

Geova Page 1 of 14

Geova

Language Design

and Example Programs
Version 1.0.0

Anthony Sasso

Geova Page 2 of 14

1.Introduction

Geova is a simple, modern, object-oriented, and (strongly) type-safe programming language. It is based

on Java and geographic/geopolitical history, and differs from java in the following ways:

1. Brackets have been removed and replaced with found and dissolve.

2. There are no classes in Geova, only worlds.

3. There are no Strings in Geova, only Countries.

4. There are no integers, floats, or doubles in Geova, only coordinates.

5. Functions in the Country world have been termed according to Geova’s theme.

6. Variable assignment is accomplished using the walrus operator (:=).

7. Statement.broadcast() is System.out.println().

1.1.Genealogy

Geova Page 3 of 14

1.2.Hello world

public void helloWorld()

found

 Statement.broadcast("Hello World!");

dissolve

1.3.Program structure

The key organizational concepts in Geova are as follows:

1. Worlds (classes) are required to be in a universe (package). Universes can contain any number of

worlds as long as they have unique names.

2. Worlds can have any number of custom attributes and functions, accessed using World.function()

or World.attribute.

3. Functions are declared with explicit return and parameter types. Parameters are matched by

location.

4. Universes, worlds, functions, repetition statements, and alternation statements must begin and end

with found and dissolve.

5. A main method is required.

This example:

universe Reality

found

 public world Earth

 found

 private Country largest;

 private Country smallest;

 public Earth(Country large, Country small)

 found

 this.largest := large;

 this.smallest := small;

 dissolve

 public Country getLargest()

 found

 return largest;

 dissolve

 public void setLargest(Country large)

 found

 this.largest := large;

 dissolve

 public Country getSmallest()

 found

Geova Page 4 of 14

 return smallest;

 dissolve

 public void setSmallest(Country small)

 found

 this.smallest := small;

 dissolve

 dissolve

dissolve

declares a world named Earth in a universe called Reality. The Earth world contains two attributes: a

Country named largest and a Country named smallest. The default constructor takes two Countries as

arguments and matches them positionally to the actual parameters. Getter and setter methods have been

created for both attributes in this world to allow them to remain private. Creating an instance of the Earth

world would be done with the command:

private Earth ourEarth := new Earth("Russia", "Vatican City");

This example shows ourEarth being created with the Country “Russia” being assigned to the variable

largest and the Country “Vatican City” being assigned to the variable smallest.

1.4.Types and Variables

There are two kinds of types in Geova: value types and reference types. Variables of value types directly
contain their data whereas variables of reference types store references to their data, the latter being
known as objects. With reference types, it is possible for two variables to reference the same object and
thus possible for operations on one variable to affect the object referenced by the other variable. See
Section 3 for details.

1.5.Visibility

In Geova visibility is defined as either public or private. Anything declared with visibility private will
only be visible inside the same block in which it is defined. Blocks begin with the keyword found and end
with the keyword dissolve. Anything declared with visibility public is visible to the entire world.
Anything declared without visibility is treated as local and will not extend outside of the declaration
block.

1.6.Statements Differing from Java

Geova Page 5 of 14

Statement Example

Assignment statement this.largest := large;

this.smallest := small.

coordinate location := 432;

If statement if (9 > 7)

found

 Statement.broadcast("This will output");

dissolve

else

found

 Statement.broadcast("This will not");

dissolve

For loop for (coordinate i := 1; i < A.length; i++)

found

 A[i] := i;

dissolve

String commands Java: String.replace(char old, char new)
 -> Geova: Country.puppet(char old, char new)

Java: String.indexOf(char ch)

 -> Geova: Country.search(char ch)

Java: String.charAt(int index)

 -> Geova: Country.survey(coordinate index)

Java: String.concat(String str)

 -> Geova: Country.germany(Country ctr)

Java: String.split(String regex)

 -> Geova: Country.yugoslavia(Country regex)

Geova Page 6 of 14

2.Lexical structure

2.1.Programs

A Geova program consists of one or more source files. A source file is an ordered sequence of (probably

Unicode) characters.

Conceptually speaking, a program is compiled using three steps:

1. Transformation, which converts a file from a particular character repertoire and encoding scheme into

a sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.

