
Bruciato
Sorin Macaluso

May 6, 2024

For context Bruciato is the Italian word for burnt.

It is also sometimes used as a adjective.

Specifically describing a person as having a burnt mind.

The goal of this programming language is to make you Bruciato.

1

Contents

1 Introduction 3
1.1 Genealogy . 3
1.2 Hello World . 4
1.3 Program Structure . 4

1.3.1 Organization . 4
1.3.2 Sample Program . 5

1.4 Types and Variables . 5
1.5 Visibility . 5
1.6 Differing from C++ and Erlang . 6

2 Lexical Structure 7
2.1 Programs . 7
2.2 Grammars . 7

2.2.1 Lexical grammar (tokens) where different from C++ and Erlang 7
2.2.2 Syntactic “parse”) grammar where different from C++ and Erlang 8

2.3 Lexical Analysis . 8
2.3.1 Comments . 8

2.4 Tokens . 8
2.4.1 Keywords different from C++ or Erlang . 9

3 Type System 9
3.1 Type Rules . 9
3.2 Value Types (different from C++ and Erlang) . 9
3.3 Pointer Types (differing from C++ and Erlang) . 9

4 Example Programs 10
4.1 Caesar Cipher Encrypt . 10
4.2 Caesar Cipher Decrypt . 11
4.3 Factorial . 12
4.4 Selection Sort . 13
4.5 Bogo Sort . 14
4.6 Bozo Sort . 15

5 References 15

2

1 Introduction

The first thing that you will need to do for any program in Burciato is start the whole program off with
the startProg command.The program will be ended with the endProg command. The language will give
the user direct access to the pointers like C++ as well as have the Erlang. Bruciato is a strongly typed,
object orientated language that has structurally equivalent types and has dynamic scope.

1.1 Genealogy

3

1.2 Hello World

This is what hello world would look like in Bruciato

1 * He l lo world in Burc iato *
2
3 startProg<>
4 de f var charR output [1 2] = ‘ ‘ He l l o World ! ’ ’ ;
5 termOut<ouput>;
6 endProg<>

1.3 Program Structure

1.3.1 Organization

1. First every program will need to start with a the startProg function. This is unlike your normal
start to a program. The startProg token is a function call to the startProg function with in the
language.

2. startProg is a function that will shuffle whether or not true equals true or true equals false, same
applies to the value of false.

3. The function works like this.

1 fun startProg<> :)
2 de f var num check = randomNum<>;
3 * Wil l check i f the randomNum i s even or odd *
4 may <check % 2 == 0> :)
5 * i f even then true = true and f a l s e = f a l s e *
6 t rue = true ;
7 f a l s e = f a l s e ;
8 :) be :)
9 * i f odd then true = f a l s e and f a l s e = true *

10 true = f a l s e ;
11 f a l s e = true ;
12 :)
13 :)

1 fun endProg<> :)
2 t rue = true ;
3 f a l s e = f a l s e ;
4 :)

The user has a fifty percent chance to have true actually equal true or be equal to false, as well as
false equalling false or false equalling true.

4. This only works since the program and the user has access to the pointers that are made to store
data. This means that the user has direct access to the static pointer for the true and false value.

5. By default true will equal true. After the function is called the value of true and false may change.

6. If the boolean operations are switched in values then this will cause many problems in the func-
tionality of the code as shown in the sample program.

7. endProg will reset the values of true and false back to there normal state.

4

1.3.2 Sample Program

1 * s imple program to p r in t out 0 to 9 *
2
3 startProg<>
4 termOut<true>
5
6 de f var num ex = 0 ;
7
8 f o r <de f var num i = 0 , i < 10 , i++> :)
9 termOut<ex>;
10 ex++;
11 :)
12 endProg<>

For this program if true does equal true. Then the for loop will check as any normal programming
language would since i < 10 will always evaluate to true unless i is a number greater than or equal to
10. But if true equals false then any statement that was now previously true will become false. This will
change the for loop to break out of the loop instantly since i < 10 will be false and then nothing will be
printed out.

