
Brown 1

Language Design & Principles for Ye

Version 1.0

Designed by: Evan Brown

Final project for Theory of Programming Languages

Arrr

Brown 2

1. Introduction

Arrr (yes, like a pirate) is a strongly typed, safe by default, pirate-themed programming language
intended to provide support to those who only speak using old pirate lingo and have needed a
functional, object-oriented language. The language fuses the structural clarity of C++ and Java
with the functional power of Haskell. Arrr emphasizes explicit typing, predeclared functions,
expression-based control structures, and object-oriented modeling (hulls, cargo, decrees,
shanties). Arrr supports pattern matching, sum types, and facilitates the use of both pure and
impure functions.

1.1. Genealogy

Arrr

Brown 3

1.2. Hello World

1.3. Program Structure
Arrr has a similar program structure to that of C++ and Java, and incorporates some Haskell-like
formats in the way we can return values. Some key components of an Arrr program include:

1) In Arrr, all decree and shanty functions must be declared before the setSail entry point.
This mimics the structure of top-down languages like Java, and variable/function scope is
easily predictable using this method.

2) Functions must also be predeclared with their input AND return types.
3) All code blocks are enclosed with “doubloons” (<>) to support effective readability.
4) Like many modern languages, lines of code are terminated with “;”. This allows the

programmer to understand when a certain line of code is finished and multiline
expressions are easily managed.

5) Variables are explicitly defined under the “booty” section, for all of our loot.
6) The main body of the program is located between “setSail” and “landHo”, to aid the

sailor’s (programmer’s) journey through the Sea of Code.
7) Comments are made by using “//”, and multiline comments are made using “//>” paired

with “<//”. Nested comments are allowed and explained in following sections.

Here is an example of a totally relevant problem in today’s world of warfare:

Arrr

Brown 4

1.4. Types and Variables
Arrr is a statically typed language, where every variable and function declaration must be known
at compile time. With that said, Arrr supports 5 main primitive value types:

- Int : integer values
- Bool : true or false
- Float : decimal values
- String : lists of characters
- Char : single characters

Furthermore, Arrr allows for a unique type declaration like Haskell, defined by “chest.” Chests
can contain one or more user defined types.

Arrr also supports reference types (pointers). These types are defined with a scroll “~”, to signify
the journey you may go on following a null abyss.

Variables are declared in the “booty” block as seen above for class level declaration. Limited
scope variables are declared using “cargo.” See below for more info.

1.5. Visibility
In Arr, not all treasure, or “booty”, is meant to be seen by other hulls. To manage this, Arrr
implements visibility modifiers that can protect some loot if needed. In the booty heading, those
variables remain public as they are always declared in the execution section of the program. In
hulls, or objects, there are 3 modifiers that we use:

- commonfolk : anything can access
- private : only code inside the certain hull can access
- guarded : accessible from within a certain hull, or any hull that inherits this variable

All three modifiers can be used on cargo (variables within a hull, private by default), decree and
shanty (commonfolk by default), and hulls.

So, consider it like this. Each hull has its own cargo, and when sailing the seas we have an
overview of the program's loot, or “booty.”

1.6. Unique Syntax and Statement Examples
In the examples I will list below, you will see several examples of variable declarations in hulls
versus the program execution level. Also, Arrr allows for unique expression declarations using
haulback in its structure (like return). This allows for a Haskell-like approach if needed.

SEE NEXT PAGE

Arrr

Brown 5

Control Flow Statements Example

Basic Expression

If-Else (2 different ways)

For Loop (repeat)

While Loop (whilst)

Arrr

Brown 6

2. Lexical Structure

2.1. Programs
An Arrr program consists of one or more source files, defined by their “manifest <name>”,
represented using lists of Unicode characters. Arrr is executed between the reserved entry point
defined by “setSail” and “landHo,” and uses modern program approaches in having reserved
hulls for specified classes and programs. Arrr is compiled in the following way:

1) Transformation - converting a file, or “manifest”, to Unicode so Arrr can be read
regardless of its original encoding.

2) Lexical Analysis - the transformed character stream from step 1 is scanned and divided
into a stream of tokens.

3) Syntactic Analysis - converts the stream of token from step 2 into executable code.

2.2. Grammars
Arrr uses many of the same tokens as C++, Java, and some Haskell identifiers. Below is a list of
similar tokens, and altered names, as well as additions that I have added to the language in EBNF
format.

2.2.1. Lexical Grammar

<assignmentOperator> ::= :=
<booleanOperator> ::= == | != | <= | >= | < | >
<endOfLineCharacter> ::= ;
<print> ::= shout
<concatOperator> ::= ++
<blockDelimiters> ::= < >
<returnKeyword> ::= haulback
<comment> ::= // | //>
<identifier> ::= [a-zA-Z_][a-zA-Z0-9_]*
<variant> ::= [A-Z][a-zA-Z0-9_]*
<intLiteral> ::= [0-9]+
<floatLiteral> ::= [0-9]+ "." [0-9]+
<charLiteral> ::= 'any single char'
<stringLiteral> ::= "any sequence of char"
<arrayLiteral> ::= [<expression> { , <expression> }]

2.2.2. Syntactic Grammar

<program> ::= manifest <identifier> ; { <declaration> } setSail <statement>* landHo

