

CMPT 330L Language Design Project
Sufia Khan

May 9, 2025

Cardamom Page 1 of 17

Table of Contents
1. Introduction..3

1.1. Genealogy... 4
1.2. Hello world... 5
1.3. Program structure..5
1.4. Types and Variables.. 7
1.5. Visibility..7
1.6. Statements Differing from Java and BASIC...7

2. Lexical structure.. 9
2.1. Programs... 9
2.2 Grammars...9

2.2.1 Lexical grammar (tokens) where different from Java and BASIC............................. 9
2.2.2 Syntactic (“parse”) grammar where different from Java and BASIC......................10

2.3 Lexical analysis..10
2.3.1 Comments... 10

2.4 Tokens.. 11
2.4.1 Keywords different from Java or BASIC..11

3. Type System..12
3.1 Type Rules... 12
3.2 Value types (differing from Java and BASIC)...13
3.3 Reference types (differing from Java and BASIC)..13

4. Example Programs...14
4.1 Caesar Cipher encrypt and decrypt.. 14
4.2 Factorial... 15
4.3 Bubble Sort (Swap function included)...15
4.4 QuickSort... 16
4.5 MergeSort..17

☕�.◌ೃ�*:･

Cardamom Page 2 of 17

1. Introduction

 Cardamom (pronounced card-ah-mum) is a simple, comforting, and refreshing language that

is both object-oriented and type-safe. It is suitable for beginner and intermediate programmers as

it supports both procedural and functional programming. It is named after the “Queen of Spices”,

cardamom, which is native to South Asia. Like its namesake, it’s revitalizing and sweet compared

to earlier programming languages and transports the programmer to a cafe-like world.

Cardamom is derived primarily from Java and some BASIC, but has an identity of its own as it

differentiates from the two in the following ways:

1. All Cardamom programs must have classes, denoted by the Chai keyword.

2. There are no one-dimensional lists. Instead, tables/arrays are used for both

one-dimensional and multi-dimensional lists, denoted by the AromaSet keyword .

3. Variables cannot be declared without being defined. If you know you need a variable, you

must only create it at the point in the code where it will be defined as well. The exception

to this is function parameters. To define a variable, use the Fill keyword.

4. Each line of code within a class/function must end with a tilde (~), or else you will get

syntax errors.

5. Only while loops exist, which can be used to recreate the functionality of other types of

loops.

6. Recursion is done with the useMasala() built-in function, where the recursive function

and its parameters are called as a parameter. This is also how functions are normally

called in other parts of your program, regardless of recursivity. This built-in function is

not required to call other built-in functions like sub() and add().

☕�.◌ೃ�*:･

Cardamom Page 3 of 17

1.1. Genealogy

 The below diagram illustrates Cardamom’s place within the programming language

genealogy:

☕�.◌ೃ�*:･

Cardamom Page 4 of 17

1.2. Hello world

Public Chai Hello {

 Masala HelloWorld() as void {

 Fill String hi = “Hello, World!”~

 Pour(hi)~

 }

}

1.3. Program structure

The key organizational concepts in Cardamom are as follows:

1. Chais (classes) must be located in files with the same name and ending with the .crdm

extension.

2. Each program must start with a Chai (class) within which code is considered its

“ingredients”, so to speak.

3. Chais must have Masalas (functions), no matter how short the program is.

4. To create a package (like in Java), use the Kahwa keyword. Similarly, to create an interface,

use the ChaiMold keyword.

5. To import a Chai, use the Steep keyword. Similarly, to export a Chai use the Serve

keyword.

6. Cardamom, like Java, uses { } to denote the beginning and end of classes, functions, loops,

and the like.

7. Chais may have a Masala main() function to run a program, unless the Chai’s functions

are used elsewhere and not within itself.

This example:

 Kahwa ChaiBrew {

 Public Chai ChaiMaker{

 Masala makeChai() as void {

 Fill AromaSet<String> ingredients = new AromaSet~

 ingredients.insert("Hot water")~

 ingredients.insert("Black tea leaves")~

Cardamom Page 5 of 17

 ingredients.insert("A pinch of cardamom")~

 ingredients.insert("A dash of ginger")~

 ingredients.insert("A sprinkle of cinnamon")~

 ingredients.insert("Milk")~

 ingredients.insert("A spoonful of sugar")~

 Pour("Preparing chai...")~

 Fill int i = 0~

 while (i < ingredients.size) {

 Fill String ingredient = ingredients.get(i)~

 Pour("Adding: " + ingredient)~

 i = i + 1~

 }

 Pour("Stirring. . .")~

 Pour("Your Cardamom Chai is ready!")~

 }

 Public Masala main() as void {

 Fill ChaiMaker chaiMaker = new ChaiMaker~

 useMasala(chaiMaker.makeChai())~

 }

 }

 }

declares a Chai (class) named ChaiMaker in a Kahwa (package) called ChaiBrew. The fully

qualified name of this class is ChaiBrew.ChaiMaker. The ChaiMaker class is responsible for

simulating the process of making chai. It contains a Masala (function) named makeChai(),

which further contains an AromaSet (array/table) of Strings named ingredients. The

makeChai() Masala adds ingredients for a traditional chai recipe into the table and then

retrieves them using a Java-esque while loop to simulate the preparation process. To work with

the AromaSet, built-in functions such as insert(), size(), and get() are used. The

