
Language Summary
And Example Programs

By Daniel Yost

Version 0.0.2

https://github.com/danstuff/allium
https://github.com/danstuff

Table of Contents
1. Introduction 2

1.1. Genealogy 3
1.2. Hello World 4
1.3. Program Structure 4
1.4. Types and Variables 6
1.5. Statements Differing from Java and C++ 7

2. Lexical Structure 8
2.1. Programs 8
2.2. Grammars 9

2.2.1. Lexical Grammar 9
2.2.2. Syntactic Grammar 10

2.3. Lexical Analysis 12
2.3.1. Comments 12
2.3.2. Whitespace and Unknown Characters 12
2.3.3. Analysis Method 12

2.4. Tokens 13
2.4.1. Keywords Different from Java and C++ 14

3. Type System 15
3.1. Type Inference Rules 15
3.2. Characters, Decimals, and Integers 17
3.3. Booleans and References 18
3.4. Custom Type Definitions 18

3.4.1. Variations 18
3.4.2. Compilation 19

4. Example Programs 21
4.1. Caesar Cipher 21
4.2. Factorial 22
4.3. Swap Sort 22
4.4. Binary Tree 23
4.5. Doubly Linked List 24

1

1.Introduction

Allium is a lightweight functional language inspired by Java and built in C++. Like Java, Allium is
designed to compile into bytecode, which is then run on the Allium Virtual Machine. This
ensures cross-compatibility, security, and ease of installation. However, Allium differs from Java
and C++ in the following ways:

1. Allium’s primary feature of note is its flexible type declarations, which provide the
benefits of a type-safe language while still allowing a lot of customizations.

2. Allium is a functional language, meaning data objects and functions are kept
entirely separate. This was done to allow data to be more structured and
organized, and to enable some of the flexible type features.

3. Along with flexible type declarations, Allium has a custom type conversion
feature. Type conversions allow a programmer to predefine how variables of
different types convert into one another, which makes typecasting quick and
easy.

For more information on the Allium Project beyond the Allium Language, please visit
github.com/danstuff/allium.

2

http://github.com/danstuff/allium

1.1 Genealogy

3

1.2 Hello World
tydef Str Char[+];

Str hw = “Hello World”;
print(hw);

1.3 Program Structure
There are several elements that give an allium program structure:

1. Custom data types - In lieu of classes, Allium provides a set of rules for defining data
objects that can be accessed with the tydef keyword.

2. Functions - Like most languages, Allium allows the programmer to abstract and reuse
code with functions. Functions are declared with the func keyword.

3. Imports - Imports allow multiple files to be linked together into a larger allium program.
Using the import(“filename”) keyword will cause the program to treat any
declarations or code in the provided file as part of the larger program.

4. Namespaces - Accessed with the nspace keyword, namespaces are the simplest form
of structure a programmer can add to a program. Like in most languages, namespaces
provide a wrapper around functions and objects, restricting their access so that a
function foo in the namespace bar is called via bar::foo().

See the next page for a structure example.

4

import(“other-file.am”);

nspace bar {
tydef Month Int 1 to 12;
tydef Day Int 1 to 31;
tydef Year Int 0 to 9999;

tydef Date (Month m, Day d, Year y);

func sameDay(Date d1, Date d2, out Bool o) {
o = (d1.d == d2.d && d1.m == d2.m);

}

func foo() {
Date today = (5,17,2021);
Date bday = (9,23,1998);

Bool o;
sameDay(today, bday, o);

if(o) {
print(“Happy birthday!”);

}
}

}

bar::foo();

This file first imports a file called “other-file.am”, so any code or definitions used
there can also be used here. Next, a namespace bar is declared, which contains four type
definitions and two functions. First, three types are declared: a Month type, which can be any
integer from 1 to 12, a Day type that takes a range of 1 to 31, and finally a Year type, which
specifies a 4-digit year. These type definitions combine to create a Date tuple, which is used in
the two functions to check if two dates contain the same month and day. If they do, a birthday
message is displayed.

