
LETS_GO+	 	 Page	1	of	16	

Albiana Krasniqi

LETS_GO+
Language Design

and Example Programs
Version 1.0.0

LETS_GO+	 	 Page	2	of	16	

1.Introduction

LETS_GO+ (pronounced “LETS GO Plus”) is a simple, modern, object-
oriented, and (strongly) type-safe programming language. During my
programming journey, I really liked Java and Basic and wanted to
combine both to see what new programming language can come about. And
what we get is LETS_GO+. A futuristic programming language that has
many built in features that help beginner programmers learn and become
confident in their programming skills. This is a great first language
to learn as it is beginner friendly and includes many built-in
features that can help enhance your programming skills. So, LETS_GO
and learn some code.

 How LETS_GO+ differs from Java and Basic:

1. The original Basic, is not object oriented, and so this
implementation of LETS_GO+ supports object-oriented programming.
Object orientated programming is supported in Java, but we have a
simpler way of defining and using them. Object oriented
programming is tremendously helpful, especially when it comes to
learning the basics of programming and then moving on to more
complex topics. LETS_GO+ makes it very simple to use and
understand, so don’t worry you’re in good hands.

2. There is no main function at the beginning of your files just
like in Java, you begin with a LETS_GO method. This LETS_GO
serves as the entry point. As soon as you type LETS_GO, you can
begin coding. Without this, you cannot do anything other than
define objects in a class.

3. There are no line numbers included from Basic, because these lead
to confusion, and we are trying to make this as nice and easy to
use as possible. Which means we do not support GOTO.

4. We only support 3 primitive data types. They are number, string,
and Boolean. These are the 3 most important, and beginner
friendly we can take from both Basic and Java. In addition, users
can define and use custom class types (e.g., student_info) for
object-oriented structures.

5. We only support 3 data structures. They are Array, HashMap, and
Tree. These are the 3 most important, and beginner friendly we
can take from both Basic and Java. Arrays can be dynamically or
statically set from initialization. HashMap and Trees are more
advanced data structures, but there are built in capabilities for
these as well.

6. In early Basic, there was no such thing as private, public, etc.
In Java there is, and we feel that we need to support at least
private and public modifiers. In LETS_GO+, there are called
internal (private) and external (public).

7. We liked Basic’s simple printing style and so we took that
instead of Java’s. We also liked Basic’s begin and end for
methods, and so we adopted the start and end to the beginning of
class declarations.

LETS_GO+	 	 Page	3	of	16	

8. Every statement ends with a period (.). In both Java and Basic
everything ended with a semi-colon, but we feel that because we
are accustomed to ending sentences with periods, it feels more
natural for beginners to end their statements with periods as
well.

	

LETS_GO+	 	 Page	4	of	16	

1.1.Genealogy

LETS_GO+

LETS_GO+	 	 Page	5	of	16	

1.2.Hello world

1.3.Program structure

The key organizational concepts in LETS_GO+ are as follows:

1. Every function you define must start with a define function
function_name {…}

2. Every file must start with a define function LETS_GO, that serves
as the entry point for the file. Unless you are building an
object.

3. You must also specify at the start of the file, the name of the
class, and whether it is external or internal. External meaning
it is visible everywhere, internal meaning it is visible only
locally. external class name_of_program Start … End. The start
marks the starting of the class and the end, marks the end of the
class.

4. Once you define the function itself, you must surround the code
inside of it with curly braces. We believe that it makes it easy
and simpler to see.

5. When creating a class, in java you usually have to define the
getters and setter methods, but with LETS_GO+, you don’t have to
worry about declaring those. There is a built-in system that
recognizes a class and automatically creates the getters and
setters for you based off of the attributes. So you don’t have to
worry about that. See example down below. You do need the
constructor though, as this constructor is going to be used to
create those getters and setters.

6. A constructor for a class start off like this: constructor
constructor_name(…){…}. The parameters that it takes are the
variables that you define as attributes for the class. And since
we are extremely type safe, you must in the parameters specify
the type of the parameters.