ChaiMaker class also has a main Masala (function) which serves as the program's entry point,

creating a new instance of the ChaiMaker class and calling its makeChai() Masala to begin the

simulation.

☕�.◌ೃ�*:･

Cardamom Page 6 of 17

1.4. Types and Variables

Like Java, there are two kinds of types in Cardamom: value types and reference types. Variables

of value types directly contain their data whereas variables of reference types store references to

their data, the latter being known as objects. With reference types, it is possible for two variables

to reference the same object and thus possible for operations on one variable to affect the object

referenced by the other variable. See Section 3 for details.

1.5. Visibility

Cardamom has two choices for access modifiers: Public and Private. Chais and Masalas can

be either, depending on whether one plans to use its functions outside of the class. A public Chai’s

Masalas are automatically considered to be public as well, unless specified. However, similar to

Java, only inner Chais (classes) can be private. Private Chais (classes) can have both public or

private members, but they can only be accessed within itself and its parent Chai (class).

1.6. Statements Differing from Java and BASIC

Statement Example

Expression statement Masala CloveCounter() as void {
 Fill int cloves = 3~
 Fill int clovesNeeded = 8 - cloves~
 pour(“We need ” + clovesNeeded + “ more cloves.”)~
 add(cloves, 5)~
 pour(“Great! Now we have “ + cloves + “ cloves.”)~
}

if statement Masala sellCakes(size as int; price as float) as void {
 if (size < 20) {
 Fill price = 10.99~
 } orMaybe (size > 20 && size < 35) {
 Fill price = 24.99~
 } else {
 Fill price = 34.99~
 }
}

Cardamom Page 7 of 17

While loop Masala DirtyDishes(numDishes as int) as void {
 while (numDishes != 0) {
 pour(“Washing the current dish...“)~
 sub(numDishes, 1)~
 pour(“There are “ + numDishes + “ dishes left”)~
 if (numDishes != 0) {
 pour(“KEEP WASHING THOSE DISHES!”)~
 }
 }
}

For loop ^-^ For loops are written using while loops
Masala printNumbers(max as int) as void {
 Fill int i = 0~
 while (i < max) {
 Pour(i)~
 i = add(i, 1)~
 }
}

Comments ()> This is a delimited comment which spans multiple
 > lines.
 > Parameters: price as int, amountPaid as int
 > Returns: change as int
/()>
Masala CalculateChange(price as int; amountPaid as int)
as void
{
 if (price < amountPaid){
 Fill int change = sub(amountPaid, price)~
 }
 return change~ ^-^ this is a single line comment
}

Recursion Masala findSum(n as int) as int {
 if (n == 1) {
 return 1~
 }
 return add(n, useMasala(findsum(n - 1)))~
}

☕�.◌ೃ�*:･

Cardamom Page 8 of 17

2. Lexical structure

2.1. Programs

A Cardamom program consists of one or more source files. A source file is an ordered sequence of

Unicode characters.

Conceptually speaking, a program is compiled using three steps:

1. Transformation, which converts a file from a particular character repertoire and encoding

scheme into a sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of

tokens.

3. Syntactic analysis, which translates the stream of tokens into executable code.

2.2 Grammars
This specification presents the syntax of the Cardamom programming language where it differs

from Java and BASIC.

2.2.1 Lexical grammar (tokens) where different from Java and BASIC

<statement_terminator> → '~'

<variable_declaration_keyword> → 'Fill'

<function_declaration_keyword> → 'Masala'

<return_type_clause> → 'as' <type>

<else_if_conditional> → 'orMaybe'

<single_line_comment> → '^-^' <comment_text>

<delimited_comment> → ‘()>’ <comment_text> ‘/()>’

☕�.◌ೃ�*:･

Cardamom Page 9 of 17

2.2.2 Syntactic (“parse”) grammar where different from Java and BASIC

<class_declaration> → ‘Chai’ <identifier>

<function_declaration> → 'Masala' <identifier> '('<parameter_list>')'<return_type_clause>

 '{'<statement_list> '}'

<variable_declaration> → 'Fill' <type> <identifier> '=' <expression> '~'

<conditional_statement> → 'if' '(' <expression> ')' '{' <statement_list> '}'

 | 'if' '(' <expression> ')' '{' <statement_list> '}' 'orMaybe'

 '('<expression> ')' '{' <statement_list> '}'

 | 'if' '(' <expression> ')' '{' <statement_list> '}' 'orMaybe' '('

 <expression> ')' '{' <statement_list> '}' 'else' '{' <statement_list> '}'

2.3 Lexical analysis

2.3.1 Comments

Two forms of comments are supported: single-line comments and delimited comments.

