

version 33⅓

Language Design Project
May 9, 2O25
Aidan Carr

1 Introduction
The name of this language is a play on words of the programming language Ada (even
though it is not related to Ada at all). It’s close to my name, so I added an ‘n’ to the end
of it. And the tagline ada =+ n is a reference to my favorite rule of the language,
which hopefully defines itself.

The basis of this language is TypeScript, a more stable version of JavaScript. This
language should be a more stable version of TypeScript, with some influences of
Python and ML.

● The language is designed as an introductory coding language to math students,
one that mixes all the best features of a few languages, while keeping syntax
simple and easy to remember.

● Additional math instructions are included inside the standard library, while
keeping numbers as only one data type, no integers, longs, floats, or reals.
Behind the scenes it is stored as an improper fraction.

● The language has a general emphasis on consistency in declaring variables,
constants, functions, and classes.

● String and array indexing functionality take ideas from Python.
● Character methods are inspired by ML
● Public and private methods are reserved for class methods while functions are

just functions.

ada =+ n; Carr 1

1.1 Genealogy

1.2 Hello World
1 function main()|void = {
2 writeln("Hello World");
3 }

ada =+ n; Carr 2

1.3 Program Structure

Key organizational concepts include:

● The main() function is required and is just like another function. It is
automatically called once. All code must be inside a function or class.

● Functions are defined only using function and are automatically static
● Classes are defined with the class keyword and their constructors with new()
● Class methods are called in a similar way, but they must be inside the class and

are automatically non-static

1 namespace adan = {
2
3 ~ main function ~
4 function main()|void = {
5
6 ~ create a student ~
7 var student1|Student = Student("Christina", 2944, 3.5, true);
8 student1.writeStudent();
9 }
10
11 ~ class ~
12 class Student()|void = {
13
14 ~ constructor is called Student() ~
15 function new(nInput|String, iInput|number, gInput|number,
16 eInput|boolean)|Student = {
17 att name|String = nInput;
18 att id|number = iInput;
19 att gpa|number = gInput;
20 att isEnrolled|boolean = eInput;
21 }
22
23 ~ print the student's info ~
24 function writeStudent()|void = {
25 writeln("Name: " + name);
26 writeln("ID: " + id);
27 writeln("GPA: " + gpa);
28 var status|String = isEnrolled ? "Is enrolled" : "Graduated";
29 writeln(status);
30 }
31 }
32 }

The namespace is declared as namespace adan = {} and inside there is a main
function. A function named main() is automatically called after everything has been
defined. There is also a class with a constructor, attributes, and a non-static method.

ada =+ n; Carr 3

1.4 Types and Variables
Both value types and reference types still remain in adan. Variables/attributes that
are a value type directly store data in their memory location. Reference types are
objects, which directly store a pointer as an abstraction, which references another
location in memory that stores the objects’ attributes. Multiple references can be
made to the same reference type, modifying it as it is stored deep in memory.

1.5 Visibility

There are no more visibility attributes. Everything is public and it is up to the
programmer to include extra code to prevent data leaks.

1.6 Statements differing from TypeScript
and Python

Statement Example

Function Declaration function main()|void = {

Variable Declaration var PI|number = 3.1415;
 var distance|number = 12;

Is Equal Operator var isZero|boolean = (PI ?= 0);

And Or Statements if (isZero OR (PI > 2 AND PI < distance)) {

Print Statements write("That is ");
 writeln("interesting!");
 }

Percentage Operator var half|number = 50%;

Mod Operator var remainder|number = 23 mod 5;

Factorial Operator var possibilities|number = 7!;

Increment Operator distance =+ 5;

Decrement Operator distance =- 5;

Power Operator var squared|number = distance ^ 2;

Math Class Operators writeln(#root(49));
 writeln(#ceil(PI));

a1dabeef

ada =+ n; Carr 4

Statement Example

Class Declaration }
 class House()|void = {

Constructor new(add|String, own|String)|House = {

Attribute Declaration att address|String = add;
 att owner|String = own;
 }

Method Declaration function printZipCode()|void = {

Substring Operations writeln(address[-5:]);
 }

String Comparison function whatsUpDoc()|void = {
 if (owner[0:2] ?= "Dr") {
 writeln("Do you concur?");
 }
 }
 }

For loop function oneThroughTen()|void = {
 for (var i|number = 1, i <= 10, i =+ 1) {

String concatenation write(i + ", ");
 }
 }
}

2 Lexical Structure

2.1 Programs

A program written in adan is stored as a standard text file with 0xA1DABEEF as a
magic number (like Java’s 0xCAFEBABE). The program is compiled in three steps

1. Lexical Analysis translates the user’s text into predefined tokens.
2. The Parser converts the token stream into a valid Concrete Syntax Tree.
3. Semantic Analysis converts the CST into an Abstract Syntax Tree and checks

scope and type of all variables, attributes, functions, and function parameters
4. Machine code is generated and executed on the computer using the AST.

ada =+ n; Carr 5

2.2 Grammars

This specification presents the syntax of adan where it differs from TypeScript and
occasionally steals from Python.