7. When initializing your constructor, you are to use this
structure,

 attribute:attribute_name = parameter_name.

8. You must also initialize any variables you want to use, if they
are not constructor attributes.

9. All variable declarations use the (:=) sign, instead of =,
because we saved the = for comparison, as that is what we are
used to.

LETS_GO+	 	 Page	6	of	16	

Here is an example of a mini program, that has a student_info class
that holds the students information and a student_program class that
is the entry point to the whole program, that adds students to a
dynamically sized array, or displays the student array we have:

LETS_GO+	 	 Page	7	of	16	

1.4.Types and Variables

There are two kinds of types in LETS_GO+: value types and reference
types. Variables of value types directly contain their data whereas
variables of reference types store references to their data, the
latter being known as objects. With reference types, it is possible
for two variables to reference the same object and thus possible for
operations on one variable to affect the object referenced by the
other variable.

1.5.Visibility

In LETS_GO+, there are two visibility types, external and internal.
External represents public visibility, meaning everything has access
to it. Internal represent private visibility, meaning only functions,
attributes, etc. in the same class have access to it.

1.6.Statements Differing from Java and Basic

Statement Example

Function
Definition

define function LETS_GO {
 print “Hello World”.
}

Expression
Statement

external class expression_statement Start
 define function LETS_GO {
 number a := 5.
 string b := “hey”.
 print a.
 print b.
 print “LETS GO”.
 Array <|number|> evenNumbers [5].
 evenNumbers.add(2).
 }
End.

For-Loop
Statement

external class for_loop_statement Start
 define function LETS_GO {
 number iterator := 0.
 Array <|number|> random_Numbers [5].
 random_Numbers.add(56).
 random_Numbers.add(25).
 random_Numbers.add(100).
 random_Numbers.add(1).
 random_Numbers.add(250).
 for(iterator to length(random_Numbers)):
 print “Number ”, iterator, “ : ”,
 random_Numbers[iterator].
 Next iterator.
}

End.

LETS_GO+	 	 Page	8	of	16	

Input Accept
Statement

external class input_statement Start
 define function LETS_GO {
 number b := accept_number_input(print “Enter in a
number: ”).
 print b.

 string s := accept_string_input(print “Enter in your
name: ”).
 print s.

 boolean a := accept_boolean_input(print “True or
False: LETS_GO+ is the best programming language in the
world?”).
 print a.
}
End.

Constructor
Attribute
Statement

external class sample_Program Start
 constructor attribute string first_name.
 constructor attribute string last_name.
 constructor attribute number id.

 constructor student_info(string first_name, string
last_name, number id) {
 attribute.first_name := first_name.
 attribute.last_name := last_name.
 attribute.id := id.
 }
}
End.

LETS_GO+	 	 Page	9	of	16	

2.Lexical structure

2.1.Programs

A LETS_GO+ program consists of one or more source files. A source file
is an ordered sequence of (probably Unicode) characters.

Conceptually speaking, a program is compiled using three steps:

1. Transformation, which converts a file from a particular character
repertoire and encoding scheme into a sequence of Unicode
characters.

2. Lexical analysis, which translates a stream of Unicode input
characters into a stream of tokens.

3. Syntactic analysis, which translates the stream of tokens into
executable code.

2.2.Grammars

This specification presents the syntax of the LETS_GO+ programming
language where it differs from Java and Basic.

2.2.1.Lexical grammar (tokens) where different from Java and Basic

<Assignment Operator> à :=

<Math Operators> à +|*|÷| -

<Remainder Operator> à Remainder (number)

<String Concatenation> à ,

<Begin Block> à Start (For classes), { (for functions)

<Close Block> à End. (For classes), } (for functions)

<Number> à +/- (0|([1-9][0-9]*)) ‘.’ (0|([1-9][0-9]*))*

<String> à [a-z][a-Z0-9]*

<Array> à Array <|Type|> Array_Name [Size (If not set, will be
dynamically sized)].

<End_Of_All_Statements> à .