3. Syntactic analysis, which translates the stream of tokens into executable code.

2.2.Grammars

This specification presents the syntax of the Geova programming language where it differs from Java.

2.2.1.Lexical grammar (tokens) where different from Java

<Assignment operator> → :=
<Mathematical operator> → + | - | * | /

<Comparison operator> → == | != | < | <= | > | >=
<Keyword> → <Language Defined>

 → <Variable Defined>
<Begin Block> → found
<End Block> → dissolve

2.2.2.Syntactic (“parse”) grammar where different from Java

<universe declaration> → universe <identifier>

<world declaration> → <access modifier> world <identifier>
<function declaration> → <access modifier> <object type> <identifier> <parameter list>

 → <access modifier> <object type> <identifier>
<parameter list> → <parameter> <parameter list>

 → <parameter>
<parameter> → <object type> <identifier>

2.3.Lexical analysis

2.3.1.Comments

Two forms of comments are supported: single-line comments and delimited comments. Single-line

comments start with the characters // and extend to the end of the source line. Delimited comments start

with the characters /* and end with the characters */. Delimited comments may span multiple lines.

Comments do not nest.

2.4.Tokens

There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space

and comments are not tokens, though they act as separators for tokens where needed.

Geova Page 7 of 14

tokens:

identifier

keyword

coordinate-literal

character-literal

country-literal

operator-or-punctuator

2.4.1.Keywords different from Java

A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier

except when prefaced by the @ character.

New Keywords Old Keywords
found {
dissolve }
universe package
world class
Country String
num int
 float
 double
Statement.broadcast() System.out.println()
:= =

Geova Page 8 of 14

3.Type System

Geova uses a strong static type system. (This is nice, but feel free to use weak systems that are static or

dynamic. Be sure to explain their details and document them with Type Inference diagrams.) Strong

typing means that type errors are caught and expressed to the programmer during compilation. Static

typing means early binding compile-time type checking.

3.1.Type Rules

The type rules for Geova are as follows:

S ⊢ e1 : coordinate S ⊢ e1 : coordinate

S ⊢ e2 : coordinate S ⊢ e2 : coordinate

-------------------------------- --------------------------------
S ⊢ e1 + e2 : coordinate S ⊢ e1 - e2 : coordinate

S ⊢ e1 : coordinate S ⊢ e1 : coordinate

S ⊢ e2 : coordinate S ⊢ e2 : coordinate

-------------------------------- --------------------------------
S ⊢ e1 * e2 : coordinate S ⊢ e1 / e2 : coordinate

S ⊢ e1 : T

S ⊢ e2 : T

T is a primitive type

S ⊢ e1 := e2 : T

S ⊢ e1 : T S ⊢ e1 : T

S ⊢ e2 : T S ⊢ e2 : T

T is a primitive type T is a primitive type
-------------------------------- --------------------------------
S ⊢ e1 == e2 : boolean S ⊢ e1 > e2 : boolean

S ⊢ e1 : T S ⊢ e1 : T

S ⊢ e2 : T S ⊢ e2 : T

T is a primitive type T is a primitive type
-------------------------------- --------------------------------
S ⊢ e1 != e2 : boolean S ⊢ e1 < e2 : boolean

Geova Page 9 of 14

3.2.Value types (different from Java)

coordinate - a number type that automatically casts between ints, doubles, floats etc.

3.3.Reference types (differing from Java)

Country - works the same as a String in java.

universe – works the same as a package in java.
world – works the same as a class in java.