5

1.4 Types and Variables
Allium has a strong type system, so all type errors are caught and processed during

compilation. Since allium has custom types, this means the compiler must keep a list of all
user-defined types and valid conversions between them, so that code using those types can be
checked for errors. There are five base types: Booleans, Decimals, Integers, Characters, and
References. Along with these base types, Tuples and static/dynamic Arrays are also supported.
See section 3 for more information on types.

6

1.5 Statements Differing from Java and C++

Statement Type Example

Type/Object
declaration

tydef Num Int -9999 to 9999;
tydef Position (Int, Int);

Position p = (20, 50);

Function declaration func foo(in Num a, out Num b, inout Num c) {
//a is pass by value, b by result
b = a*2;

//c is pass by value and result
c = c*2;

//there’s no return keyword in allium
}

Source inclusion import(“source-file-name”);

Pointer/reference
declaration

tydef Num Int -9999 to 9999;
tydef NumRef Ref Num;

Num foo = 9;
NumRef bar = foo;

bar => 0; //will set foo to 0
bar = null; //will set foo to an empty address

Namespace
declaration

nspace foo {
//any code here

}

Type conversion
definition

tydef Celsius Dec;
tydef Fahrenheit Dec;
tycon Fahrenheit : (Celsius*1.8 + 32);

Celsius c = 20;

//automatically convert Celsius to Fahrenheit
Fahrenheit f = c;

7

2. Lexical Structure

2.1 Programs
An Allium program is constructed of one or more Unicode source files. Source files are always
compiled into AVM bytecode. The AVM, or Allium Virtual Machine, is a lightweight virtual
machine that I wrote in C++. More information is available on the AVM and the Allium Project at
github.com/danstuff/allium.

A program is compiled in five steps:

1. Translation: if the source file is not using the Unicode encoding scheme, convert it to
Unicode.

2. Lexical Analysis: translate the input stream from the source file into a stream of tokens.
3. Syntactic Analysis: examine the token stream to validate syntax.
4. Type compilation: Translate each custom data type and their conversions (tydef and

tycon statements) into an AVM-executable bytecode program.
5. Code compilation: Translate the remaining code into an AVM-executable bytecode

program.

8

http://github.com/danstuff/allium

2.2 Grammars
This specification presents the Allium language syntax where it differs from Java and C++. All
strings in this BNF are assumed to be regular expressions evaluated in C++.

2.2.1 Lexical Grammar

<Keyword> ::= “tydef” |

”tycon” |

”func” |

”nspace” |

“import” |

“print” |

<IOTerm> |

<RangeTerm> |

<BaseType> ::= “Char” |

“Int” |

“Dec” |

“Bool” |

“Ref”

<Operator> ::= “\+” | “\-” | “*” | “\/” | “\%” | “\=\>”

<Container> ::= “\(“ | “\)” | “\[“ | “\]” | “\{“ | “\}”

<Letter> ::= “[A-z]”

<Digit> ::= “[0-9]”

<AlphaNum> ::= <Letter> | <Digit> | “_”

<IntLit> ::= <Digit> | <IntLit><Digit>

<DecLit> ::= <IntLit> | <IntLit> “\.” <IntLit>

9

<CharLit> ::= “\”(\s|\S)*\””

<Literal> ::= <IntLit> | <DecLit> | <CharLit>

<TypeName> ::= <BaseType> | <VarName>

<VarName> ::= <Letter> | <VarName> <AlphaNum>

<IOTerm> ::= “” | “in” | “out” | “inout”

<RangeTerm> ::= “to” | “or”

2.2.2 Syntactic Grammar

<TypeDecl> ::= “tydef” <VarName> <TypeStatement>

<TypeStatement> ::= <TypeName> |

<TypeBounds> |

<TypeArray> |

<TypeTuple>

<TypeBounds> ::= <ToRange> | <OrRange>

<ToRange> ::= <Literal> “to” <Literal>

<OrTerm> ::= <ToRange> | <Literal>

<OrRange> ::= <OrTerm> | <OrRange> “or” <OrTerm>

<TypeArray> ::= <TypeName> “\[“ <ArrayTerm> “\]”

<ArrayTerm> ::= <IntLit> | “\+”