<Array_length> à length(Array_Name)

<Input> à accept_type_input()

<Single-Line Comments> à #

<Multi-Line Comments> à #|…|#

<Creating_New_Object> à let object_name = new object_type()

<Less than, greater than operators> à <, >, ≤, ≥

LETS_GO+	 	 Page	10	of	16	

2.2.2.Syntactic (“parse”) grammar where different from Java and
Basic

 <Class Declaration> à <Modifier> class “class_name” Start

 <Function Definition> à

 define function “function_name” (<parameters>)

 <Constructor Attribute Declaration> à

 constructor_attribute <type> “name”

 <Constructor Attribute Setting> à

 attribute: ”constructor_attribute_name” := <parameter>

 <Import Class> à grab “class_name” class.

 <Array Declaration> à Array “array_name” <|Array Type|> [].

 <Ending Class Declaration> à End.

 <Statement Ending> à .

 <Input Acceptance> à accept_<Type>_input().

 <Object Instantiation> à

 let <object_name> := “constructor_name” (<parameters>).

 <Function Calling> à call “function_name” <parameters> .

 <Single-Line Comments> à # <comment>

 <Multi-Line Comments> à #| <comment> |#

LETS_GO+	 	 Page	11	of	16	

2.3.Lexical analysis

2.3.1.Comments

Two forms of comments are supported: single-line comments and
delimited comments. Single-line comments start with the character #
and extend to the end of the source line. Delimited comments start
with the characters #| and end with the characters |#. Delimited
comments may span multiple lines. Comments can nest, as this may be
useful in certain situations, so we made it possible for you to nest
comments.

2.4.Tokens

There are several kinds of tokens: identifiers, keywords, literals,
operators, and punctuators. White space and comments are not tokens,
though they act as separators for tokens where needed.

Tokens:

identifier

keyword

number-literal

string-literal

Boolean-literal

Remainder-literal

String Concatenation-literal

operator-or-punctuator

2.4.1.Keywords different from Java or Basic

A keyword is an identifier-like sequence of characters that is
reserved, and cannot be used as an identifier except when prefaced by
the @ character.

New keywords:
start, end, accept_TYPE_input, constructor_attribute, attribute,
let, internal, external, define, function, call, grab, number,
remainder

Removed keywords:

Goto, public, private, import, def, system.out.println, int, float,
mod

LETS_GO+	 	 Page	12	of	16	

3.Type System

LETS_GO+ uses a strong static type system. LETS_GO+ is attempting to
become the worlds easiest programming language to use and understand
and so making this a strongly typed system, it will catch type errors
and let the user know where and how to fix it. This is extremely
important to help with building those basic skills as a beginner.
Static typing means early binding, compile-time type checking. This is
just more intuitive and easier to debug as a user.

3.1.Type Rules

The type rules for LETS_GO+ are as follows:

	

LETS_GO+	 	 Page	13	of	16	

LETS_GO+ types are divided into two main categories: Value types and
Reference types.

3.2.Value types (different from Java and Basic)

- Number: Just like any other number we think about. This also
includes negative numbers, decimals etc. We didn’t want two
separate identifiers for each.

- Booleans: Represents a logical value either true or false.

- Strings: Represents a sequence of characters or single character.

These types are passed by value, meaning the variable holds the
actual data.

3.3.Reference types (differing from Java and Basic)

- Object creation: When you create your own class in LETS_GO+, you
instantiate your attributes with a constructor. These objects are
then stored and passed by reference, so changes to the object
affect all references to it. This is because object creation is
generally complex in nature, and to help separate this with the
simple value types we have, we decided that by passing any object
creation by reference is the best way to go about this.

LETS_GO+	 	 Page	14	of	16	

4.Example Programs

Caeser Cipher
with LETS_GO
method that
takes in
input and
then either
goes to

Encrypt or
Decrypt:

LETS_GO+	 	 Page	15	of	16	

Factorial:

Bubble Sort:

LETS_GO+	 	 Page	16	of	16	

Fibonacci Sequence Recursive Implementation:

Number Guessing Game:

