D/

|
D

Amanda Potenza

Theory of Programming Language Final Project
May 2025
Version 1.3.5

Now plajing “Fur Elise”

\
Nt

AR

Page 1 of 15

TJakle of Comtents

LI Y FYY /Y VR 3
T 1T 1 1= I o T 4
R £ (=) I8 o Y Y ol 5
1.3. Program STruUCTUIe .. 5
1.4. Types and Variables ... 6
T T = o T I T 6
1.6. Statements Differing from Scala and Erlang.........mn. 6

2. LoNALAL BANMLAANR e vcsrasesssssssssssssssnssssssssssssssssssssssssassssssssass s snasasssssassss s snass s s sase s s snasn s snasase s snasaneas 8
A R oo T | - 11 = 8
D 1 g 11111 T ¥ 8

2.2.1. Lexical grammar (tokens) where different from Scala and Erlang.... 8
2.2.2. Syntactic (“parse”) grammar where different from Scala and Erlang
... 8
2.3, LeXiCAl @NALYSLS ..msrssessasess 9
2.3 1. COMMENTES....oouieeeeuueereeesuseessessssss s esssss s sss AR RS RS ERR £ R RS R RS R RS R RS R RS R R 9
D S I o] C= 1 T3 9
2.4.1. Keywords different from Scala and Erlang......——n 9

3. TYPL BUALRMU...cecrrc s A R R R R R 10
C 2 R I/« L= £ (T L= 10
3.2. Value types (different from Scala and Erlang) ... 11
3.3. Reference types (differing from Scala and Erlang) ... 11

L Y Y R VYV Y 12

Db Page 2 of 15

1. drtreduwction

I hope you practiced your major Scala(s)! “Db” (pronounced “D flat”) is strongly typed, functional, and

musical take on programming. The name “Db” plays on the enharmonic equivalence of the note “C#,”
another well-known programming language. Imagine if the movie “Pitch Perfect” had a computer science
side quest... this is that! Despite the play on words, Db is not based on C#. The language takes heavy
influence from languages with functional programming capabilities such as Scala and Erlang with some
major differences:

L.

D/

Most keywords have a musical twist. Their meanings (to a degree) mirror their musical
counterparts.

To home in on the functional programming capabilities of these languages, I removed some
“procedural” belongings: no classes, no loops (let’s go recursion!), enforced immutability, and no
void returning functions. In that sense, it is more like Erlang.

Utilizes Scala’s strong static type system.

Introduces scope using || instead of curly brackets (meant to mimic double bar lines).
a. not to be confused with concatenation | (meant to mimic single bar lines).

Influenced by Scala’s higher-order functions that use lambdas directly.

Uses Erlang-style module exposure (‘publish’).

All functions require return type declarations.

Page 3 of 15

1.1.Genealog

y

Where does your language fit into the programming language genealogy? Add your language to this
diagram to highlight your language and its ancestry.

58 Fortran Il —>—¢
59
60
61

1957 Fortran| —> ¢
y
E\AI ALGOL 58

ALGOL 60

I FLOW-MATIC

® APL COBOL

62 Fortran IV —>— ‘
63
64
65
66
67
68
69
70

Prolog e

Fortran 77—>—¢

MODULA-

Fortran 90 —> ¢

95 Fortran 95— }
96
97
98
99
00
01
02
03
04
05
06

07

Fortran 2003 }

ALGOL W

& Pascal

;MODULA-Z

B ‘[Oberon

SIMULA |

\

BASIC o PL/I

SIMULA 67
ALGOL 68

%
3wk
Smalltalk 80

: Ada 83

Perl

Eiffel Visual BASIC

\Y,

QuickBASIC T

\Qj C (C89)

e lLua

)

08 Fortran 2008 &
09
10
1
12
13

14

D/

‘ PHJ \
¢ Ada 95 ? Ruby

Javascript

Y
Visual Bpsic.NET ¢

JRuby 1.8
(

® Ada 2005

JRuby 1.9

Erlang

) Java

Scala

>ePython

»C99

pPython 2.0

c#20 |
c#30

C# 4.0

[Python 3.0

e C#5.0

Java 8.0

Page 4 of 15

1.2.Hello world

—compose(helloWorld);
—-publish([main/@]);

this is a “Hello World” script
notate main() ||

play(“Hello World!”);
|l

1.3.Program structure
The key organizational concepts in Db are as follows:

1. Every program begins with a module notated by the word “compose” followed by the word

9, 6

“publish” to mimic Erlang’s “export.”
a. The content in the “compose” parentheses should reflect the filename.
2. Program blocks are indicated using || instead of curly brackets (meant to mimic double bar lines).