Single-line comments start with the characters ^-^ and extend to the end of the source line.

Notice how this combination of characters creates a cartoon-like “face”. Delimited comments

start with the characters ()> and end with the characters /()>. This combination of characters is

supposed to resemble tea cups. Delimited comments may span multiple lines. Comments do not

nest.

☕�.◌ೃ�*:･

Cardamom Page 10 of 17

2.4 Tokens

There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators.

White space and comments are not tokens, though they act as separators for tokens where

needed.

Tokens:
❀ identifier
❀ keyword
❀ integer-literal

❀ float-literal
❀ real-literal
❀ character-literal
❀ string-literal
❀ operator-or-punctuator

2.4.1 Keywords different from Java or BASIC

A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an

identifier.

New Keywords Removed/Replaced Keywords

● Kahwa

● Chai

● Masala

● pour

● orMaybe

● AromaSet

● Steep

● Serve

● Fill

● ChaiMold

● package

● class

● System.out.print()

● else-if

● array

● import

● exports

● interface

☕�.◌ೃ�*:･

Cardamom Page 11 of 17

3. Type System

Cardamom uses a strong static type system. Strong typing means that type errors are caught and

expressed to the programmer during compilation. Static typing means early binding compile-time

type checking. If the programmer forgets to specify the type, an error will occur urging them to

specify types wherever missing. There is no type inference, nor any illusion of dynamic typing

unlike in BASIC (which allows def type instead of a specific type).

3.1 Type Rules

The type rules for Cardamom are as follows:
S ⊢ e1: T S ⊢ e1: T S ⊢ e1: T
S ⊢ e2: T S ⊢ e2: T S ⊢ e2: T
T is a primitive type T is a primitive type T is a primitive type
------------------------- ------------------------- ------------------------
S ⊢ e1 = e2: T S ⊢ e1 == e2: boolean S ⊢ e1 != e2: boolean

S ⊢ e1: T S ⊢ e1: T
S ⊢ e2: T S ⊢ e2: T S ⊢ e1: String
T is a primitive type T is a primitive type S ⊢ e2: String
------------------------- ------------------------- -----------------------
S ⊢ e1 < e2: boolean S ⊢ e1 > e2: boolean S ⊢ e1 + e2: String

S ⊢ e1: int S ⊢ e1: int S ⊢ e1: int
S ⊢ e2: int S ⊢ e2: int S ⊢ e2: int
------------------ ------------------ ------------------
S ⊢ e1 + e2: int S ⊢ e1 - e2: int S ⊢ e1 * e2: int

S ⊢ e1: int
S ⊢ e2: int

S ⊢ e1 / e2: int

☕�.◌ೃ�*:･

Cardamom Page 12 of 17

Cardamom types are divided into two main categories: Value types and Reference types.

3.2 Value types (differing from Java and BASIC)

The value types present in Cardamom are the same as in Java.

3.3 Reference types (differing from Java and BASIC)

Chai - Similar to a Java “class”. It serves as a blueprint for creating objects, defining their

properties and behaviors, much like a recipe defines the ingredients and steps for making a specific

type of tea.

ChaiMold - Similar to a Java “interface”. It defines a contract for Chais (classes), specifying a set

of Masalas (functions) that any Chai implementing it must provide, ensuring consistency in

behavior across different Chai types.

AromaSet - Similar to a Java “array”. It provides a way to store and access multiple values of the

same type, organized as either a one-dimensional or a multi-dimensional grid, allowing you to

work with complex data sets, like the flavor profiles in a delicious chai blend.

☕�.◌ೃ�*:･

Cardamom Page 13 of 17

4. Example Programs

4.1 Caesar Cipher encrypt and decrypt

Public Chai CaesarCipher {
 ()> Encrypt a given message by shifting each letter a specific
 * number of times.
 * Parameters: Message as String, Shift as int
 * Returns: encryptedMessage as String
 /()>
 Masala Encrypt(Message as String; Shift as int) as String {
 Fill int normalized = ((Shift % 26) + 26) % 26~

 Fill encryptedMessage = Message.map { seed =>
 ^-^ seed is the keyword for character
 if (seed.isUpper) {
 ((seed - 'A' + normalized) % 26 + 'A').toSeed~
 } orMaybe (seed.isLower) {
 ((seed - 'a' + normalized) % 26 + 'a').toSeed~
 } else {
 seed~
 }
 }.join()~ ^-^ Join the seeds back into a string

 return encryptedMessage~
 }

 ()> Decrypts a given message by shifting each letter a given shift
 * amount.
 * Parameters: Message as String, Shift as int
 * Returns: decryptedMessage as String
 /()>
 Masala Decrypt(Message as String; Shift as String) as String {
 Fill String decryptedMessage = useMasala(Encrypt(Message, -Shift))~
 }
}

