
tyuiopasdfghjklzxcvbnmqwertyui

asdfghjklzxcvbnmqwertyuiopasdfghjkl

zxcvbnmqwertyuiopasdfghjklzxcvbnm

qwertyuiopasdfghjklzxcvbnmqwertyui

opasdfghjklzxcvbnmqwertyuiopasdfgh

jklzxcvbnmqwertyuiopasdfghjklzxcvb

nmqwertyuiopasdfghjklzxcvbnmq

tyuiopasdfghjklzxc

dfghjklzxcvbnmqwertyuiopasdfgh

cvbnmqwertyuiopasdfghjklzxcvbn

wertyuiopasdfghjklzxcvbnmqwerty

pasdfghjklzxcvbnmqwertyuiopasdfghj

Programming Language Assignment

tyuiopasdfghjklzxcvbnmqwertyui

asdfghjklzxcvbnmqwertyuiopasdfghjkl

zxcvbnmqwertyuiopasdfghjklzxcvbnm

qwertyuiopasdfghjklzxcvbnmqwertyui

opasdfghjklzxcvbnmqwertyuiopasdfgh

klzxcvbnmqwertyuiopasdfghjklzxcvb

nmqwertyuiopasdfghjklzxcvbnmq

tyuiopasdfghjklzxcvbnmqwertyuiopas

dfghjklzxcvbnmqwertyuiopasdfgh

wertyuiopasdfghjklzxcvbn

wertyuiopasdfghjklzxcvbnmqwerty

pasdfghjklzxcvbnmqwertyuiopasdfghj

IOE Language v1.0

Programming Language Assignment

5/11/2013

Scott Arcuri

tyuiopasdfghjklzxcvbnmqwertyuiop

asdfghjklzxcvbnmqwertyuiopasdfghjkl

zxcvbnmqwertyuiopasdfghjklzxcvbnm

qwertyuiopasdfghjklzxcvbnmqwertyui

opasdfghjklzxcvbnmqwertyuiopasdfgh

klzxcvbnmqwertyuiopasdfghjklzxcvb

nmqwertyuiopasdfghjklzxcvbnmqwer

vbnmqwertyuiopas

dfghjklzxcvbnmqwertyuiopasdfghjklzx

wertyuiopasdfghjklzxcvbnmq

wertyuiopasdfghjklzxcvbnmqwertyuio

pasdfghjklzxcvbnmqwertyuiopasdfghj

P a g e | 2

IOE Language Specifications

Contents

1. Introduction .. 3

1.1 Hello World Program Example ... 3

1.2 Program Structure.. 3

1.3 Types and Variables ... 4

1.4 Statements Differing From Other Languages .. 4

1.5 Classes and Objects .. 5

1.5.1 Accessibility .. 5

1.5.2 Fields .. 5

1.5.3 Constructors ... 6

1.5.4 Arrays ... 6

2. Lexical Structure .. 7

2.1 Programs ... 7

2.2 Grammars .. 7

2.2.1 Lexical Grammar Differences .. 7

2.2.2 Syntactic Grammar Differences .. 7

2.3 Lexical Analysis .. 9

2.3.1 Comments .. 9

2.4 Tokens ... 9

2.4.1 Keyword Differences .. 9

3. Types ... 10

3.1 Value Types .. 10

3.2 Reference Types ... 10

4. Examples ... 11

4.1 Even and Odd filter .. 11

4.2 Fibonacci sequence .. 11

4.3 Making Change .. 12

4.4 Prime Number checker .. 12

4.5 Caesar Cipher ... 13

5. Conclusion ... 14

P a g e | 3

IOE Language Specifications

1. Introduction

In One Ear (IOE) is a language designed to be syntactically similar to the way we speak while

modeling the proper grammatical structure of literature. IOE is different than other languages

because they were designed to be written, thus wielding large structures with commands that are

difficult to memorize. These languages were conceived based on programming languages

representing mathematical computations, and mathematical computations are generally clearer and

better represented in writing. Nowadays, programming languages are more common, and are used

for more purposes and tasks than when they were first theorized and indoctrinated. Mathematics

can be done, but the purpose of IOE is to replace the complicated syntax with intrinsic functions that

simplify the code increasing usability. Due to IOE’s specific purpose, and attempt to represent words

and sentences, make it similar to COBOL. IOE is an object oriented language.

1.1 Hello World Program Example

1.2 Program Structure

The Key organizational concepts of IOE are:

 1. Sentences end with a “,”, blocks end with a “.” or “;”. IOE prefers using a “;” to end a sub-

block and a “.” to end a block. If you always use a “.” IOE will check for correctness. If you

always use a “;” you will receive errors. When in doubt, use a “.”, it will always work. The use

of “;” allows more readable code. Using only “.” would mean the last sentence in a block

would have two “.”’s.