Arrr

Brown 7

<block> ::= "<>" <statement>* "<>"
<statementEnd> ::= ";"
<functionDecl> ::= decree <identifier> take (<params>) be <type> ;
 | shanty <identifier> take (<params>) ;
<entryPoint> ::= setSail ... landHo
<variableDecl> ::= <type> : <identifier> := <expression> ;
<fieldDecl> ::= <visibility>? cargo <identifier> be <type> := <expression> ;
<variableSection> ::= booty: { <variableDecl>* }
<returnStmt> ::= haulback <expression> ;
<matchExpr> ::= spyglass <expression> see "<>" { <variant> -> <expression> ; } "<>"
<repeatLoop> ::= repeat <expression> times "<>" <statement>* "<>"
<whilstLoop> ::= whilst <expression> "<>" <statement>* "<>"
<typeRef> ::= ~<type>
<classDecl> ::= hull <identifier> be "<>" { <fieldDecl> <functionDecl>* } "<>"
<enumDecl> ::= chest <identifier> = <variant> { | <variant> } ;

2.3. Lexical Analysis
2.3.1. Comments

In Arrr, we are allowed to type comments. Single-line comments are described using “//” which
is common in many modern languages. Multi-line comments are described using “//>” for the
beginning and “<//” for the end. Arrr does not allow for nested comments.

2.4. Tokens
Arrr includes several of the same types of tokens as C++, Java, and Haskell. Although many of
the tokens remain the same, Arrr has introduced many new keywords to fit the theme and allow
easier readability of the code. The tokens in Arrr include:

Tokens:
 identifier

keyword
integer-literal
float-literal
character-literal
string-literal
array-literal
operator-or-punctuator

2.4.1 Keyword Differences

Arrr

Brown 8

There are many new keywords in Arrr, as well as many that have been removed. Keywords are
predefined and cannot be used as cargo or hull names.

New/Changed Keywords: manifest, setSail, landHo, booty, cargo, hull, decree, shanty, haulback,
spyglass, chest, whilst, repeat, shout

Removed Keywords: do, goto, switch, class, function, def, internal

3. Types

3.1. Type Rules
Assignment

S ⊢ e1 : T
S ⊢ e2 : T

T is a primitive type

S ⊢ e1 := e2; : T

Operations
S ⊢ e1 : T
S ⊢ e2 : T

T is a primitive type

S ⊢ e1 (+,-,/,*,%) e2; : T

Comparisons
S ⊢ e1 : T
S ⊢ e2 : T

T is a primitive type

S ⊢ e1 == e2 : Boolean

S ⊢ e1 : T
S ⊢ e2 : T

T is a primitive type

S ⊢ e1 != e2 : Boolean

S ⊢ e1 : T

Arrr

Brown 9

S ⊢ e2 : T
T is a primitive type

S ⊢ e1 > e2 : Boolean

S ⊢ e1 : T
S ⊢ e2 : T

T is a primitive type

S ⊢ e1 < e2 : Boolean

haulback
S ⊢ e : T

S ⊢ haulback e; : T

Arrr types are categorized into two main sections: Value types & Reference types.

3.2. Value Types
There are two kinds of value types in Arrr: primitive & composite.

● Primitive:
○ Int – whole numbers
○ Float – decimal numbers
○ Bool – true or false
○ Char – single character
○ String – text data (immutable)

● Composite:
○ List<T> – a sequence of values (e.g., [1, 2, 3])
○ Array<T> – indexable collection (e.g., [1, 2, 3])
○ chest types – user-defined sum/enum types (like in Haskell)

■ Example: chest Loot = Gold | Rum | Maps;

3.3. Reference Types
In Arrr, we have reference types for arrays and lists if needed. By default however, arrays will be
passed by value to keep the data immutable for simple calculations. For more advanced
manipulation of data, we can use reference versions of these types (using “~”). These reference
types include: (See next page)

● ~T – reference to any type T
● ~List<T> – reference to a list

Arrr

Brown 10

● ~Array<T> – reference to an array
● ~String – reference to a string

This allows the programmer to experience the ease of Java-like data sets on the surface level, but
if dealing with graphs that need node classes, Arrr allows for those types to be passed by
reference.

4. Example Programs
For some of these programs, I am using a utility function “length” that will be added at the end
of these examples for more clarity. All programs would have been named using a manifest, and
run in the setSail-landHo block.

4.1. Caesar Cypher Encrypt Function

Arrr

Brown 11

4.2. Caesar Cypher Decrypt Function

4.3. Factorial

4.4. BubbleSort

Arrr

Brown 12

4.5. Pattern Matching with Chest Types

4.6. Utility Library
4.6.1. Length()

Arrr

	1. Introduction
	1.1. Genealogy
	1.2. Hello World
	1.3. Program Structure
	1.4. Types and Variables
	1.5. Visibility
	1.6. Unique Syntax and Statement Examples

	2. Lexical Structure
	2.1. Programs
	2.2. Grammars
	
	2.2.2. Syntactic Grammar

	2.3. Lexical Analysis
	2.3.1. Comments

	2.4. Tokens
	2.4.1 Keyword Differences

	3. Types
	3.1. Type Rules
	3.2. Value Types
	3.3. Reference Types

	4. Example Programs
	4.1. Caesar Cypher Encrypt Function
	4.2. Caesar Cypher Decrypt Function
	4.3. Factorial
	4.4. BubbleSort
	4.5. Pattern Matching with Chest Types
	4.6. Utility Library
	4.6.1. Length()

