
Language Summary and Example Programs
Version 9.¾
Roxanne Lai

This is the documentation for a new magical programming language called Hogwarts, for a
language project in Theory of Programming Languages at Marist College.

1

1.Introduction
Hogwarts is a modern, object-oriented, and strongly-typed (but with type-inference)
programming language, best used in a procedural environment. It is based on Python, Scala, and
the wizarding world created by J.K. Rowling, but differing in the following ways:

1. Hogwarts is strongly typed, but it also provides type inference to make dealing with types
easier, and reduce redundant code.

2. The curly-brackets from Scala have been removed and instead Hogwarts uses the block
structure of Python, meaning indentation determines when each function,class, or code
block begins and ends.

3. In Hogwarts, print is incant, and provides Python’s extremely useful f-string
formatting.

4. In Hogwarts there are no Null values, instead there is Detention.
5. In Hogwarts return values are returned via the “owl” keyword, since in Hogwarts

messages are sent via owls. For example if a function wants to return a null value, you
would owl Detention.

6. While Hogwarts is type-inferred, when we need to declare type for a parameter, we
would say x: Int. In general, variable types don’t need to be declared, because they
can be inferred from the right hand side of the assignment.

7. When it comes to constructors, instead of Python’s __init__ (which is not very nice
to look at), Hogwarts’s constructor is modeled more after Scala or Java’s constructor
format.

8. Hogwarts supports unary the operators ++, and --.

/__/\
____(‘ . ‘)____
Vvvv ^^ vvvV

(Bat about town)

2

1.1 Genealogy
The origins of Hogwarts are Scala and Python, which is why Hogwarts is situated below them.
The way I would describe Hogwarts is that it is a more elegant blend of Python with Scala’s
type-inferencing. While Muggles had languages like Scala and Python, the wizarding world
wanted a language of their own, which is why Hogwarts was created.

3

1.2 Hello world
Morally obligated version of a “Hello World” program in Hogwarts.

1. magic helloWorld(mana):
2. spell helloWorld(): --<{ this is the constructor
3. incant(“Hello World!”) --<{ this is where we do stuff

1.3 Program structure
The key organizational concepts in Hogwarts are as follows:

1. Every magic (class) is public, so we don’t need to declare private vs public
2. Every major (non-nested) class needs to be defined in a file named <class>.hgw
3. Hogwarts uses indentation via spaces or tabs like Python, instead of {} or begin/end

syntax.
4. While Hogwarts is strongly typed, it also has type-inference
5. Hogwarts supports single inheritance like Python, but in Hogwarts classes are called

“magic”, and the root of the object hierarchy is a class called “mana”.
6. In Hogwarts, like Scala, a class can provide a main function which can be executed by

the interpreter. That is declared like this:
spell main(String[] args) -> Int:

incant(“This is the main function!”)
7. The concept of a “package” / “module” is represented as a “tome”, since spells are

written in tomes.

1. tome WizardWorld
2.
3. magic Student(mana):
4. --<{ this is the constructor, with a default value
5. spell Student(fname: String, lname: String, gpa = 3.0:
6. Float):
7.
8. thine.fname = fname
9. thine.lname = lname
10. thine.gpa = gpa
11.
12. spell displayGpa():
13. incant(f’gpa is: {thine.gpa}’)
14.
15. spell displayStudent():
16. incant(f’First name: {thine.fname} Last name:
17. {thine.lname}’)
18.
19. spell Boolean isGoodStudent():

4

20. if thy thine.gpa > 3.0:
21. owl True
22. else:
23. owl False
24.
25. *<|
26. This would create first mana(object) of the Student
27. magic(class)
28. |>*
29. newStudent = Student(“Hermione”, “Granger”, 3.6)
30. newStudent.displayStudent()
31. *<|
32. This will print First name: Hermione Last name: Granger
33. |>*

This example declares a magic (class) named Student in a tome(package/module) called
WizardWorld. The fully qualified name of this class is WizardWorld.Student. The
Student magic(class) has three attributes: fname, lname, and gpa. It has a constructor
which takes three arguments whose types are specified, which in this case are String and Int,
as well as a float value (in the case of gpa). Assigning to the “thine” (Python’s “self”) makes
those values attributes of the object, with the types inferred from the values declared in the
constructor. The Student magic (class) also has several methods: displayGpa,
displayStudent, and isGoodStudent. The displayGpa method will incant (print)
the gpa of a student, and the displayStudent method is used to incant(print) the first and
last name of a student using the incant (aka print) command. The isGoodStudent method
will owl (return) a boolean value based on the current gpa of a given student.

