

 i

Concerto

Language Summary

and Example Programs

Version Tonic

Shannon Brady

Theory of Programming Languages

Professor Labouseur

26 May 2021

 1

1. Introduction

1. Concerto (pronounced “kuhn·chehr·tow”) is a simple, modern, object-

oriented, strongly-typed, and musically literate programming language. Based

on predominantly on Scala with a slight hint of Python, Concerto differs in

the following ways:

a. Concerto is strongly typed. Variables must be one of the included data
types (see Section 3).

b. Concerto is compiled.
c. Concerto is statically scoped.
d. The end of every statement must be terminated with a semicolon. This

eliminates Concerto’s dependency on whitespace and newlines.

e. Strings are stored in memory as arrays of characters, which allows for
easier string manipulation as well as a diminished need for additional

built-in functions.

f. Ensemble.playln() provides console printing.
g. Null values are denoted with niente.

i. “niente” -- none or nothing

h. Defining the main function is achieved by the following: def void
tutti()

i. “tutti” -- with all voices or instruments performing together

i. All language elements emulate ensemble/orchestra functionality and its
relevant musical attributes.

Concerto Language Specification

2

1.1 Genealogy

 3

1.2 Hello World

1.3 Program structure
The key organizational concepts in Concerto are as follows:

1. The format of the code is determined by end of line semicolons and
functions.

2. Execution of instructions is sequential.

3. Data types are declared first in variable declaration, which is immediately
followed by a colon and then the variable name. This serves to enhance

overall readability.

4. The main function is referred to as “tutti” (previously defined in Section

1.1).

5. Objects are referred to as performances.

6. Classes are referred to as compositions.

a. “composition” -- refers to an original piece or work of music

7. Variables are assigned using “=>”.

8. Instead of return statements, there are rehearse statements.

9. Test for equality is delimited by two equals signs “==”. Conversely, the

test for inequality is delimited by “!=”.

10. Phrase (string) concatenation is achieved with “++”.

1.4 Types and variables
Concerto uses two standard variable types, value types and reference types. All

primitive variables like beats (integer/float) and notes (characters) are stored
as their value in memory. More complex types like phrases (strings) and
performances (objects) are stored as references to locations in memory. In regards
to reference types, two variables may reference the same object; therefore, it is

Concerto Language Specification

4

possible for operations on one variable to affect the object referenced by the

other variable.

1.5 Statements Differing from Scala and Python

 5

Statement Example

Expression

Statement

For Statement

String as Array

of Characters

Concerto Language Specification

6

If/Else If/ Else

Block

 7

2. Lexical structure

2.1 Programs
A Concerto program consists of one or more source files. A source file is an
ordered sequence of Unicode characters.

Conceptually speaking, a program is compiled using three main steps:

1. Transformation, which converts a file from a particular character repertoire
and encoding scheme into a sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into

a stream of tokens.

3. Syntactic analysis, which translates the stream of tokens into executable

code.

2.2 Grammars
This specification presents the syntax of the Concerto programming language where

it differs from Scala and Python.

2.2.1 Lexical grammar where different from Scala and Python
The lexical grammar of Concerto is most closely compared to Scala with some

flavors of Python.

Should identifiers contain one or more digits, those digits must appear at the end

of the identifier.

Keywords or reserved words cannot be used as identifiers. Identifiers cannot be

re-initialized in the same scope.

<assignment operator> → =>

<null value> → Niente

<end of line char> → ;

<concatenation sym> → ++

<identifier> → <character> <character list>

Concerto Language Specification

8

 → <character> <digit list>
 → <character>

<character list> → <character> <character list>
 → <character>

<digit list> → <digit> <digit list>
 → <digit>

<digit> → 0,1,2,3,4,5,6,7,8,9

<character> → a, b, ..., y, z
 → A, B, ..., Y, Z

2.2.2 Syntactic grammar where different from Scala and Python

<variable declaration> → <type>: <string> => <value>;

<performance declaration> → performance<identifier>

<composition declaration> → composition<identifier>

<function declaration> → def <type> <identifier> <parameter list>

<parameter list> → <parameter> <parameter list>
 → <parameter>

 <parameter> → <type> <identifier>

2.3 Lexical analysis
2.3.1 Comments

Two forms of comments are supported by Concerto: single-line comments and

delimited comments. Single-line comments start with the characters # and extend to

the end of the source line. Delimited comments start with the characters << and

end with >>. Delimited comments may span multiple lines. Comments do not nest.

