
Cappy	 	 Page	1	of	13	

Cappy

Language Design
& Example Programs

Calista Phippen
Version 0.0.1

Cappy	 	 Page	2	of	13	

1. Introduction

Cappy is a modern, functional, type-safe programming language. It is based on Erlang and Scala, but also
incorporates things that just make sense to me, both applicably and aesthetically. Cappy differs from
Erlang and/or Scala in the following ways:

1. Cappy is a purely functional programming language. Therefore, there are no classes or objects,
variables are immutable, and there are no loops – only recursion.

2. Cappy is strong typed, so all variables must be one of the specified data types.

3. Unlike Erlang, but like Scala, Cappy is statically typed, so data types are NOT inferred. Data
types must be declared by the programmer.

4. Cappy is compiled by the CAM virtual machine.

5. Unlike Erlang, but like Scala, brackets are used to indicate the start and end of a block.

6. There are no if statements, only case statements. However, case statements can be used in one of
two ways: a case statement with a sequence of guards or a case statement with a sequence of
patterns utilizing an optional guard (see 1.6 for more).

7. Functions are called in the cap command line: c(module_name),
module_name:function_name(params)

! 	

Cappy	 	 Page	3	of	13	

1.1 Genealogy

Cappy Cappy

Cappy	 	 Page	4	of	13	

1.2 Hello world
println(s”hello world!”)

1.3 Program structure
The key organizational concepts in Cappy are as follows:

1. Cappy code is divided into modules. A module consists of a sequence of attributes and function
declarations. The module statement is like adding a namespace to any programming language.
The module name needs to be the same as the file name minus the extension .cappy.

2. The predefined module attribute export specified which of the public functions defined within the
module will be visible from outside the module.

3. Private and public functions must be declared in their respective division.

4. Variables are immutable.

Structural Example:
-module(bakery)

-author(“calista”)

-export([start/0])

-public

def start() : unit = {

 var baked_good : tuple = (“donut”, 1.00)

 var priced_good : double = price(baked_good)

 // tuple elements can also be accessed with ._position

 println(s”baked good: ${baked_good._1}, price:
$${priced_good}”).

}

-private

// an example of pattern matching in Cappy. Gets the price from
the tuple.

def price(item : tuple) : double = {

 var (name : string, price : double) = item

 price

}

This example declares a module named bakery. The module contains two functions, start, which is public,
and price, which is private. This example displays two ways to access the elements of a tuple. The price
function utilizes pattern matching to return the price of the baked good. The print statement utilizes
position to access the name of the baked good.

Cappy	 	 Page	5	of	13	

1.4 Types and Variables
There are two kinds of types in Cappy: value types and reference types. Variables of value types directly
contain their data whereas variables of reference types store references to their data, the latter being
known as objects. With reference types, it is possible for two variables to reference the same object and
thus possible for operations on one variable to affect the object referenced by the other variable.

1.5 Visibility
Cappy is very strict about visibility when it comes to functions. Public and private functions must be
organized in their respective divisions (-public, -private). Public functions that will be called from the
command line when running the module must be exported. Variable visibility is optional.

1.6 Statements Differing from Scala and Erlang

Statement	 Example	

Expression statement	 -module(expression_stmt)
-author(“calista”)
-export([start/0])

-public
def start() : unit = {
 var x : int = 1
 var y : int = 5
 var sum : int = x + y

 println(s”${x} + ${y} = ${sum}”)
}	

Case statement:
sequence of guards

-module(case_stmt)
-author(“calista”)
-export([start/0])

-public
def start(x, y) : unit = {
 case x of
 x > y -> println(s“${x} > ${y}”)
 x < y -> println(s“${x} < ${y}”)
 _ -> println(s“${x} = ${y}”)
}	

Case statement:
sequence of patterns
with an optional guard

-module(case_stmt)
-author(“calista”)
-export([start/0])

-public
def start(x, y) : unit = {
 case x >= y
 true -> println(s“${x} >= ${y}”)
 false -> println(s“${x} < ${y}”)

}	

Cappy	 	 Page	6	of	13	

Recursive function
declaration which
also displays public
and private
functions.