1.4 Types and variables
Hogwarts supports the same types as Python, using the same names. As in Python, there is only
one kind of variable in Hogwarts: reference variables. In Hogwarts variables are really just
names for objects, so when a function is called instead of passing the actual object on the stack,
Hogwarts just creates new sets of labels/names for the same objects. See Section 3 for details.

5

1.5 Statements Differing from Python and Scala
Statement Example

Expression statement spell countPotions(numPotions: Int) -> Azkaban:
numPotions = 12
incant(“original amount of potions”)
numPotions ++
incant(“The final amount = ”, numPotions)

If / else statement spell studentPrize(numPoints: Int, status: String):
if thy numPoints > 10:

status = “good”
else if thy numPoints == 10:

status = “okay”
else:

status = “bad”
owl status

While statement spell iterationEx():
i: int
i = 0
while thy i < 10:

incant(i)
i ++

Constructor spell myMagic(x: Int, y: Int):
thine.x = x
thine.y = y

For statement spell loopingEx(foods: Ingredients):
for thy x within foods:

incant(x)
if thy x == “newt”

depart

6

2. Lexical structure
2.1 Programs
A Hogwarts program consists of one or more source files. A source file is an ordered sequence
of Unicode characters. Like Python, Hogwarts programs are parsed into bytecode (enforcing
various language rules and constraints, including strong typing) which are executed by the
Hogwarts virtual machine.

So, execution of a Hogwarts program works like this:
1. The pre-processor searches for all imports in the source file(s) and expands them.
2. The parser converts the expanded code and performs lexical and syntactic analysis,

enforcing language constraints and rules like type inference.
3. The interpreter executes the bytecode in it’s virtual machine.

2.2 Grammars
This specification presents the syntax of the Hogwarts programming language where it differs
from Python and Scala.

2.2.1 Lexical grammar where differing from Python and Scala
The lexical grammar of Hogwarts is similar to the lexical grammar of Python. However, unlike
Python, in Hogwarts identifiers cannot begin with an underscore, and digits are allowed if the
identifier starts with a character. Also, unlike Python, Hogwarts uses ++ for incrementing instead
of += 1. Here are the BNF grammar productions...

< unary operator > → ++|--|+|-|!
< identifier > → <character> <character list>

→ <character> < digit>
→ <character>

<character list> → <character> <character list>
→ <character>

< keyword> → < language defined>
→ < variable defined>

< exponent operator> → ^
<single line comment> → --<{
< delimited comment> → *<|... |>*

7

2.2.2 Syntactic (“parse”) grammar where differing from Python and Scala
The syntactic grammar of Hogwarts is similar to a blend of Python and Scala, with some
differences, which are outlined below. For example, unlike Scala, Hogwarts declares parameters
with <identifier>: <object type> instead of <object type> <identifier>. Here are the BNF
grammar productions...

< tome declaration> → tome < identifier>
< magic declaration> → magic <identifier>
<function declaration> → spell <identifier> <parameter list>

→ spell <identifier>
<parameter list> → <parameter> <parameter list>

→ <parameter>
< parameter> → <identifier> : <object type>

2.3 Lexical analysis
This specification presents the syntax for comments in the Hogwarts programming language.

2.3.1 Comments
In Hogwarts there are two forms of comments that are supported: single-line comments and
delimited/multi-line comments. Single-line comments start with the characters --<{ and extend
to the end of the source line. Depending on the font, the comments may or may not look like a
broomstick, but it was intended to represent a broomstick that a wizard might use for playing
quidditch! Delimited/multi-line comments start with the characters *<| and end with the
characters |>*. Again, like with the single-line comments, the delimited/multi-line comments
may or may not look like a wizard’s hat, but it was meant to look like the sorting hat used to
determine the house of each wizard. In Hogwarts, delimited comments may span multiple lines.
Also, in Hogwarts comments do not nest (unlike Buckbeak the hippogriff).