1.4 Types and Variables

There will be two types in this language. There will be the value type, this type will hold the direct
data of what ever the variable may be. Then there will be the pointer type, this type will hold pointers
to anything. This can range from pointers to where a function is, values being passed to functions, or
even the location of objects from a class. For the variables the language are all single assignment like
Erlang. There are some slight changes though. For loops are allowed and operate the same way as any
other language.

1.5 Visibility

Just to make things as annoying as possible the language will be of Dynamic scope. This means that the
time at which a something is added to the run time stack will change how the program will run. Since
the language will have Dynamic Scope this means that it will be late binding, at run time, and again all
about the time.

5

1.6 Differing from C++ and Erlang

Statements Examples
if & else statements If will be replaced with may and the else will be

replaced with be. If you have a other decision to
make instead of else if, it will be called if else. If
will be called may, if else will be called may be,
and else will be called be.

functions functions will start with the fun key word and
then be given a name then <> will be used after
the name to store the arguments of the function.
A function can return anything or nothing at all.

for & while loops For loops will look syntactically the same as any
c++ loop just that instead of the parenthesis it
will have <> surrounding the arguments of the
loop.

arguments As stated in functions and for & while loops argu-
ments will be encapsulated around the <> sym-
bols. Like so < num age, num time >

printout This will be handled by a very the termOut<>
function built into the program.

Array Declaration Same as declaring a variable must have def var
and then the type then the name.

Variable Deceleration When declaring a new variable in scope you must
say the full incantation “def var” and then the
type. The num type is for integers, a-z is for a
single char, charR stands for char repeat (or a
string), and 01 represents the boolean type.

Types New name for the different types are num for in-
tegers. As well as a-z for single characters, the
a-z represents the possible values of a single char.
Then there is charR or char repeat, since a string
is a char repeated. This also gives a hint to the
typing, a-z are the same as charR since they are
both of char type in the code. Finally 01 repre-
sents boolean values since a boolean can be true
(1) or false (0).

6

2 Lexical Structure

2.1 Programs

This language is purely made in order to be as annoying as possible. A program can contain many
different files within a main file. The syntax will be similar to how C++ handles multiple files.

How the files are compiled is with these three steps.

1. First is that we need to have lexical analysis, this will make the typed up code into list of tokens
to be processed further. This will check the validity of the words typed by the programmer.

2. Second is that we need to parse through the tokens. This will check the grammar and make sure
that what was typed by the programmer is valid sentences in the language.

3. Third is then building a Abstract Syntax Tree and a symbol table. These will be used in order to
make the machine code so that any operating system is able to run the code. At this point the
output will not look like the original program anymore.

4. Fourth the generation of the machine code based on the Abstract Syntax Tree and scope table.

Disclaimer: I will only be going over the difference that Bruciato has compared to C++ and Erlang
for parse and lexical analysis. If you want a more in depth look at the steps mentioned above. There is
a class that meets on Mondays from 8am to 10:45am in Music room 3202.

2.2 Grammars

2.2.1 Lexical grammar (tokens) where different from C++ and Erlang

⟨type⟩ ⇒ ⟨charR⟩
| ⟨a-z ⟩
| ⟨01 ⟩
| ⟨num⟩

⟨charR⟩ ⇒ A|B|C|D| |X|Y|Z|
| a|b|c|d| |x|y|z|
| ϵ

⟨a-z ⟩ ⇒ A|B|C|D| |X|Y|Z|
| a|b|c|d| |x|y|z|

⟨01 ⟩ ⇒ true|false

⟨num⟩ ⇒ 1|2|3|4|6|7|8|9|0

⟨closeBracket⟩ ⇒ >

⟨openBracket⟩ ⇒ <

⟨Begin Prog⟩ ⇒ startProg()

⟨End Prog⟩ ⇒ endProg()

⟨Begin Scope⟩ ⇒ :)

⟨End Scope⟩ ⇒ :)

⟨Single Line Comments⟩ ⇒ *

7

2.2.2 Syntactic “parse”) grammar where different from C++ and Erlang

⟨var-decl⟩ ⇒ def var ⟨type⟩ name

⟨if ⟩ ⇒ if ⟨openBracket⟩ ⟨bool-statement⟩ ⟨closeBracket⟩

⟨for⟩ ⇒ for ⟨openBracket⟩ ⟨statement;⟩ ⟨statement;⟩ ⟨end-statement⟩ ⟨closeBracket⟩