Cardamom Page 14 of 17

4.2 Factorial

Public Chai Arithmetic {
 Masala Factorial(int num) as int {
 Fill int result = 1~
 Fill int i = 2~
 ^-^ Let’s recreate a for loop using a while loop
 while (i <=n) {
 ^-^ Multiplies result by i and sets solution to result
 multiply(result, i)~
 add(i, 1)~
 }
 return result~
 }
}

4.3 Bubble Sort (Swap function included)

Public Chai BubbleSort {

 Masala bubbleSort(input as AromaSet<int>) as AromaSet<int> {

 Fill boolean swapping = true~

 while (swapping) {

 Fill swapping = false~

 Fill int i = 0~

 while (i < input.size - 1) {

 if (input[i] > input[i+1]) {

 swap(input, i, i+1)~

 swapping = true~

 }

 add(i, 1)~

 }

 }

 return input~

 }

 Masala swap(array as AromaSet<int>; iOne as int; iTwo as int) as void {
 Fill int temp = array[iTwo]~
 Fill array[iTwo] = array[iOne]~
 Fill array[iOne] = temp~

 }

}

Cardamom Page 15 of 17

4.4 QuickSort

Public Chai QuickSort{
 Masala quicksort(array as AromaSet<int>; start as int; end as int) as AromaSet<int>
 {
 if (start == end) {
 return array~
 }

 Fill int index = partition(array, start, end)~

 if (start < index - 1) {
 useMasala(quicksort(array, start, index - 1))~
 }

 if (index < end) {
 useMasala(quicksort(array, index, end))~
 }
 return array~
 }

 Masala partition(array as AromaSet<int>; left as int; right as int) as int {
 Fill int pivot = array[Calc.floorDiv((left + right), 2)]~

 while (left <= right) {
 while (array[left] < pivot) {
 add(left, 1)~
 }

 while (array[right] > pivot) {
 sub(right, 1)~
 }

 if (left <= right) {
 swap(array, left, right)~
 add(left, 1)~
 add(right, 1)~
 }
 }
 return left;
 }
}

Cardamom Page 16 of 17

4.5 MergeSort

Public Chai MergeSort {
 Masala mergeSort(a as AromaSet<int>; n as int) as void {

 if (n < 2) { ^-^ Base Case
 return~
 }

 Fill int mid = n / 2~
 Fill AromaSet<int> l = new AromaSet[mid]~
 Fill AromaSet<int> r = new AromaSet[n - mid]~

 Fill int i = 0~
 while (i < mid) {
 Fill l[i] = a[i]~
 add(i, 1)~
 }

 Fill int j = mid~
 while (j < n) {
 Fill r[j - mid] = a[j]~
 add(j, 1)~
 }

 useMasala(mergeSort(l, mid))~
 useMasala(mergeSort(r, n - mid))~

 useMasala(merge(a, l, r, mid, n - mid))~

 }

 Masala merge(
 a as AromaSet<int>; l as AromaSet<int>; r as AromaSet<int>; left as int;
 right as int) as void {

 Fill int i = 0~
 Fill int j = 0~
 Fill int k = 0~
 while (i < left && j < right) {
 if (l[i] <= r[j]) {
 a[k+1] = l[i+1]~
 } else {
 a[k+1] = r[j+1]~
 }
 }
 while (i < left) {
 a[k+1] = l[i+1]~
 }
 while (j < right) {
 a[k+1] = r[j+1]~
 }
 }

}

Cardamom Page 17 of 17

	Table of Contents
	1. Introduction
	1.1.Genealogy
	1.2.Hello world
	1.3.Program structure
	1.4.Types and Variables
	1.5.Visibility
	1.6.Statements Differing from Java and BASIC

	2.Lexical structure
	2.1. Programs
	2.2 Grammars
	2.2.1 Lexical grammar (tokens) where different from Java and BASIC
	2.2.2 Syntactic (“parse”) grammar where different from Java and BASIC

	2.3 Lexical analysis
	2.3.1 Comments

	2.4 Tokens
	2.4.1 Keywords different from Java or BASIC

	3.Type System
	3.1 Type Rules
	3.2 Value types (differing from Java and BASIC)
	3.3 Reference types (differing from Java and BASIC)

	4. Example Programs
	4.1 Caesar Cipher encrypt and decrypt
	4.2 Factorial
	4.3 Bubble Sort (Swap function included)
	4.4 QuickSort
	4.5 MergeSort