/
// }
/ \

>---/ /”---
LL

(The witching hour)

8

2.4 Tokens
There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators.
Also, white spaces are significant because they are used to infer block structure, and are
therefore considered tokens. However, comments are not tokens, though they act as separators
for tokens where needed.

Tokens:
❖ identifier
❖ keyword
❖ integer-literal
❖ real-literal
❖ character -literal
❖ string-literal
❖ operator-or-punctuator
❖ white space

2.4.1 Keywords differing from Python or Scala
A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an
identifier.

New Keywords Removed/Replaced Keywords

❖ magic (class)
❖ incant (print)
❖ owl (return)
❖ Detention (null)
❖ spell (def)
❖ if thy (if)
❖ while thy (while)
❖ Azkaban (void/NoReturn)
❖ mana (object)
❖ for thy (for)
❖ depart(break)
❖ within (in)
❖ Ingredient(list /array)
❖ codex (dict/dictionary)
❖ thine.(this.)

❖ class
❖ print
❖ return
❖ null
❖ def
❖ if
❖ while
❖ void/NoReturn
❖ object
❖ for
❖ break
❖ in
❖ this.
❖ list /Array
❖ dict/dictionary

9

3. Type System
Hogwarts uses a strong static type system. Strong typing means that type errors are caught and
expressed to the programmer during compilation. Static typing means early binding
compile-time type checking. However, Hogwarts makes things easier for the programmer by
supporting a Scala-like type inference system. Hogwarts can infer the types of function-scoped
variables based on the explicit types of the function arguments, and can thus infer the return type.
The interpreter will complain when a variable’s type can not be inferred, and it’s type has not
been explicitly declared. This is different from Python’s dynamic typing, which will simply force
a variable’s type to the type on the right-hand-side (RHS) of an expression at runtime.

3.1 Type Rules
The type rules for Hogwarts are as follows:

10

3.2 Reference types (differing from Python and Scala)
As in Python, all values in Hogwarts are reference values. For example, when this code is run, it
will print out “magic” and “zip zap” because the values are references to the originally
constructed (mutable) list:

items = [“feather”, “magic”, “zip zap”]
steal = items
steal.remove(“feather”)
incant(items)

Ingredient - a list of things
Ex.
items = [“cat-eye”, “newt”, “witch-hazel”]
spell potionItems(items: Ingredient):

for thy x within items:

incant(x)

if thy x == “cat-eye”

depart

Detention - a null type representing no value
Ex. owl Detention

codex - a collection of unordered values accessed by key instead of by index (aka a dictionary)
Ex: myCodex = { 1: “crucio”, 2: “leviosa”, 3: “avada kedavra”}