3. Single-line comments are notated using #, multi-line comments are notated using #b and b# (like
flats and sharps)

4. Semicolons are not required in most instances, but they can avoid code ambiguity and some
unexpected errors. Some examples of when to use them are after several declarations on one line,
or if a line begins with (, [, +, -, /, or ". In optional scenarios, they can be used to visually
terminate lines and increase readability.

Db defines functions using “def” like Scala and unlike Erlang’s “=>."

Variables are assigned using

The language does not support “for” or “while” loops, only recursion.

S S

Type annotations are required for variables and return types.

Db Page 5 of 15

—compose(reverseDemo) ;
—-publish([main/@]);

#b
This example demonstrates recursion and string handling
in Db. It reverses a string by recursively deconstructing

the head and tail of the list.
b#

reverse a list of characters
reverse([]) : []
reverse([H | T1) : reverse(T) ++ [H]

notate main() ||
msg = "Amanda in D flat!";

chars = explode(msg); # turns string into char list

rev = reverse(chars);

out = implode(rev); # turns char list back into string
play("Reversed: " | out);

This snippet declares a module named reverseDemo using the compose keyword and exposes a single
public function main using notate([main/0]). The module defines a recursive function reverse that
operates on a list of characters. This function uses pattern matching to deconstruct the list into a head and
tail: if the list is empty, it returns an empty list; otherwise, it appends the head element to the reversed tail.
The main function assigns a string to the variable msg, then uses explode to convert the string into a list
of characters. It applies the reverse function to the character list, then uses implode to reassemble the
reversed list into a string. The result is output using the play function, printing the reversed string.

1.4.Types and Variables

There are two kinds of types in Db: value types and reference types. Variables of value types directly
contain their data whereas variables of reference types store references to their data, the latter being
known as objects. With reference types, it is possible for two variables to reference the same object and
thus possible for operations on one variable to affect the object referenced by the other variable. See
Section 3 for details.

1.5.Visibility

Every module is private by default unless “publish” specifies otherwise. When using “publish,” the
program “shares” the specified module(s) with the world (the program’s world!). Any function not in the
-publish list is private and can only be called within the same module.

1.6.Statements Differing from Scala and Erlang

All types and expressions are static and checked at compile-time.

Db Page 6 of 15

Statement

Example

Expression statement

pages: Int = 100;

solo/backup
(if/else) statement

notate main() ||
note : Int = 65;
solo (note > 60): ||
play("That's a high note!"™);
|| backup: ||
play("That's a low note!™);

Function application

notate square(n) ||
n % n

notate main()]| |
result: Int = square(4);
play("Square is: " ++ result);

Function chaining

notate main()| |
melody: Repertoire = [60, 62, 64, 65];
transposed = map(note —> note + 1, melody);
play(transposed);

Recursion loop

simulate a repeat-until behavior
notate repeatPlay(note: Int, times: Int) : Unit ||
solo (times > @): ||
play(note);
repeatPlay(note, times - 1);
I
|l

tunein (importing
another module)

imagine importing a utility module for transformations
tunein("transposeTools");

notate main()| |
melody : Repertoire = [60, 62, 64];
newMelody : Repertoire = transposeUp(melody, 2);
play(newMelody) ;

D/

Page 7 of 15

2. Lenical sthuctuhe

2.1.Programs

A Db composition (aka program) consists of one or more source files. A source file is an ordered
sequence of (probably Unicode) characters.

Conceptually speaking, a program is compiled using three steps:

1. Transformation, which converts a file from a particular character repertoire and encoding scheme into
a sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.