-module(recursive_fn)
-author(“calista”)
-export([start/0])

-public
def start() : unit = {
 println(s“${sum(10)}”)
}

-private

rec def sum(num : int) : int = {
 case num of
 num == 1 -> 1
 _ -> sum(sum-1) + num
}

Cappy	 	 Page	7	of	13	

2. Lexical structure

2.1 Programs
All Cappy programs must be compiled to object code. CAM (Cappy Abstract Machine) is a virtual
machine that is part of the Cappy Run-Time System (CRTS), which compiles Cappy source code into
bytecode, which is then executed on the CAM. CAM bytecode files have the .cam file extension.

Conceptually speaking, a Cappy program is compiled using three steps:

1. Transformation, which converts a file from a particular character repertoire and encoding scheme into
a sequence of bytecode characters.

2. Lexical analysis, which translates a stream of bytecode input characters into a stream of tokens.

3. Syntactic analysis, which translates the stream of tokens into executable code.

2.2 Grammars
This specification presents the syntax of the Cappy programming language where it differs from Scala
and Erlang.

2.2.1 Lexical grammar (tokens) where different from Scala and Erlang:
The lexical grammar of Cappy is essentially Erlang and Scala combined. Therefore, what is different
from one is familiar to the other. The Cappy lexical grammar is as follows:

<Assignment operator> à =
<Mathematical operators> à + | - | * | /
<Comparison operators> à == | != | <= | >=
<keyword> à language defined

 variable defined
<begin block> à {
<end block> à }
<single line comment > à //
<begin multi line comment> à /*
<end multi line comment> à */
<concatenation> à ++

2.2.2 Syntactic (“parse”) grammar where different from Scala and Erlang
Again, the syntactic grammar for Cappy is a combination of Scala and Erlang. Some of the syntactic
grammar for Cappy is as follows:

<identifier> à A-Z, a-z, ℝ
<data type> à Int, Boolean, String, Long, Double, Char, Unit, List, Tuple
<module declaration> à -module(<identifier>)

<variable declaration> à var <identifier> : <data type>

Cappy	 	 Page	8	of	13	

<parameter> à <identifier> : <data type>

<function> à def <identifier> (<parameter(s)>) : <return data type>

<recursive function> à rec def <identifier> (<parameter(s)>) : <return data type>

2.3 Lexical analysis
2.3.1 Comments
Two forms of comments are supported: single-line comments and delimited comments. Single-line
comments start with the characters // and extend to the end of the source line. Delimited comments start
with the characters /* and end with the characters */. Delimited comments may span multiple lines.
Comments do not nest.

2.4 Tokens
There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space
and comments are not tokens, though they act as separators for tokens where needed. Cappy’s tokens are
strongly based on Scala’s tokens.

Cappy Tokens: identifier, keyword, integer-literal, double-literal, long-literal, character-literal, string-
literal, boolean-literal, operator-or-punctuator

2.4.1 Keywords different from Scala and/or Erlang
A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier
ever.
New keywords:
rec, def, author, export, private, public, var, and, or, when, unit

Removed keywords:
Class, Object, val, if, else, else if, io:fwrite,io:fread, ok, end, begin,
foreach, for, while, do, extends, new, yield, any, float

Cappy	 	 Page	9	of	13	

3. Type System

Unlike Erlang, but like Scala, Cappy uses a strong static type system. Strong typing means that type
errors are caught and expressed to the programmer during compilation. Static typing means early binding
compile-time type checking.

3.1 Type Rules
Some of the type rules for Cappy are as follows:

String Concatenation:

⊢ e1 : string
⊢ e2 : string

⊢ e1 ++ e2 : string

List Concatenation:

⊢ e1 : list
⊢ e2 : list

⊢ e1 ++ e2 : list

Assignment with Scope Context:

S ⊢ e1 : T
S ⊢ e2 : T
T is a primitive type

S ⊢ e1 = e2 : T

Integer Literals with Scope Context:
S ⊢ e1 : integer
S ⊢ e2 : integer

S ⊢ e1 + e2 : integer

Comparisons with Scope Context:
S ⊢ e1 : T
S ⊢ e2 : T
T is a primitive type

S ⊢ e1 != e2 : boolean

Cappy	 	 Page	10	of	13	

Cappy types are divided into two main categories: value types and reference types. I considered not using
reference types due to Cappy’s immutable nature, but lists, strings, and tuples are implemented in Scala
using references, so I decided against it and kept the reference types. Also, for the sake of aesthetics,
types begin with a lowercase letter. I don’t care what problems this causes theoretically; it just looks nicer
in Cappy.

3.2 Value types (Based on Scala)
Data Type Description

Int 32-bit signed value. Range -2147483648 to
2147483647

Double 64-bit IEEE 754 double-precision float

Long 64-bit signed value. -9223372036854775808 to
9223372036854775807

Char 16-bit unsigned Unicode character. Range from
U+0000 to U+FFFF

Boolean Either the literal true or the literal false

Unit

Corresponds to no value

3.3 Reference types (Based on Scala and Erlang)
Data Type Description

String A sequence of Chars

List a compound data type with a variable number of
terms.

Tuple a compound data type with a fixed number of
terms

Cappy	 	 Page	11	of	13	

4. Example Programs

4.1 & 4.2 Caesar Cipher Encrypt & Decrypt
-module(encrypt)
-author(“calista”)
-export([caesar/2])

-public
def caesar(str : string, shift : int) : unit = {
 var encrypted_str : string = encrypt(str.to_upper, shift)

println(s”encrypted: ${encrypted_str}”)

var decrypted_str : string = decrypt(encrypted_str, shift)
println(s”dcrypted: ${decrypted_str}”)

}

-private
def encrypt(str : string, shift : int) : unit = {
 str.to_list.map(x -> shift_char(x, shift)).to_string
}

def decrypt(encrypted_str : str, shift: int) : string = {
 encrypt(encrypted_str, 26 – shift)
}

def shift_char(chr: char, shift: int) : char = {
 var ascii_val : int = char.to_int
 case ascii_val of
 32 -> (32).to_char
 _ -> (((ascii + shift - 65) % 26) + 65).to_char
}

	

4.2 Factorial
-module(factorial)
-author(“calista”)
-export([factorial/1])

-public
rec def factorial(num : int) : int = {
 case num of
 num <= 1 -> 1
 _ -> num * factorial(num-1)
}

	
	

Cappy	 	 Page	12	of	13	

4.3 Recursive Bubble Sort based on Erlang’s recursion methods.
-module(factorial)
-author(“calista”)
-export([bubble_sort/2])

 -public
 // This works like Erlang’s recursion.

rec bubble_sort(l: list) when l.length =< 1 : list = {
 l
}
rec bubble_sort(l : list) : list = {
 SL = bubble_sort_p(l: list)
 bubble_sort(lists:sublist(sl,1,(sl.length)-1)) ++
[lists:last(sl)]

}

rec bubble_sort_p([]: list) : list = {
 []
}
rec bubble_sort_p([f]: list) : list = {
 [f]
}

rec bubble_sort_p([f,g|t] : list) when f > g : list = {
 [g|bubble_sort_p([f|t] : list)]
}

rec bubble_sort_p([f,g|t] : list) : list = {
 [f|bubble_sort_p([g|t] : list)]
}	

	

4.4 Mutual Recursion
-module(factorial)
-author(“calista”)
-export([is_even/1, is_odd/1])

-public
def is_even(num : int) : boolean = {
 case num of
 n == 1 -> true
 n == 0 -> false
 _ -> is_odd(n-1)
}

def is_odd(num : int) : boolean = {
 case num of
 n == 1 -> false
 n== 0 -> true
 _ -> is_even(n-1)
}

Cappy	 	 Page	13	of	13	

4.5 Filters
-module(factorial)
-author(“calista”)
-export([start/0])

-public
def start() : unit = {
 var l : list = [1, 2, 3, 4, 5, 6, 7]
 // l[2, 4, 6]

var even_l : list = l.filter((n : int) -> n % 2 == 0)
// l[1, 3, 5, 7]

 var odd_l : list = l.filter((n : int) -> n % 2 != 0)

 println(s”even: ${even_l}”)

println(s”odd: ${odd_l}”)

}