(O o)
/ 0 \

/ \
~~~~~~~~
(A haunting sight)



11

4. Example Programs
This section includes six example programs to illustrate my new language Hogwarts and
demonstrates its use; especially what’s new and improved over current languages as well as
Python and Scala, on which I based my language.

4.1 Caesar Cipher encrypt

--<{ A Hogwarts program to illustrate Caesar Cipher Encrypt
spell encrypt(originalText: String, shiftVal: Int):

result = ""

--<{ Iterate through originalText
for thy i within range(len(originalText)):

char = originalText[i]

--<{ Handle uppercase characters
if thy (char.isupper()):

result += chr((ord(char) + shiftVal - 65) % 26 + 65)

--<{ Handle lowercase characters
else:

result += chr((ord(char) + shiftVal - 97) % 26 + 97)

owl result

--<{ Do the printing to check encrypt
originalText = "this is a test string from Alan"
shiftVal = 8
incant("originalText  : " , originalText)
incant("Shift Value : " , str(shiftVal))
incant("Encrypted Text: " , encrypt(originalText,shiftVal))

4.2 Caesar Cipher decrypt

--<{ A Hogwarts program to illustrate Caesar Cipher Decrypt
spell decrypt(originalText: String, shiftVal: Int):

result = ""



12

--<{ Iterate through originalText
for thy i within range(len(originalText)):

char = originalText[i]

--<{ Handle uppercase characters
if thy (char.isupper()):

result += chr((ord(char) + shiftVal - 65) % 26 + 65)

--<{ Handle lowercase characters
else:

result += chr((ord(char) + shiftVal - 97) % 26 + 97)

owl result

--<{ Do the printing to check decrypt
originalText = "this is a test string from Alan"
shiftVal = 8
incant("Encrypted Text: ", decrypt(originalText, shiftVal))
incant("Shift Value: ", str(shiftVal))
incant("Decrypted/ Original Text: ", decrypt(originalText, 26 -
shiftVal))

4.3 Factorial

--<{ A Hogwarts program to find the factorial of a given number
spell factorialExample(n: Int):

if thy n < 0:
owl 0

else if thy n == 0 or n == 1:
owl 1

else:
factorial = 1
while thy(n > 1):

factorial *= n
n -= 1

owl factorial

--<{ Driver Code to test factorialExample
num = 9;
incant("Factorial of", num, "is", factorialExample(num))



13

4.4 Quick Sort

--<{ A Hogwarts program for implementation of Quicksort Sort

spell partition(array: Ingredient, low: Int, high: Int):
i = (low - 1) --<{ This is the index of the smaller element
pivot = array[high]

for thy j within range(low, high):
*<|

If current element is smaller-than or equal-to
the pivot…

|>*
if thy array[j] <= pivot:
--<{ Increment the index of the smaller element

i = i + 1
array[i], array[j] = array[j], array[i]

array[i + 1], array[high] = array[high], array[i + 1]
owl (i + 1)

*<|
The function that implements Quick sort, where array is the
Ingredient(aka Array) we wish to sort, low is the starting
index, and high is the ending index
|>*
spell quickSort(array: Ingredient, low: Int, high: Int):

if thy len(array) == 1:
owl array

if thy low < high:

*<|
partIndex is the partitioning index, so array[p] is
now at the right place

|>*
partIndex = partition(array, low, high)

*<|
Separately sort elements before partition and
after partition

|>*
quickSort(array, low, partIndex - 1)
quickSort(array, partIndex + 1, high)

--<{ Driver Code to test quickSort
array = [10, 7, 8, 9, 1, 5]



14

n = len(array)
quickSort(array, 0, n - 1)
incant("Sorted array is:")
for thy i within range(n):

incant("%d" % array[i]),

4.5 Stack

*<|
A Hogwarts program to illustrate stack implementation using
a list
|>*

stack = []

--<{ append() is the function to push an element in the stack
stack.append(“Harry Potter”)
stack.append(“Draco Malfoy”)
stack.append(“Hermione Granger”)

incant(“Initial stack”)
incant(stack)

--<{ pop() is the function to remove an element from the stack
in LIFO (last in first out) order

incant(“\nElements removed from stack:”)
incant(stack.pop())
incant(stack.pop())
incant(stack.pop())

incant('\nThe stack after elements were removed:')
incant(stack)



15

4.6 Text adventure game

*<|
A Hogwarts Text adventure game, to learn about the magic world!
|>*

true = ["T", "t", "True"]
false = ["F", "f", "False"]
*<|
This is where we store the user’s score (number of correct
answers)
|>*
score = 0

--<{ This is where we store the user’s name
userName = input ("What's your name?")

incant("\nHello, ", userName, ", we are going to see how much you
know about the wizarding world! The answers to the questions are
only True or False.”)

incant("\nHarry Potter is the boy who lived")
answer = input(": ")
*<|
If the user guesses correctly they get one point, but if they
guess incorrectly they do not get a point
|>*
if thy answer within true:

score += 1

incant("\nThe golden snitch is a person who tells on someone")
answer = input(": ")
if thy answer within false:

score += 1

incant("\nMagic is something that can only be used for good")
answer = input(": ")
if thy answer within false:

score += 1

incant("\nMagic does not only exist in the UK")
answer = input(": ")
if thy answer within true:

score += 1

incant("\nMagic does not take a long time to master")



16

answer = input(": ")
if thy answer within false:

score += 1

--<{ After the user has answered all the questions we print...
incant("\nYou have completed the game, ", userName, "! You
scored", score, "out of 5!")