<TypeTuple> ::= <TypeTuple> “\,” <TypeName> <VarName> |

<TypeName> <VarName> |

“\(“ <TypeTuple> “\)“

<TypeConversion> ::= “tycon” <VarEquation> “\:” <VarEquation>

<VarEquation> ::= <VarName> |

<VarEquation> <Operator> <VarName> |

10

“\(“ <VarEquation> ”\)”

<VarDeclaration> ::= <TypeName> <VarName> “=” <DeclarationTerm>

<DeclarationTerm> ::= <VarEquation> | <DeclarationTuple>

<DeclarationTuple> ::= <DeclarationTuple> “\,” <VarName> |

<VarName> |

“\(“ <DeclarationTuple> “\)“

<VarAssignment> ::= <VarName> “\=” <DeclarationTerm>

<RefAssignment> ::= <VarName> “\=\>” <DeclarationTerm>

<Import> ::= “import\(“ <CharLit> “\)”

<Namespace> ::= “nspace” <VarName> “\{“ <Block> “\}”

<Function> ::= “func” <VarName> <ArgList> “\{“

<Block>

“\}”

<ArgList> ::= <IOTerm> <TypeName> <VarName> |

<ArgList> “\,”

<IOTerm> <TypeName> <Varname> |

“\(“ <ArgList> “\)”

<Statement> ::= <Namespace> |

<Function> |

<VarDeclaration> |

<VarAssignment> |

<TypeDeclaration> |

<TypeConversion>

<Import>

11

<Block> ::= <Statement> “\;” |

<Block> <Statement> “\;”

<Program> ::= <Block>

2.3 Lexical Analysis

2.3.1 Comments
Allium uses C-style single and multi-line comments. Single-line comments always start with a
double slash // and extend to the end of the line. Multi-line comments start with a /* and end
with a */, and, as the name would suggest, can span multiple lines. Comments are discarded
and are not turned into tokens.

2.3.2 Whitespace and Unknown Characters
All whitespace is discarded and not turned into tokens, meaning whitespace is not required for a
runnable program. Characters or symbols that are not in the symbol table cause the lexer to
throw an unrecognized symbol error.

2.3.3 Analysis Method
The Allium lexer will use a greedy algorithm to try and match the longest possible valid input.
The algorithm starts at the beginning of the file with a search window of size 0. The size of the
search window is gradually increased until the longest possible valid symbol is found. Once this
symbol is located, it is added to the symbol stream, and the search window is moved forward
and returned to size 0.

12

2.4 Tokens
Allium has several different kinds of tokens. Here is a list of the different kinds of tokens and
what they represent. For a detailed BNF describing the token syntax see section 2.2.1.

Token Description

<IntLit> An integer literal, i.e. 1024 or -256.

<DecLit> A literal number with a decimal place, i.e.
10.1 or 100.0.

<CharLit> Any string of characters, i.e. “Hello.”

<Operator> Add, subtract, multiply, divide, or modulo.
Also includes all boolean operations, the
assignment operator =, and the reference
assignment operator =>.

<Container> Parenthesis or square or curly brackets.

<VarName> Any variable or custom type name. Must start
with a letter, but can contain numbers and
underscores.

<BaseType> Any Allium base type, such as Char or Int.

<Keyword> Any reserved word in the Allium language.

13

2.4.1 Keywords different from Java and C++
Keywords in Allium are a sequence of characters like a variable name, but they can never be
used as variable names because they serve a specific function in the language.

New Keyword Function

tydef Define a custom type

tycon Define a type conversion

nspace Define a namespace

func Define a function

import Import a code file

print Print to console

to Specify a type range

or Specify a list of type options

in Designate a function parameter as an input

out Designate a function parameter as an output

inout Designate a function parameter as both an input and output.

Removed Keywords

typedef

namespace

void

nullptr

All base type names

14

3. Type System
At its core, Allium has five base data types: Int(eger), Char(acter), Dec(imal),

Ref(erence), and Bool(ean). Arrays, and Tuples can also be declared via a tydef. Integers,
characters, and decimals store actual values. References are addresses that point to an object,
but contain no data themselves. Arrays and Tuples are two ways to build types that are
composites of other types. Using these core data types, the programmer can build their own
custom object types using the tydef keyword.

