
ClassicRockScript Page 1 of 11

ClassicRockScript
Language Design

and Example Programs
Version 1.9.84

C. Marcus DiMarco

 To turn your experience up to 11, be sure that your browser is playing Whitesnake.

https://www.youtube.com/watch?v=OxEPxxCWB0g

ClassicRockScript Page 2 of 11

1.Introduction

ClassicRockScript is an opinionated version of JavaScript. The core features and raw power of the

language are the same; it remains weakly and dynamically-typed. ClassicRockScript’s goal is to remove

the frustration of programming in JavaScript by introducing the following:

1. Keywords are renamed in tribute to great music.

2. ClassicRockScript comes with its own REPL and runtime environment a la NodeJS.

3. When typed, keywords send a request to the operating system to enable the host’s speakers, turn

the device volume to 100%, and begin playing the audio associated with the keyword.

a. This feature cannot be disabled and songs cannot be paused or skipped. As such, it is not

advised to program in ClassicRockScript in libraries, at funerals, or in other

circumstances which require quiet environments.

b. This feature can be temporarily suspended by executing the function play(<song name>)

in the REPL, which will still make the same requests to the operating system to enable

the speakers and turn the volume to 100%, but will play the parameterized song and will

disable keyword-associated songs until the current song ends.

4. The amount of assistance your IDE can offer you directly correlates how far beyond your

shoulders your hair extends.

a. It’s rumored that at the perfect hair length, your IDE offers AI pair programming and

autocompletion without a third-party plugin.

ClassicRockScript Page 3 of 11

1.1.Genealogy

ClassicRockScript Page 4 of 11

1.2.Hello world

1.3.Program structure

The key organizational concept in ClassicRockScript is that code should reflect existing JavaScript

conventions, apart from keywords and reserved words. This means that code can be written both

declaratively and functionally.

This example

declares a function factorial. This function accepts a single parameter of any type named input, then

checks the type of the input to verify it is a number. If it is not, an Error object is returned. If it is a

number less than or equal to 0, the function returns a value of 1, else the function returns a value of

input times the factorial of 1 less than input.

1.4.Types and Variables

ClassicRockScript supports value types and reference types. Since it is weakly-typed, however, variables
are not bound to being either value or reference types; they can be both at different points in the code.
Consider the following:

At first, thing is assigned 42, and therefore is a value type. Immediately after, however, it is assigned an
arrow function. It then becomes a reference type with a pointer to the function.

1.5.Visibility

In the spirit of rock and roll, the only possible visibility in ClassicRockScript is public.

ClassicRockScript Page 5 of 11

1.6.Statements Differing from JavaScript

Statement Example

Expression statement

if statement

While loop with

switch statement

ClassicRockScript Page 6 of 11

2.Lexical structure

2.1.Riffs

A ClassicRockScript riff consists of one or more source files. A source file is an ordered sequence of

(probably Unicode) characters.

Conceptually speaking, a program is interpreted using two steps:

1. Translation: The interpreter walks through the riff one line at a time, translating the current line

before running it. This translation includes a lexical analysis (lex) and a syntactical analysis (parse).

2. Execution: The interpreter then executes the translated line, advancing to the next line as long as there

were not any runtime exceptions and repeating the process until the end of the riff.

2.2.Grammars

ClassicRockScript varies greatly from JavaScript in terms of tokens. No new tokens have been added, but

many have been renamed.

2.2.1.Lexical grammar (tokens) where different from JavaScript

JavaScript ClassicRockScript Associated song

abstract imagine Imagine – John Lennon (1971)

arguments thingsComin You’ve Got Another Thing Comin’ – Judas Priest (1982)

boolean booleanRhapsody Bohemian Rhapsody – Queen (1975)

break breakOnThrough Break on Through (To the Other Side) – The Doors (1967)

byte byterain Nightrain – Guns n’ Roses (1987)

case when When the Levee Breaks – Led Zeppelin (1971)

console.log() printItBlack() Paint It, Black – The Rolling Stones (1966)

const theFinalConstdown The Final Countdown – Europe (1986)

continue keepOn Keep On Loving You – REO Speedwagon (1980)

default renegade Renegade – Styx (1978)

delete dustInTheWind Dust in the Wind – Kansas (1977)

double doubleVision Double Vision – Foreigner (1978)

else elseMatters Nothing Else Matters – Metallica (1991)

function girlsJustWantToHaveFunction Girls Just Want to Have Fun – Cyndi Lauper (1983)

goto jump Jump – Van Halen (1983)

if if If – Pink Floyd (1970)

instanceof,

typeof

smellsLike Smells Like Teen Spirit – Nirvana (1991)

let letThereBe Let There Be Rock – AC/DC (1977)

native nativeTongue Native Tongue – Poison (1993)

new newKid New Kid in Town – Eagles (1976)

number numberOfTheBeast The Number of the Beast – Iron Maiden (1982)

Promise.then() Promise.chain() The Chain – Fleetwood Mac (1977)

return sendMeA Send Me An Angel – Scorpions (1990)

string charTrain Crazy Train – Ozzy Osbourne (1980)

switch separateWays Separate Ways (Worlds Apart) – Journey (1983)

synchronized synchronizedII Synchronicity II – The Police (1983)

try trYYZ YYZ – Rush (1981)

while roundabout Roundabout – Yes (1971)

ClassicRockScript Page 7 of 11

2.3.Lexical analysis

2.3.1.Comments

Three forms of comments are supported: single-line comments and delimited comments. Single-line

comments start with the characters // and extend to the end of the source line. Delimited comments start

with the characters /* and end with the characters */. Delimited comments may span multiple lines.

Playlist comments start with /# and end with #/ and must appear at the start of a file. They may span

multiple lines, but each line must only include the name of a song to be played. If a playlist comment is

included in the current file, the active editor will request operating system resources to play the songs in

the order listed. This will temporarily disable the ability of keywords to change the active song.

2.4.Tokens

There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space

and comments are not tokens, though they act as separators for tokens where needed.

tokens:

identifier
keyword
null-literal
boolean-literal
numeric-literal
string-literal

regular-expression-literal
template-literal
operator-or-punctuator

2.4.1.Keywords different from JavaScript

A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier.

ClassicRockScript treats certain popular functions as keywords in accordance with the table of lexemes

on the previous page.

Altered keywords:

typeof

The keyword typeof in ClassicRockScript behaves differently than in JavaScript. In JavaScript, it

takes a single parameter and returns a string indicating the type of the parameter. In ClassicRockScript, it

is rolled into the smellsLike keyword and returns a boolean if the type of the parameter is the same as the

type passed into the expression. (See Statements Differing from JavaScript item 2 for an example).

ClassicRockScript Page 8 of 11

3.Type System

ClassicRockScript uses a weak dynamic type system. Weak typing means that type errors are not caught

and expressed to the programmer during compilation. Compilation doesn’t happen at all, actually, as

ClassicRockScript is an interpreted language. Dynamic typing means late binding run-time type checking.

3.1.Type Rules

The type rules for ClassicRockScript are as follows:

ClassicRockScript types are divided into two main categories: Value types and Reference types.

However, these types do not differ from JavaScript.

ClassicRockScript Page 9 of 11

4.Example Programs

Caesar Cipher encrypt

Caesar Cipher decrypt

Caesar Cipher solve

ClassicRockScript Page 10 of 11

Factorial

Bubble sort

ClassicRockScript Page 11 of 11

Random Sort

