that demonstrate its use; especially what’s new and improved over current languages as well as YYY and YYZ, on which you based your design. Please include in your examples Caesar cipher encryption and decryption programs like those of our earlier class projects.

You must write example programs for the following:
Caesar Cipher encrypt
Caesar Cipher decrypt
Factorial
Sort (pick one: swap sort, bubble sort, merge sort, quicksort, or another one)

Write two more programs. Here are some ideas, but feel free to write whatever you like and think will be fun.
More sorts
Lambda functions (if possible in your language)
Pattern matching
Stack
Queue
Binary Tree
Binary Search Tree
List (single or doubly linked, circular)
Text adventure game
Alan++		Page of
image1.tif
1957 Fortran| —>—
58 Fortran Il —— I ALGOL 58

FLOW-MATIC

59

60

61

62 Fortran IV —>
63

64

65

66

67

68

69

70

71

72

73 Prolog e
74

75

76

77 MODULA-2
78 Fortran 77—>"9¢
79
80
81

82 b
83 Ada 83 Mi JEON

84
85
86

87
88 MODULA-B xOberon

89 !)
90 Fortran 90 —> Eiffel
91

92
93
94 elua PHP

95 Fortran 95_» § {Ada 95 Ruby
96
97 Javascript
98
99
00

01 Visual Basic.NET :
02

03 Fortran 2003 §

04 JRuby 1.8

05 !

06 Ada 2005

07

08 Fortran 2008 & Ruby 1.9
[]

09

10

11

12 ® C#5.0

13

14 {

LISP
LGOL 60

SNOBOL

ALGOL W
SIMULA 67

Perl

QuickBASIC

Visual BASIC

Python 2.0

C#2.0
C# 3.0

C#4.0

Python 3.0

image2.tif
Ste: T
Sex:T
T is a primitive type

Stei=es:T

Ste: T
Sex:T
T is a primitive type

S e; == e» : boolean

Ste: T
Sex:T
T is a primitive type

S+ e; != e, : boolean

Ste: T
Sex:T
T is a primitive type

S+ e; > e- : boolean

Ste: T
Skex:T
T is a primitive type

S+ e; < e- : boolean