3. Syntactic analysis, which translates the stream of tokens into executable code.

2.2.Grammars

This specification presents the syntax of the Db programming language where it differs from Scala and
Erlang.

2.2.1.Lexical grammar (tokens) where different from Scala and Erlang

<mathematical operators> -> +, -, *, /, mod
<comparison operators> > ==, 1=, <, <= >, >=
<assignment> -> =
<begin/end block> -> |
<single line comment > -> #
<begin multi line comment> > #b
<end multi line comment> > b#
9

<concatenation>

2.2.2.Syntactic (“parse”) grammar where different from Scala and
Erlang

Int, Cadence, String, Float, Char, Repertoire, Unit
<identifier> : <data type> = <expression>

<data type>
<variable declaration>

<program declaration> -> -compose(<program name>);
<assignment operator> -> -publish([main/0]);
<function declaration> -> notate <function name>(<parameter list>) : <return data type>
<parameter> -> <identifier> : <data type>
<identifier> -> A-Z, a-z, R
9
9

Db Page 8 of 15

2.3.Lexical analysis

2.3.1.Comments

Two forms of comments are supported: single-line comments and delimited comments. Single-line
comments start with the character # and extend to the end of the source line. Delimited comments start
with the characters #b and end with the characters b#. Delimited comments may span multiple lines.

Comments do not nest.

2.4.Tokens

There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space
and comments are not tokens, though they act as separators for tokens where needed. This portion is

heavily inspired by Scala.
tokens:

identifier
keyword
integer-literal
real-literal
character-literal
string-literal

list-literal

operator-or-punctuator #+, -, *,/, ==, 1=, <, > mod, |, ||

2.4.1.Keywords different from Scala and Erlang

variable/function/module names

reserved musical words (e.g., solo, play, Repertoire, Unit)

numeric values like 42
float values like 3.14
single chars like 'A'

text like "Amanda in D flat!"

Repertoire of values like [1, 2, 3]

A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier
except when prefaced by the @ character.

New Keywords

Removed Keywords

e compose (module)
e publish (export)

e tunein (import)

e || (curly brackets)
e (Cadence(boolean)
e harmonious (true)
e dissonant (false)

e solo/backup (if/else)

e crescendo (increment)

e decrescendo (decrement)
e Repertoire (list)

e Unit

e C(lass
e Object
e for

e while

e jo:format

e o0k
e begin
e end

D/

Page 9 of 15

3.Type dystem

Db uses a strong static type system. Strong typing means that type errors are caught and expressed to the
programmer during compilation. Static typing means early binding compile-time type checking.

3.1.Type Rules

The type rules for Db are as follows:

concatenation:
S + e1 : string

S e : string

Sk ei|ez:string

assignment.
Ste:T
Skex: T

T is a primitive type

SkFer=ez:T

Skei:T
Skez: T

T is a primitive type

S+ e; > ez: Cadence

integer addition:
S e1 : integer

S e : integer

S e1 + ez:integer

comparison:
Ste:T
Skex: T

T is a primitive type

S+ ey == e;: Cadence

Skei:T
Skez: T

T is a primitive type

S+ e; < ez: Cadence

Skei:T
Skez: T

T is a primitive type

S+ ey !=e;: Cadence

Skei:T
Skez: T

T is a primitive type

S+ e; = ez: Cadence

Db types are divided into two main categories: Value types and Reference types. This difference
separates simple, efficient values from more complex structures that need memory and recursion. Value

types are passed directly and are fast.

D/

Page 10 of 15

3.2.Value types (different from Scala and Erlang)

Float: a floating point numeric value
e Float: exampleFloat := 101.01;
Int: A method of storing numbers, the compiler automatically sets the length of the datatype, removing
the need for Float, Long, Short and Byte datatypes.
e Int: examplelnt := 10;
Cadence: a type that represents either true or false.
e (Cadence: exampleCadence := harmonious;
Char: A single character.
e Char: exampleChar := ‘a’;

Unit: A type with a single value that represents “no meaningful return.” Equivalent to void in imperative
languages.

o Unit: exampleUnit := ();

3.3.Reference types (differing from Scala and Erlang)

Repertoire: an immutable collection of data set in length.
e Repertoire(Char): exampleList :=[1,2,3,4,5];
String: an array of characters.

e String: exampleString := “Hello”;

Db Page 11 of 15

4 examyple Pheghams.