Allium is strongly typed, meaning unless a conversion between two types of variable is
explicitly specified, attempting to combine two objects of different types will fail. However,
conversions between types can be defined via the tycon keyword, thereby adding some
flexibility to the traditional strong-type model. The type system is also static, meaning types are
bound and checked at compile time. Also, Allium uses name-equivalence, so two variables can
only be compared if they have the same type name.

3.1 Type Inference Rules
The type rules for Allium are as follows:

S ⊦ e1: T
S ⊦ e2: U
T is any type
U is any type with a valid conversion to T

S ⊦ e1 = e2 : T

S ⊦ e1: T
S ⊦ e2: U
T is any type
U is any type with a valid conversion to T

S ⊦ e1 == e2 : Boolean

S ⊦ e1: T
S ⊦ e2: U
T is any type
U is any type with a valid conversion to T

S ⊦ e1 != e2 : Boolean

15

S ⊦ e1: T
S ⊦ e2: T
T is a base type or an alias/range of a base type

S ⊦ e1 <= e2 : T

S ⊦ e1: T
S ⊦ e2: T
T is a base type or an alias/range of a base type

S ⊦ e1 >= e2 : Boolean

S ⊦ e1: T
S ⊦ e2: T
T is a base type or an alias/range of a base type

S ⊦ e1 < e2 : Boolean

S ⊦ e1: T
S ⊦ e2: T
T is a base type or an alias/range of a base type

S ⊦ e1 > e2 : Boolean

S ⊦ e1: T
S ⊦ e2: T
T is a base type or an alias/range of a base type

S ⊦ e1 + e2 : T

S ⊦ e1: T
S ⊦ e2: T
T is a base type or an alias/range of a base type

S ⊦ e1 - e2 : T

16

S ⊦ e1: T
S ⊦ e2: T
T is a base type or an alias/range of a base type

S ⊦ e1 * e2 : T

S ⊦ e1: T
S ⊦ e2: T
T is a base type or an alias/range of a base type

S ⊦ e1 / e2 : T

S ⊦ e1: T
S ⊦ e2: T
T is a base type or an alias/range of a base type

S ⊦ e1 % e2 : T

S ⊦ e1: T
S ⊦ e2: U
T is a Reference
U is the type that T points to

S ⊦ e1 => e2 : T

3.2 Characters, Decimals, and Integers
In Allium, decimal numbers, integers, and characters are all designed to take on different sizes
based on their range restrictions. Larger ranges of values cause these value types to claim
more bits. The following formula is used to determine how many bits each value should reserve:

ceil(log2(o)/4)*4 = b

Where o is the number of options a variable can represent and b is the number of bits it
stores, which for decimals and integers can be up to 64 bits. This means there are 16
possible options for bit count, because there is one possible option every 4 bits and
64/4 = 16.

17

Number of Options Number of Bits

0 to 16 4

17 to 256 8

257 to 4096 12

... ...

For characters, the maximum size is 8 bits, because a character must be in the ASCII format.

3.3 Booleans and References
Booleans and references in Allium are similar in that they both occupy a static number of bits. A
boolean represents a single bit value that can be true or false, whereas references occupy 32
bits of data and represent a memory address. References also have a reference assignment
operator, =>, which is used to assign a value to the variable a reference points to.

3.4 Custom Type Definitions
3.4.1 Variations
Custom type definitions for variables can be as simple as a single character, but are flexible
enough to become very complex as well. To define a type, the following format is used:

tydef name options;

Where name can be any alphanumeric non-keyword string. The options are where the possible
values that a data type can store are defined. The options can take several forms:

● Alias: simply define name as an alias for whatever type name you put in options. For
example, the following will make Foo an alias for Int:

tydef Foo Int;

● Bounds: by specifying a range of possible values in the options after a type name, the
new type can be restricted in size. This is done using the to and or operators.

○ or can be used to specify a list of possible options. For example, the following
creates a cardinal direction that can have one of four possible values.

tydef Direction Char “N” or “S” or “E” or “W”;

○ to is used to specify a range of possible options. For example, the following
creates a character that can only be a capital letter:

18

tydef Capital Char “A” to “Z”;

○ Note that to and or can be used in tandem to specify multiple possible ranges of
values. The to operator always has precedence over or. For example, the
following defines a character that can be either a capital letter or a digit:

tydef CapNum Char “A” to “Z” or “0” to “9”;

● Array: using brackets in tandem with a type name allows the programmer to define an
array of that type. These arrays can be either static or dynamic.