2.2.1 Lexical grammar tokens

Key changes include:

<Equal to Operator> → ?=
<Type Declaration> → “|”
<MORE Math Operators> → ! | % | mod | #
<Type> → real
<Write Line> → writeln
<Write> → write
<Index Separator> → :
<Comment> → ~
<Increment> → =+
<Decrement> → =-

2.2.2 Syntactic parse grammar

Key changes include:

<AttDecl> → att <Decl>
<FunDecl> → function|class <FunDecl>
<Decl> → <Id> “|” <Type> = Statement;|<Block>
<FunDecl> → <Id> (<ParamList>) “|” <Type> = <Block>
<ForLoop> → for (<VarDecl> , <Comparison>, <Statement>) <Block>
<Inc> → <Id> =+ <NumberExpr> ;
<Dec> → <Id> =- <NumberExpr> ;
<StrIndex> → <Id> | <String> “[” [<Number>] : [<Number>] “]”

ada =+ n; Carr 6

2.3 Lexical Analysis

2.3.1 Comments

There is only one form of comment in adan, the multiline comment. The ~ symbol
marks both the end and beginning of a comment. The lexer is in charge of
determining start versus end tokens.

 var isItSummer|boolean = ~ this is a comment ~ false;

2.4 Tokens

Tokens include:
identifier, keyword, punctuation, number-literal, character-literal, string-literal,
boolean-literal.

2.4.1 Keywords different from TypeScript

Keywords that have been added to the TypeScript dictionary:
 real, writeln, write, att, mod, AND, OR, NAND, NOT, XOR, NOR, XNOR

Keywords that have been removed from the TypeScript dictionary:
 public, private, const, static, console.log, .substring, Math

ada =+ n; Carr 7

3 Type System
The type system in adan is both strict and lenient. All variables, attributes, functions,
and classes must have a variable type on declaration, which cannot change.

3.1 Type Rules

Assignment and Comparisons
S ⊢ e1 : T
S ⊢ e2 : T
T is a primitive type
S ⊢ e1 = e2 : T

S ⊢ e1 : T
S ⊢ e2 : T
T is a primitive type_
S ⊢ e1 ?= e2 : boolean

S ⊢ e1 : T
S ⊢ e2 : T
T is a primitive type_
S ⊢ e1 != e2 : boolean

S ⊢ e1 : T
S ⊢ e2 : T
T is a primitive type
S ⊢ e1 > e2 : boolean

S ⊢ e1 : T
S ⊢ e2 : T
T is a primitive type
S ⊢ e1 < e2 : boolean

Number Operations and String Concatenation
S ⊢ e1 : number
S ⊢ e2 : number _
S ⊢ e1 =+ e2 : number

S ⊢ e1 : number
S ⊢ e2 : number _
S ⊢ e1 + e2 : number

S ⊢ e1 : number
S ⊢ e2 : number _
S ⊢ e1 =- e2 : number

S ⊢ e1 : number
S ⊢ e2 : number _
S ⊢ e1 - e2 : number

S ⊢ e1 : number
S ⊢ e2 : number _
S ⊢ e1 mod e2 : number

S ⊢ e1 : string
S ⊢ e2 : string _
S ⊢ e1 + e2 : string

Logic Gates
S ⊢ e1 : boolean
S ⊢ e2 : boolean _
S ⊢ e1 OR e2 : boolean

S ⊢ e1 : boolean
S ⊢ e2 : boolean _
S ⊢ e1 AND e2 : boolean

S ⊢ e1 : boolean
S ⊢ e2 : boolean _
S ⊢ e1 NAND e2 : boolean

S ⊢ e1 : boolean
S ⊢ e2 : boolean _
S ⊢ e1 XOR e2 : boolean

S ⊢ e1 : boolean
S ⊢ e2 : boolean _
S ⊢ e1 NOR e2 : boolean

S ⊢ e1 : boolean
S ⊢ e2 : boolean _
S ⊢ e1 XNOR e2 : boolean

ada =+ n; Carr 8

3.2 Value Types

Types MUST be declared with every variable and function. Certain data types have
been removed to keep the language simple. All numbers are one data type: number.
Behind the covers, this is stored as a numerator and denominator and keeps track of
significant figures.

Additionally, there are no more constants; naming conventions are still recommended
for constants. Attributes are a version of variables that replace the this keyword, but
are variables linked to the object/class instance.

3.3 Reference Types

Reference types include programmer-defined objects and adan-defined objects like
Strings and Arrays. There are no longer multiple string/String types from TypeScript,
just the one String type.