⟨while⟩ ⇒ while ⟨openBracket⟩ ⟨bool-statement⟩ ⟨closeBracket⟩

⟨function⟩ ⇒ fun ⟨name⟩ ⟨openBracket⟩ ⟨argument⟩ ⟨closeBracket⟩
| ⟨argument⟩
| ϵ

⟨Begin Prog⟩ ⇒ startProg()

⟨End Prog⟩ ⇒ endProg()

⟨Begin Scope⟩ ⇒ :)

⟨End Scope⟩ ⇒ :)

2.3 Lexical Analysis

2.3.1 Comments

Comments in Bruciato are encapsulated around ∗ symbol. For example,

1 * This i s a comment they are only s i n g l e l i n e *

They are only single line comments, just to really make it as annoying as humanly possible.

2.4 Tokens

There are many different kinds of tokens that are used in the Brucatio language.

1. Identifier Tokens: These tokens are used for naming things in the programming language. For
example, naming variables and classes.

2. Keyword Tokens: These tokens are the reserved words in the programming language.

3. Integer-Literal Tokens: This is the token for the integer type.

4. Char Tokens: This is the token for the char type.

5. String Tokens: This is the token for the string type.

6. Boolean Tokens: This is the token for the boolean operator.

8

2.4.1 Keywords different from C++ or Erlang

New Keyword Old Keyword
num int
01 boolean
a-z char
charR String
:) {
termOut System.out.print/cout
may if
may be else if
be else
* //

3 Type System

3.1 Type Rules

The type in Bruciato is a structurally equivalent language. This is taken from C++ which is also a
structurally equivalent language.This means that even though the type that was assigned to the variable
may be different, they can be still be the same as long as they are structurally the same.

This is shown in the a-z and charR type. A char is a part of a string and strings are made up of chars.
So for that reason a-z and charR are the same thing since they are structural the same. Strings are made
from chars to structurally the string type is just the char type repeated. With that in Bruciato you are
allowed to compare, concatenate, and do any kind of comparison with a string and a char. This is also
shown in arrays, since a-z and charR are the same type that means you can have a array of charR’s with
a-z in them or a array of a-z with charR’s in them.

There are also other types like num and 01. These are basic types they represent int and boolean.

3.2 Value Types (different from C++ and Erlang)

Num ⇒ is a type that can be either int, float, or double.

01 ⇒ is a type that can be set to true or false. For the matching code it can either be 0 or 1

a-z ⇒ is a type that can be set to any single char

charR ⇒ is a type that can be set to multiple different char’s

3.3 Pointer Types (differing from C++ and Erlang)

Pointers ⇒ These are very important types that can also be very dangerous. “With great power comes
great responsibility”. They are the direct access to the data that is stored in the machine code. Every-
thing will work with pointer. Strings are a collection of chars with pointers to each char. Arrays are a
pointer to the head of the list of items. For loops are pointers back to the head of the for loop. May,
may be, and be are pointers to the different jumps that may or may not need to be taken based on the
comparison. They are very important but can also cause lots of problems for security since there is a
way to get direct access to the data in memory.

9

4 Example Programs

4.1 Caesar Cipher Encrypt

1 * Encrypt *
2
3 *now that i s i f t rue equa l s t rue *
4 * to e f f e c t i v e l y use t h i s programming language you have to check*
5
6 startProg<>
7
8 * i f t rue equa l s t rue *
9
10 may <t rue = true> :)
11 de f var charR [5] word = ‘ ‘ so r in ’ ’ ;
12 de f var num encrypt char = 0 ;
13
14 f o r <de f var num i = 0 , i < word . length<>, i++> :)
15 encrypt char = word [i] . a s c i i<> − 65 + move % 26 ;
16
17 may <encrypt char < 0> :)
18 encrypt char = encrypt char + 26 ;
19 :) be :)
20 encrypt char ;
21 :)
22
23 word [i] = encrypt char . back char<>;
24 :)
25
26 * i f t rue equa l s f a l s e *
27
28 :) be :)
29 de f var charR [5] word = ‘ ‘ so r in ’ ’ ;
30 de f var num encrypt char = 0 ;
31
32 f o r <de f var num i = 0 , i > word . length<>, i++> :)
33 encrypt char = word [i] . a s c i i<> − 65 + move % 26 ;
34
35 may <encrypt char > 0> :)
36 encrypt char = encrypt char + 26 ;
37 :) be :)
38 encrypt char ;
39 :)
40
41 word [i] = encrypt char . back char<>;
42 :)
43 :)
44 endProg<>