○ To define a static array type, simply specify the static size of the array inside the
brackets. For example, the following defines a static array of four integers:

tydef FourInt Int[4];

○ To define a dynamic array, use the + operator inside the brackets instead of a
number. For example, a String type of dynamic length can be defined like so:

tydef String Char[+];

● Tuple: using parentheses and a comma-separated list of types allows the definition of a
tuple, or a list of varying types. For example, the following specifies a tuple that can store
a character (with the name c), an integer, and a decimal number:

tydef CharIntDec (Char c, Int i, Dec d);

3.4.2 Compilation

Each custom type is compiled into a series of bytecode programs that are designed to
instantiate, index, reassign, or convert values to a variable of that type. Each tydef statement
generates its own instantiation program, along with other programs depending on the variation
of tydef used:

● Alias: The instantiation, indexing, reassignment, and conversion programs simply call
the corresponding functions of the type being aliased.

● Bounds:

○ Bounds instantiation reserves a certain number of bytes on the stack. The
number of bytes reserved is based on the number of possible options specified in
the bounds. then assigns a value to them.

○ Bounded base types have no index program.

○ Reassignment simply replaces the previously assigned value.

19

○ Conversion stores a series of calculations between one value and another.

● Array:

○ Instantiation of a static array calls the sub-object’s instantiation function N times,
where N is the size of the static array. Dynamic arrays are reserved on the heap
instead of the stack.

○ Indexing returns the address of the sub-object at the designated position.

○ Reassignment replaces every value in the array.

○ Conversion calls the sub-object’s conversion program on every value.

● Tuple:

○ Instantiation of a tuple calls each sub-object’s instantiation function.

○ Indexing returns the address of the named sub-object.

○ Reassignment replaces every value in the tuple.

○ Conversion only works if all sub-objects are either equivalent or can convert into
one another.

20

4. Example Programs

4.1. Caesar Cipher
tydef Alpha Char “a” to “z” or “ “;
tydef Shift Int -25 to 25;

tydef String Alpha[+];

String input = “the quick brown fox jumps over the lazy dog”;

func doShift(in Shift sv) {
for(Int i = 0; i < input.size; i++) {

if(input[i] != “ “) {
input[i] = input[i] + sv;

}
}

}

Shift sv = 5;

print(input);
doShift(sv); //encrypt
print(input);
doShift(-sv); //decrypt
print(input);

21

4.2. Factorial
func factorial(in Int x, out Int y) {

Int z = 1;
if(x > 1) factorial(x-1, z);
y = x*z;

}

4.3. Swap Sort
tydef IntArr Int[+];

func swapSort(inout IntArr arr) {
Bool swapped = false;
do {

for(Int i = 0; i < arr.size-1; i++) {
if(arr[i] > arr[i+1]) {

Int buff = arr[i];
arr[i] = arr[i+1];
arr[i+1] = buff;

swapped = true;
}

}
} while(swapped == false);

}

22

4.4. Binary Tree
tydef BinNode (Int value, Ref l, Ref r);

BinNode treeLL = (3, null, null);
BinNode treeLR = (3, null, null);
BinNode treeL = (2, treeLL, treeLR);

BinNode treeRL = (3, null, null);
BinNode treeRR = (3, null, null);
BinNode treeR = (2, treeLL, treeLR);

BinNode treeHead = (1, treeL, treeR);

23

4.5. Doubly Linked List
tydef LLNode (Int value, Ref prev, Ref next);

LLNode head = (0, null, null);

func pushNode(LLNode newnode) {
LLNode current = head;
Bool atEnd = false;

while(!atEnd) {
if(current.next != null) {

current = current.next;
} else {

atEnd = true;
}

}

newnode.next = null;
newnode.prev = current;

current.next = newnode;
}

pushNode((1, null, null));
pushNode((2, null, null));
pushNode((3, null, null));
pushNode((4, null, null));

24