2.4 Tokens
There are several kinds of tokens: identifiers, keywords, literals, operators, and

punctuators. White space and comments are not tokens, though they act as

separators for tokens where needed.

 9

tokens:
identifier
keyword
integer-literal
real-literal
character-literal
string-literal
operator-or-punctuator

2.4.1 Keywords differing from Scala and Python
A keyword is an identifier-like sequence of characters that is reserved, and cannot be
used as an identifier except when prefaced by the @ character.

New Keyword Purpose

tutti Used when declaring main function (ex: def

void tutti())

composition Class declaration

performance Object declaration

phrase String data type

beat All-encompassing number data type

note Character data type

niente Null value

rehearse Return statement

ensemble Emulates Java’s System class

playln

play

Print statement

recordBeat

recordNote

recordPhrase

Read user input

void Used when function has no rehearse (return)

value

Removed Keywords:

println, print

readLine, readInt, read<remaining data types>

int

Concerto Language Specification

10

string

char

double

long

short

byte

val

var

null

class

object

 11

3. Type System

Concerto, like Scala, uses a strong static type system. Strong typing means that
type errors are caught and expressed to the programmer during compilation.

Strongly-typed languages do not allow implicit conversions between unrelated

types. Static typing means early binding compile-time type checking.

For example, a strong statically typed language like Concerto statically (at

compile time) ensures that a certain value with type Note is correctly used
throughout the program. At runtime, nothing else other than a Note can be held in
that variable’s memory location.

3.1 Type Rules
The type rules for Concerto are as follows:

Concerto Language Specification

12

Concerto types are divided into two main categories: value types and reference
types.

3.2 Value types
Beat: A general purpose method of storing numbers; length of the datatype is
automatically set by

the compiler, which removes the need for individually defined Int, Float,

Long, Short and

Byte datatypes.

Beat : exNum => 12;

Boolean: A type that represents either sharp (true) or flat (false).

Boolean : exBool => sharp;

 13

Note: A single (Unicode) character; an individual component of a phrase

Note : exChar => ‘♪’;

Niente: A null type representing no value

3.3 Reference types
Phrase: An array of notes (characters).

Phrase: exString => “Is it summer yet?”;

Scale: An array (vector) that contains elements of all the same data type

Scale [Beat] : someNums => [1, 2, 3, 4, 5];

Scale [Note] : theNotes => [‘♩’, ‘♫’, ‘♪’];

Chord: A list (collection of items) that contains elements of multiple data types

Chord : stuff => [“apple”, 3.14159, flat, ‘%’];

Concerto Language Specification

14

4. Example Programs

4.1 Caesar Cipher (encrypt, decrypt and solve)

 15

4.2 Bubble Sort and Quick Sort

Concerto Language Specification

16

 17

4.3 Factorial

4.4 Fibonacci Sequence

	1. Introduction
	1.1 Genealogy
	1.2 Hello World
	1.3 Program structure
	1.4 Types and variables
	1.5 Statements Differing from Scala and Python

	2. Lexical structure
	2.1 Programs
	2.2 Grammars
	2.2.1 Lexical grammar where different from Scala and Python
	2.2.2 Syntactic grammar where different from Scala and Python

	2.3 Lexical analysis
	2.3.1 Comments

	2.4 Tokens
	2.4.1 Keywords differing from Scala and Python

	3. Type System
	3.1 Type Rules
	3.2 Value types
	3.3 Reference types

	4. Example Programs