 2. Variables are defined with prepositions separating the name and value.

 3. Comments are declared with the “Describe” keyword.

 4. No namespaces/packages, other resources need to be present and linked to the compiler.

 5. Strings are special types of single dimensional character arrays.

P a g e | 4

IOE Language Specifications

This example

declares a class named shape that has four functions (area, perimeter, set height, and set width)and

two variables. The output of the program is the area and perimeter of the rectangle. Notice to

access the functions of the class we use the “of” preposition, to declare variables we use the “is”

preposition, and to have functions use and pass parameters we use the “with” preposition. Since the

“.” The entire block, sub-blocks are ended with a “;”, which can be seen in the class. Since a

function’s name will always be followed by a preposition, they can be numerous words in length.

1.3 Types and Variables

IOE is weakly typed, similar to languages JavaScript and Perl. This decision was made because IOE is

designed around ease instead of flexibility; the casting or conversion of types is implied and

performed when the operation is called. As shown in the code example, IOE also has type inference;

the automatic deduction of the type for expressions. The variables are also alive based upon static

scope, and IOE has both primitive and reference type variables.

1.4 Statements Differing From Other Languages

Statement Example

Expression Function double with parameter x is x plus x.

Conditional Function feet with parameter inches is:

 If inches is greater than 12,

 x is inches divided by 12;

 Otherwise x is 0;

 Display x.

Loop x is 0.

Loop until x is 10,

 Display x;

 x is now x plus 1.

For each x is “Hello World”.

For each element in x,

 x is now “e”.

:

P a g e | 5

IOE Language Specifications

1.5 Classes and Objects

Classes are created and defined using the “class” keyword. An example class can be seen below.

To create an instance of a class, you use the “is” preposition followed by an “a” to indicate it is an

instance. Parameters are defined with the “as” keyword, and the variable names need to be

explicitly matched.

1.5.1 Accessibility

IOE has private, public, and protected accessibility.

Accessibility Type Definition Example

Public Access is not limited. IOE

defaults to public.

Public function double with parameter x is

 x plus x.

Private Only accessible in current

scope.

Private function double with parameter x is

 x plus x.

Protected Only accessible in current

scope or to inheriting objects.

Protected function double with parameter x is

 x plus x.

1.5.2 Fields

A field is a variable that is associated with a class, or an instance of one. Fields in IOE are declared

with the preposition “is”.

Strings are one-dimensional character arrays in IOE to allow for iteration and access to its base

methods.

:

P a g e | 6

IOE Language Specifications

1.5.3 Constructors

IOE implements constructors into its instance creation statement. You can pass parameters to the

class, and any function call inside the root of the class will be called on initialization.

When this class gets initialized, the variable x is set to the area. This is because it is directly

encapsulated in shape.

1.5.4 Arrays

An array is a data structure that contains a number of variables called elements, and is accessed via

indices. All elements must be of the same element type. The following are examples of a single and

multidimensional array.

Single dimensional arrays can be declared with “are”, and multidimensional arrays need to specify

their size with the “by” keyword. Multidimensional arrays need the width portion identified, but the

height can be left unspecified with a never initialized variable. Since no variables are declared with

the string names, quotes can be left off; they are optional in this aspect.

:

2.1 Programs

IOE consists of one or more source files represented in Unicode characters. IOE compiles by:

1. Transforming a file of a particular character repertoire and encoding scheme into a sequence of

Unicode characters.

2. Translates the Unicode input stream into tokens as part of the Lexical analysis.

3. Translates the stream of tokens into executable code as part of Syntactic analysis.

2.2 Grammars

This specification presents the syntax of the IOE where it differs fro

2.2.1 Lexical Grammar Differences

<Assignment Operator>

<Mathematical Operator>

<Keyword>

<End of statement>

<End of block>

2.2.2 Syntactic Grammar Differences

Differences in IOE’s grammar can be seen in its literal

<Literal variable> ->

<Accessibility> ->

<Variable data> ->

 ->

 ->

<Variable name> ->

<Data> ->

 ->

<Value> ->

 ->

<Literal variable> is the non-

Functions and classes have similar stru

P a g e | 7

IOE Language Specifications

2. Lexical Structure

IOE consists of one or more source files represented in Unicode characters. IOE compiles by:

Transforming a file of a particular character repertoire and encoding scheme into a sequence of

Translates the Unicode input stream into tokens as part of the Lexical analysis.

Translates the stream of tokens into executable code as part of Syntactic analysis.

This specification presents the syntax of the IOE where it differs from other languages.

Lexical Grammar Differences

 -> is | is now | are

 -> plus | times | divided by | minus

 -> + | * | / | -

 -> <language defined> <variable defined>

 -> , | ; | .