10

For this program the “basic” Caesar cipher encrypt now become something that you have to make
two versions of. One version if the startProg<> function makes true equal to true or if true is equal to
false. Pretty much you have to flip the symbols around for if true equals false. Since true equals false
now you need to check for the the false statement until it becomes true. Since true now equals false the
false statement will now become true until the condition is meet. The the check will become false and
jump out of the loop. For example, i > word.length<> will be false until i is greater than word.length<>
(or 5). If true equals false then i > word.length<> will be true until i > word.length<> in which it will
be false.

Big Error: greater than works differently than less than 5 is less than 5 but 5 is not greater than
5. Might have a error where things happen one less time.

4.2 Caesar Cipher Decrypt

1 * Decrypt *
2
3 *now that i s i f t rue equa l s t rue *
4 * to e f f e c t i v e l y use t h i s programming language you have to check*
5
6 startProg<>
7
8 * i f t rue equa l s t rue *
9
10 may <t rue = true> :)
11 de f var charR [5] word = ‘ ‘ so r in ’ ’ ;
12 de f var num encrypt char = 0 ;
13
14 f o r <de f var num i = 0 , i < word . length<>, i++> :)
15 encrypt char = word [i] . a s c i i<> − 65 − move % 26 ;
16
17 may <encrypt char < 0> :)
18 encrypt char = encrypt char + 26 ;
19 :) be :)
20 encrypt char ;
21 :)
22
23 word [i] = encrypt char . back char<>;
24 :)
25
26 * i f t rue equa l s f a l s e *
27
28 :) be :)
29 de f var charR [5] word = ‘ ‘ so r in ’ ’ ;
30 de f var num encrypt char = 0 ;
31
32 f o r <de f var num i = 0 , i > word . length<>, i++> :)
33 encrypt char = word [i] . a s c i i<> − 65 − move % 26 ;
34
35 may <encrypt char > 0> :)
36 encrypt char = encrypt char + 26 ;
37 :) be :)
38 encrypt char ;
39 :)
40
41 word [i] = encrypt char . back char<>;

11

42 :)
43 :)
44 endProg<>

4.3 Factorial

1 * g l oba l *
2
3 fun f a c t o r i a l <num fac> :)
4 may <t rue = true> :)
5 may < f a c == 0 | | f a c < 0 > :)
6 re turn 0 ;
7 :) be :)
8 re turn <f a c * f a c t o r i a l <fac−1> ;
9 :)
10 :) be :)
11 may < f a c != 0 | | f a c > 0 > :)
12 re turn 0 ;
13 :) be :)
14 re turn <f a c * f a c t o r i a l <fac−1> ;
15 :)
16 :)
17 :)
18
19 startProg<>
20 may <t rue = true> :)
21 de f var num fac = 5 ;
22
23 f a c t o r i a l <fac>;
24 :) be :)
25 de f var num fac = 5 ;
26
27 f a c t o r i a l <fac>;
28 :)
29 endProg<>

12

4.4 Selection Sort

1 * g l oba l *
2
3 de f var charR [5] t e s t = ‘ ‘ h e l l o ’ ’ ;
4
5 startProg<>
6 may <t rue = true> :)
7 f o r <de f var num i = 0 , i < t e s t . lenght<>, i++> :)
8
9 de f var char p lace = t e s t [i]
10
11 f o r <de f var num k = i +1, k < t e s t . length<>, k++> :)
12
13 may <t e s t [k] < place> :)
14
15 t e s t [i] = t e s t [k]
16
17 :)
18
19 :)
20 :)
21 :) be :)
22 f o r <de f var num i = 0 , i > t e s t . lenght<>, i++> :)
23
24 de f var char p lace = t e s t [i]
25
26 f o r <de f var num k = i +1, k > t e s t . length<>, k++> :)
27
28 may <t e s t [k] > place> :)
29
30 t e s t [i] = t e s t [k]
31
32 :)
33
34 :)
35 :)
36 :)
37 endProg<>