4.1.Caesar Cipher encrypt

—compose(CaesarCipherEncrypt);
—-publish([main/@]);

#b Encrypt a string using Caesar cipher b#

notate caesarEncrypt(text: String, shift: Int) : String ||
alphabet = explode("ABCDEFGHIJKLMNOPQRSTUVWXYZ");
rotate = map(c —> alphabet[((ord(c) — 65 + shift) mod 26)], explode(text));
implode(rotate);

notate main() ||
message: String = "HELLO";
shift: Int = 3;
encrypted: String = caesarEncrypt(message, shift);
play("Encrypted: " | encrypted);
N

4.2.Caesar Cipher decrypt

—compose(CaesarCipherDecrypt);
—-publish([main/@]);

#b Decrypt using Caesar cipher b#

notate caesarDecrypt(text: String, shift: Int) : String ||
caesarEncrypt(text, 26 - (shift mod 26));

I

notate main() ||
secret: String = "KHOOR";
shift: Int = 3;
original: String = caesarDecrypt(secret, shift);
play("Decrypted: " | original);
I

Db Page 12 of 15

4.3.Factorial

—-compose(Factorial);
—-publish([main/@]);

rec def factorial(n: Int) : Int ||
solo(n == 0): ||
1;
|| backup: ||
n *x factorial(n - 1);
|l
|l

notate main() ||
result: Int = factorial(5);
play("Factorial: " | result);
N

4.4.Quicksort

—compose(Quicksort);
—-publish([main/@]);

notate quicksort(lst: Repertoire(Int)) : Repertoire(Int) ||
solo(lst == [1): ||
[1;

|| backup: ||
pivot = head(1lst);
tail = tail(lst);
left = filter(x —> x < pivot, tail);

right = filter(x —> x >= pivot, tail);
quicksort(left) ++ [pivot] ++ quicksort(right);
|l
I

notate main() ||
nums: Repertoire(Int) = [5, 2, 8, 3];
sorted: Repertoire(Int) = quicksort(nums);
play("Sorted: " | sorted);

|

Db Page 13 of 15

4.5.Binary Search Tree

—compose(BSTree) ;
—-publish([main/@]);

#b Each tree node is [value, leftSubtree, rightSubtree]
An empty tree is simply: []
b#

notate insert(tree: Any, value: Int) : Any ||
solo(tree == [1): |]
[value, [1, [1];
|| backup: ||
root = treel@];
left = treel1];
right = tree[2];

solo(value < root): ||

[root, insert(left, value), rightl;
|| backup: ||

[root, left, insert(right, value)l;
|l

notate inOrder(tree: Any) : Repertoire(Int) ||
so}?(tree == [1): ||
|| backup: ||
root = treel@];
left = treel1];
right = tree[2];

inOrder(left) ++ [root] ++ inOrder(right);

notate main() ||

tree = [];

tree = insert(tree, 5);
tree = insert(tree, 3);
tree = insert(tree, 7);
tree = insert(tree, 4);

result: Repertoire(Int) = inOrder(tree);
play("In-order: " | result);

D/

Page 14 of 15

4.6.Stack

—compose(Stack);
—-publish([main/@]);

#b stack is a Repertoire(Int), LIFO b#

notate push(stack: repertoire(Int), value: Int) : repertoire(Int) ||
[value] ++ stack;

returns [top, rest] as a repertoire
notate pop(stack: repertoire(Int)) : repertoire(Any) ||
solo(stack != [1): ||
[stack[@], stack[1:11;
|| backup: ||
["empty", [1]; # return string flag if empty
|l
N

notate main() ||
s: Repertoire(Int) = [];
push(s, 1);
push(s, 2);
push(s, 3);

s
s
s
popped = pop(s);
top = popped[0];
rest = popped[1];

play("Top: " | top);

Db Page 15 of 15