4 Example Programs

4.1 Caesar Cipher Encrypt
1 function encrypt(text|String, value|number)|String = {
2
3 ~ edit value ~
4 value = value mod 26;
5 var caesarString|String = "";
6
7 ~ encrypt each letter ~
8 for (var i|number = 0, i < text.length, i =+ 1) {
9 var character|char = text.toUpperCase()[i:i+1];
10
11 ~ letter ~
12 if ('A' <= character AND character <= 'Z') {
13 character =+ value;
14
15 ~ loop back after Z ~
16 if (character > 'Z') {
17 character =- 26;
18 }
19 }
20
21 ~ push ~
22 caesarString =+ character;
23 }
24 return caesarString;
25 }

ada =+ n; Carr 9

4.2 Caesar Cipher Decrypt
1 function decrypt(text|String, value|number)|String = {
2 return encrypt(text, 26-value);
3 }

4.3 Factorial
1 function factorial(x|number)|number = {
2 ~ return x! is another option in this language ~
3 if (x ?= 0) {
4 return 1;
5 }
6 else {
7 return x * factorial(x-1);
8 }
9 }

4.4 Selection Sort
1 function selectionSort(items|number[])|void = {
2 var minPosition|number;
3
4 for (var i|number = 0, i <= items.length - 2, i =+ 1) {
5 minPosition = 1;
6
7 for (var j|number = i+1, j <= items.length - 1, j =+ 1) {
8 ~ compare ~
9 if (items[j] < items[minPosition]) {
10 minPosition = j;
11 }
12 }
13 ~ swap items ~
14 var temp|number = items[i];
15 items[i] = items[minPosition];
16 items[minPosition] = temp;
17 }
18 }

ada =+ n; Carr 10

4.5 Card Shuffling
1 namespace cards = {
2 function main()|void = {
3
4 var deck|String[] = createCards();
5 shuffle(deck);
6
7 writeln("Is this your card?");
8 writeln(deck[0]);
9 }
10
11 function createCards()|void = {
12 var suits|String[] = ["hearts", "spades", "diamonds", "clubs"];
13 var values|String[] = ["ace", "one", "two", "three", "four", "five",
14 "six", "seven", "eight", "nine", "ten", "jack", "queen", "king"];
15 var cards|String[];
16
17 ~ loop every suit ~
18 for (var s|number=0, s < suits.length, s =+ 1) {
19
20 ~ loop every value ~
21 for (var v|number=0, v < values.length, v =+ 1) {
22
23 ~ push the name of each card ~
24 cards =+ values[v] + " of " + suits[s];
25 }
26 }
27 }
28
29 ~ pass by reference ~
30 function shuffle(items|String[])|void = {
31 for (var i|number = items.length-1, i > 0, i =- 1) {
32 var randomIndex|number = #floor(#random() * (i + 1));
33
34 ~ swap cards ~
35 var temp|String = items[i];
36 items[i] = items[randomIndex];
37 items[randomIndex] = temp;
38 }
39 }
40 }

ada =+ n; Carr 11

4.6 Stack
1 namespace myStack = {
2 function main()|void = {
3
4 var schoolWork|Stack = Stack();
5 schoolWork.push("Math worksheet");
6 schoolWork.push("Science quiz");
7 schoolWork.push("Self portrait");
8
9 ~ print tasks in reverse ~
10 writeln(schoolWork.pop());
11 writeln(schoolWork.pop());
12 writeln(schoolWork.pop());
13 }
14
15 ~ objects stored in the stack ~
16 class Node()|void = {
17 function new(nInput|String)|Node = {
18 att name|String = nInput;
19 att next|Node = null;
20 }
21 }
22
23 ~ stack class only knows the top and how to deal with it ~
24 class Stack()|void = {
25 function new()|Stack = {
26 att top|Node = null;
27 }
28
29 ~ add to the top ~
30 function push(strInput|String)|void = {
31 var newNode|Node = Node(strInput);
32 newNode.next = top;
33 top = newNode;
34 }
35
36 ~ remove and return top ~
37 function pop()|Node = {
38
39 ~ if empty Stack ~
40 if (top ?= null) {
41 return "ERROR, EMPTY STACK";
42 }
43 else {
44 var popping|String = top.name;
45 top = top.next;
46 return popping;
47 }
48 }
49 }
50 }

ada =+ n; Carr 12

	version 33⅓
	
	Language Design Project
	May 9, 2O25
	Aidan Carr
	
	1 Introduction
	1.1 Genealogy
	1.2 Hello World
	1.3 Program Structure
	1.4 Types and Variables
	1.5 Visibility
	1.6 Statements differing from TypeScript and Python

	2 Lexical Structure
	2.1 Programs
	2.2 Grammars
	2.2.1 Lexical grammar tokens
	2.2.2 Syntactic parse grammar
	
	2.3 Lexical Analysis
	2.3.1 Comments
	2.4 Tokens
	2.4.1 Keywords different from TypeScript

	
	3 Type System
	3.1 Type Rules
	3.2 Value Types
	3.3 Reference Types

	4 Example Programs
	4.1 Caesar Cipher Encrypt
	4.2 Caesar Cipher Decrypt
	4.3 Factorial
	4.4 Selection Sort
	4.5 Card Shuffling
	
	4.6 Stack