 -> .

Syntactic Grammar Differences

Differences in IOE’s grammar can be seen in its literal variable structure:

<Accessibility> <Variable data> <End>

 public | private | protected

 <Variable name> is <Value>

 <Variable name> are <Data>

 <Variable name> is by array with <Data>

 A…Z | a...z

 <Value> <Data>

 <Value>

 ℝ

 A…Z | a...z

-terminal representing primitive and reference type variables.

similar structures to variables.

Lexical Structure

IOE consists of one or more source files represented in Unicode characters. IOE compiles by:

Transforming a file of a particular character repertoire and encoding scheme into a sequence of

Translates the Unicode input stream into tokens as part of the Lexical analysis.

Translates the stream of tokens into executable code as part of Syntactic analysis.

m other languages.

| minus

<language defined> <variable defined>

primitive and reference type variables.

P a g e | 8

IOE Language Specifications

<Class> -> <Accessibility> <Class name> is <Class data>

<Class name> -> A…Z | a...z

<Class data> -> <Function> | <Function> <Class data>

 -> <Literal variable> | <Literal variable> <Class data>

-> <Literal variable> <Mathematical Operator> <Literal variable>

<Class data>

-> <Loop> | <Loop> <Class data>

-> <Conditional> | <Conditional> <Class data>

<Function> -> <Accessibility> <Function name> is <Function data>

<Function name> -> A…Z | a...z

<Function data> -> <Literal variable> | <Literal variable> <Function data>

-> <Literal variable> <Mathematical Operator> <Literal variable>

<Function data>

-> <Loop> | <Loop> <Function data>

-> <Conditional> | <Function> <Class data>

<Loop> -> Loop until <Literal variable> is <Conditional>

<Conditional> -> if <Literal variable> is <Conditional operator>

 -> and <Conditional>

 -> or <Conditional>

P a g e | 9

IOE Language Specifications

2.3 Lexical Analysis

2.3.1 Comments

Comments in IOE need to be linked to a function, class, or variable. This works because function,

class, and variable names become keywords during compile. You can also use the “this” keyword to

attach the comment to the parent container. IOE builds documentation based upon comments, and

can be sorted by container and keyword. An example can be seen below.

2.4 Tokens

There are several kinds of tokens: identifiers, keywords, literal, operators, and punctuators. White

space and comments are not tokens, though they act as separators where needed.

 tokens:

 identifier

 keyword

 binary-number-literal

 character-literal

 boolean-literal

 operator-or-punctuator

2.4.1 Keyword Differences

A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an

identifier except when prefaced by the @ character.

New Keywords:

Describe quote is now are with as a

Loop by plus minus divided times and parameters

Removed Keywords:

Do for // try/catch/finallyswitch

Namespace/import void

P a g e | 10

IOE Language Specifications

3. Types

IOE has two main types, Primitive and Reference.

3.1 Value Types

Type Description

Binary Represents numerical numbers such as short,

int, or long. It uses a similar fashion to COBOL’s

PICTURE clause, but it is implicit.

Character Represents a single Unicode character.

Boolean True or Flase

3.2 Reference Types

IOE has few reference types as IOE does not support boxing/unboxing.

Type Description

Arrays A collection of elements.

P a g e | 11

IOE Language Specifications

4. Examples

4.1 Even and Odd filter

4.2 Fibonacci sequence

P a g e | 12

IOE Language Specifications

4.3 Making Change

4.4 Prime Number checker

P a g e | 13

IOE Language Specifications

4.5 Caesar Cipher

P a g e | 14

IOE Language Specifications

5. Conclusion

In conclusion, I hope that IOE brings a unique language to the table. This is not a clone of COBOL

with its same intent, purpose, and syntax; or any other language for that matter. It was designed with

one purpose: To be readable by resembling spoken word patterns. With this simple goal in mind, IOE

hoped to increase write-ability, increase readability, and act as an introductory language that enforced

common practices while sacrificing flexibility for simplicity. In my review of the language thus far, there

are some quips I’d like to fix with future versions. Currently, the statement terminals tend to be slightly

annoying. Nesting with commas, semi-colons, and sometimes periods add confusion to the program. A

new programmer may wonder which one should be used or may get hung up on syntax errors. In future

versions I hope to make nested statements not need any fragment terminals, and that the compiler

would know which block it belonged to based on the nesting structure like Python; only the end of the

block would have a period. This would allow new programmers to understand how to write their code

while enforcing readability while alleviating some of the stress in selecting the proper way to end a code

phrase. A feature that went into the design of the language was that programs could have been shared

or programmed through voice, but the nesting issues seem to get in the way. I believe the Python way

would be a step in the right direction, with an optional indent keyword to be used in vocal situations.