13

4.5 Bogo Sort

1 import s e l e c t i o n s o r t . bru
2 * g l oba l *
3
4 de f var charR [5] t e s t = ‘ ‘ h e l l o ’ ’ ;
5
6 startProg<>
7 may <t rue = true> :)
8 for<de f var num i = 0 , i < t e s t . length , i++> :)
9 de f var num random = randomNum<> % 5 ;
10
11 de f var char temp = t e s t [i] ;
12 t e s t [random] = temp ;
13 :)
14
15 de f var charR s e l e c t i o n = se l e c t i on s o r t<t e s t>;
16
17 may <s e l e c t i o n == tes t> :)
18 termOut (‘ ‘ Solved ’ ’) ;
19 :) be :)
20 termOut (‘ ‘ Not Solved ’ ’) ;
21 :) be :)
22 for<de f var num i = 0 , i > t e s t . length , i++> :)
23 de f var num random = randomNum<> % 5 ;
24
25 de f var char temp = t e s t [i] ;
26 t e s t [random] = temp ;
27 :)
28
29 de f var charR s e l e c t i o n = se l e c t i on s o r t<t e s t>;
30
31 may <s e l e c t i o n != te s t> :)
32 termOut (‘ ‘ Solved ’ ’) ;
33 :) be :)
34 termOut (‘ ‘ Not Solved ’ ’) ;
35 :)
36 endProg<>

14

4.6 Bozo Sort

1 import s e l e c t i o n s o r t . bru
2 * g l oba l *
3
4 de f var charR [5] t e s t = ‘ ‘ h e l l o ’ ’ ;
5
6 startProg<>
7 may <t rue = true> :)
8 for<de f var num i = 0 , i < t e s t . length , i++> :)
9 de f var num random1 = randomNum<> % 5 ;
10 de f var num random2 = randomNum<> % 5 ;
11
12 de f var char temp = t e s t [random1] ;
13 t e s t [random1] = t e s t [random2] ;
14 t e s t [random2] = temp ;
15 :)
16
17 de f var charR s e l e c t i o n = se l e c t i on s o r t<t e s t>;
18
19 may <s e l e c t i o n == tes t> :)
20 termOut (‘ ‘ Solved ’ ’) ;
21 :) be :)
22 termOut (‘ ‘ Not Solved ’ ’) ;
23 :) be :)
24 for<de f var num i = 0 , i > t e s t . length , i++> :)
25 de f var num random1 = randomNum<> % 5 ;
26 de f var num random2 = randomNum<> % 5 ;
27
28 de f var char temp = t e s t [random1] ;
29 t e s t [random1] = t e s t [random2] ;
30 t e s t [random2] = temp ;
31 :)
32
33 de f var charR s e l e c t i o n = se l e c t i on s o r t<t e s t>;
34
35 may <s e l e c t i o n != te s t> :)
36 termOut (‘ ‘ Solved ’ ’) ;
37 :) be :)
38 termOut (‘ ‘ Not Solved ’ ’) ;
39 :)
40 endProg<>

5 References

Sort

15

https://www.youtube.com/watch?v=ktgxMtWMflU

	Introduction
	Genealogy
	Hello World
	Program Structure
	Organization
	Sample Program

	Types and Variables
	Visibility
	Differing from C++ and Erlang

	Lexical Structure
	Programs
	Grammars
	Lexical grammar (tokens) where different from C++ and Erlang
	Syntactic ``parse'') grammar where different from C++ and Erlang

	Lexical Analysis
	Comments

	Tokens
	Keywords different from C++ or Erlang

	Type System
	Type Rules
	Value Types (different from C++ and Erlang)
	Pointer Types (differing from C++ and Erlang)

	Example Programs
	Caesar Cipher Encrypt
	Caesar Cipher Decrypt
	Factorial
	Selection Sort
	Bogo Sort
	Bozo Sort

	References