Geova Page 10 of 14

4.Example Programs

4.1.Encrypt

 public static Country encrypt(Country text, coordinate shift)

 found

 Country encText := "";

 char chr;

 coordinate chrord;

 coordinate newchr;

 for (coordinate i := 0; i < text.length(); i++)

 found

 chr := text.survey(i);

 chrord := (coordinate)chr;

 newchr := chrord + shift;

 if (chrord < 91 && chrord > 64)

 found

 if (newchr > 90)

 found

 newchr -:= 26;

 dissolve

 dissolve

 else if (chrord < 123 && chrord > 96)

 found

 if (newchr > 122)

 found

 newchr -:= 26;

 dissolve

 dissolve

 else

 found

 newchr -:= shift;

 dissolve

Geova Page 11 of 14

 encText := encText.germany(Country.valueOf((char)newchr));

 dissolve

 return encText;

 dissolve

4.2.Decrypt

 public static Country decrypt(Country text, coordinate shift)

 found

 return encrypt(text, 26 - shift);

 dissolve

4.3.Factorial

 public static coordinate factorial(coordinate num)

 found

 if (num < 1)

 found

 return 0;

 dissolve

 else if (num == 1)

 found

 return 1;

 dissolve

 else

 found

 return (num * factorial(num-1));

 dissolve

 dissolve

4.4.Merge Sort

 public static void mergeSort(coordinate[] A)

 found

 if (A.length > 1)

 found

 coordinate[] left := Arrays.copyOfRange(A, 0, A.length/2);

Geova Page 12 of 14

 coordinate[] right := Arrays.copyOfRange(A, A.length/2, A.length);

 mergeSort(left);

 mergeSort(right);

 merge(A, left, right);

 dissolve

 dissolve

 public static void merge(coordinate[] C, coordinate[] A, coordinate [] B)

 found

 coordinate i := 0;

 coordinate j := 0;

 coordinate k := 0;

 while (i < A.length && j < B.length)

 found

 if (A[i] < B[j])

 found

 C[k++] := A[i++];

 dissolve

 else

 found

 C[k++] := B[j++];

 dissolve

 dissolve

 while (i < A.length)

 found

 C[k++] := A[i++];

 dissolve

 while (j < B.length)

 found

 C[k++] := B[j++];

 dissolve

 dissolve

4.5.Quick Sort

 public static void quickSort(coordinate[] A, coordinate s, coordinate e)

Geova Page 13 of 14

 found

 if (s < e)

 found

 coordinate p := partition(A, s, e);

 quickSort(A, s, p-1);

 quickSort(A, p+1, e);

 dissolve

 dissolve

 public static coordinate partition(coordinate[] A, coordinate s, coordinate e)

 found

 coordinate pivot := A[s];

 coordinate i := s + 1;

 coordinate j := e;

 coordinate temp;

 while (i <= j)

 found

 while (i < e && A[i] < pivot)

 found

 i++;

 dissolve

 while (j > s && A[j] >= pivot)

 found

 j--;

 dissolve

 if (i >= j)

 found

 break;

 dissolve

 temp := A[i];

 A[i] := A[j];

 A[j] := temp;

 dissolve

 temp := A[s];

 A[s] := A[j];

Geova Page 14 of 14

 A[j] := temp;

 return j;

 dissolve

4.6.Make Change

 public static coordinate makeChange(coordinate value)

 found

 coordinate valueleft := value;

 coordinate[] coins := {25, 10, 5, 1};

 coordinate[] coincounts := new coordinate[(coins.length)];

 for (coordinate i := 0; i < coins.length; i++)

 found

 coincounts[i] := (coordinate) Math.floor(valueleft/coins[i]);

 valueleft := valueleft - (coincounts[i] * coins[i]);

 dissolve

 coordinate totalcoins := 0;

 for (coordinate i := 0; i < coincounts.length; i++)

 found

 totalcoins +:= coincounts[i];

 dissolve

 return totalcoins;

 dissolve

	1. Introduction
	1.1. Genealogy
	1.2. Hello world
	1.4. Types and Variables
	1.5. Visibility
	1.6. Statements Differing from Java

	2. Lexical structure
	2.1. Programs
	2.2. Grammars
	2.2.1. Lexical grammar (tokens) where different from Java
	2.2.2. Syntactic (“parse”) grammar where different from Java

	2.3. Lexical analysis
	2.3.1. Comments

	2.4. Tokens
	2.4.1. Keywords different from Java

	3. Type System
	3.1. Type Rules
	3.2. Value types (different from Java)
	3.3. Reference types (differing from Java)

	4. Example Programs
	4.1. Encrypt
	4.2. Decrypt
	4.3. Factorial
	4.4. Merge Sort
	4.5. Quick Sort
	4.6. Make Change

